Namespaces
Variants
Actions

Difference between revisions of "Stokes formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Content moved in Stokes theorem)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A formula that expresses the connection between the flow of a vector field through a two-dimensional oriented manifold and the circulation of this field along the correspondingly oriented boundary of this manifold. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903101.png" /> be an oriented piecewise-smooth surface, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903102.png" /> be the unit normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903103.png" /> (at those points, of course, where it exists), which defines the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903104.png" />, and let the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903105.png" /> consist of a finite number of piecewise-smooth contours. The boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903106.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903107.png" />, and is oriented by means of the unit tangent vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903108.png" />, such that the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s0903109.png" /> obtained is compatible with the orientation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031011.png" />.
+
#REDIRECT[[Stokes theorem]]
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031012.png" /> is a continuously-differentiable [[Vector field|vector field]] in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031013.png" />, then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
 
 
 
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031015.png" /> is the area element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031017.png" /> is the differential of the arc length of the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031019.png" />) or, in coordinate form,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031020.png" /></td> </tr></table>
 
 
 
Stated by G. Stokes (1854).
 
 
 
Stokes' formula is also the name given to a generalization of formula , which represents the equality between the integral of the exterior differential of a [[Differential form|differential form]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031021.png" /> over an oriented compact manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031022.png" /> and the integral of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031023.png" /> itself along the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031025.png" /> (the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031026.png" /> is taken to be compatible with that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031027.png" />):
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090310/s09031028.png" /></td> </tr></table>
 
 
 
Other particular cases of this formula are the [[Newton–Leibniz formula|Newton–Leibniz formula]], the [[Green formulas|Green formulas]] and the [[Ostrogradski formula|Ostrogradski formula]].
 
 
 
 
 
 
 
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Spivak,  "Calculus on manifolds" , Benjamin  (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C. deWitt-Morette,  "Analysis, manifolds, physics" , North-Holland  (1977)  pp. 205  (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Triebel,  "Analysis and mathematical physics" , Reidel  (1986)  pp. 375</TD></TR></table>
 

Latest revision as of 12:43, 28 January 2014

Redirect to:

How to Cite This Entry:
Stokes formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stokes_formula&oldid=15395
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article