Namespaces
Variants
Actions

Difference between revisions of "Chow theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
 
Line 2: Line 2:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.L. Chow,   "On compact complex analytic varieties" ''Amer. J. Math.'' , '''71''' (1949) pp. 893–914</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.A. Griffiths,   J.E. Harris,   "Principles of algebraic geometry" , '''1''' , Wiley (Interscience) (1978)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.S. Chern,   "Complex manifolds without potential theory" , Springer (1979)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.L. Chow, "On compact complex analytic varieties" ''Amer. J. Math.'' , '''71''' (1949) pp. 893–914 {{MR|0033093}} {{ZBL|0041.48302}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , '''1''' , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) {{MR|0533884}} {{ZBL|0444.32004}} </TD></TR></table>

Latest revision as of 21:50, 30 March 2012

Every analytic subset (cf. Analytic set 6)) of a complex projective space is an algebraic variety. The theorem was proved by W.L. Chow [1].

References

[1] W.L. Chow, "On compact complex analytic varieties" Amer. J. Math. , 71 (1949) pp. 893–914 MR0033093 Zbl 0041.48302
[2] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , 1 , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[3] S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) MR0533884 Zbl 0444.32004
How to Cite This Entry:
Chow theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chow_theorem&oldid=16011
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article