|
|
(6 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A conditional probability distribution of a random
| + | * navigation |
− | variable, to be contrasted with its unconditional or
| + | ** mainpage|mainpage-description |
− | [[A priori distribution|a priori distribution]].
| + | ** Special:Allpages|Pages A-Z |
− | | + | ** :Category:Statprob|StatProb Collection |
− | Let
| + | ** recentchanges-url|recentchanges |
− | <html><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100301.png">
| + | ** currentevents-url|currentevents |
− | be a random parameter with an a priori density
| + | ** randompage-url|randompage |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100302.png">,
| + | ** Help:Contents|help |
− | let
| + | ** Talk:EoM:This_project|Project talk |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100303.png">
| + | ** Special:RequestAccount|Request account |
− | be a random result of observations and let
| + | * SEARCH |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100304.png">
| + | * TOOLBOX |
− | be the conditional density of
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100305.png">
| |
− | when
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100306.png">;
| |
− | then the a posteriori distribution of
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100307.png">
| |
− | for a given
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100308.png"></html>,
| |
− | according to the
| |
− | [[Bayes formula|Bayes formula]],
| |
− | has the density
| |
− | <table class="eq" style="width:100%;">
| |
− | <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a0100309.png"></td>
| |
− | </tr></table>
| |
− | If
| |
− | <html><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003010.png"></html>
| |
− | is a
| |
− | [[Sufficient statistic|sufficient statistic]]
| |
− | for the family of distributions with densities
| |
− | <html><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003011.png">,
| |
− | then the a posteriori distribution depends not on
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003012.png">
| |
− | itself, but on
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003013.png">.
| |
− | The asymptotic behaviour of the a posteriori distribution
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003014.png">
| |
− | as
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003015.png">,
| |
− | where
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003016.png">
| |
− | are the results of independent observations with density
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003017.png">,</html>
| |
− | is
| |
− |  "almost independent" 
| |
− | of the a priori distribution of
| |
− | <html><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010030/a01003018.png"></html>.
| |
− | | |
− | | |
− | For the role played by a posteriori distributions
| |
− | in the theory of statistical decisions, see
| |
− | [[Bayesian approach|Bayesian approach]].
| |
− | | |
− | ====References====
| |
− | <html><table><TR><TD valign="top">[1]</TD>
| |
− | <TD valign="top">
| |
− |  S.N. Bernshtein, 
| |
− |  "Probability theory"
| |
− | , Moscow-Leningrad
| |
− |  (1946)
| |
− |  (In Russian)</TD></TR></table></html>
| |
− | | |
− | | |
− | | |
− | ''Yu.V. Prokhorov''
| |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | ====Comments====
| |
− | | |
− | | |
− | | |
− | | |
− | | |
− | ====References====
| |
− | <html><table><TR><TD valign="top">[a1]</TD>
| |
− | <TD valign="top">
| |
− |  E. Sverdrup, 
| |
− |  "Laws and chance variations"
| |
− | , <b>1</b>
| |
− | , North-Holland
| |
− |  (1967)
| |
− |  pp. 214ff</TD></TR></table></html>
| |
− | | |
− | | |
− | This text originally appeared in Encyclopaedia of Mathematics
| |
− | - ISBN 1402006098
| |