Difference between revisions of "Super-space"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48910 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911901.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911902.png" /> endowed with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911903.png" />-grading <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911904.png" />. The elements of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911906.png" /> are said to be even and odd, respectively; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911907.png" />, the parity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911908.png" /> is defined to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911909.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119010.png" />. Each super-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119011.png" /> has associated to it another super-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119012.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119013.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119014.png" />. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119017.png" />, is called the dimension of the super-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119018.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119019.png" /> is usually considered as a super-space of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119020.png" />. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | --> | ||
− | + | For two super-spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119022.png" />, the structure of a super-space on the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119025.png" />, etc., is defined naturally. In particular, a linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119026.png" /> is even if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119027.png" />, and odd if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119028.png" />. A homogeneous bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119029.png" /> is said to be symmetric if | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119030.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
and skew-symmetric if | and skew-symmetric if | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119031.png" /></td> </tr></table> | |
− | |||
− | |||
− | All these concepts apply equally to | + | All these concepts apply equally to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119032.png" />-graded free modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119033.png" /> over an arbitrary commutative [[Superalgebra|superalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119034.png" />. The basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119035.png" /> is usually selected so that its first vectors are even and its last ones odd. Any endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119036.png" /> of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119037.png" /> is denoted in this basis by a block matrix |
− | graded free modules | ||
− | over an arbitrary commutative [[Superalgebra|superalgebra]] | ||
− | The basis in | ||
− | is usually selected so that its first vectors are even and its last ones odd. Any endomorphism | ||
− | of the module | ||
− | is denoted in this basis by a block matrix | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119038.png" /></td> </tr></table> | |
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119040.png" />, such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119041.png" /> is even, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119043.png" /> consist of even elements and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119045.png" /> consist of odd elements, whereas if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119046.png" /> is odd, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119048.png" /> consist of odd elements and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119050.png" /> consist of even elements (in the former case the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s09119051.png" /> is even, in the latter, odd). |
− | |||
− | such that if | ||
− | is even, then | ||
− | and | ||
− | consist of even elements and | ||
− | and | ||
− | consist of odd elements, whereas if | ||
− | is odd, then | ||
− | and | ||
− | consist of odd elements and | ||
− | and | ||
− | consist of even elements (in the former case the matrix | ||
− | is even, in the latter, odd). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on super-manifolds'' , Kluwer (1990)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on super-manifolds'' , Kluwer (1990)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
+ | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.A. Berezin, M.A. Shubin, "The Schrödinger equation" , Kluwer (1991) (Translated from Russian) (Supplement 3: D.A. Leites, Quantization and supermanifolds)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.A. Berezin, M.A. Shubin, "The Schrödinger equation" , Kluwer (1991) (Translated from Russian) (Supplement 3: D.A. Leites, Quantization and supermanifolds)</TD></TR></table> |
Revision as of 14:53, 7 June 2020
A vector space over a field endowed with a -grading . The elements of the spaces and are said to be even and odd, respectively; for , the parity is defined to be . Each super-space has associated to it another super-space such that . The pair , where , , is called the dimension of the super-space . The field is usually considered as a super-space of dimension .
For two super-spaces and , the structure of a super-space on the spaces , , , etc., is defined naturally. In particular, a linear mapping is even if , and odd if . A homogeneous bilinear form is said to be symmetric if
and skew-symmetric if
All these concepts apply equally to -graded free modules over an arbitrary commutative superalgebra . The basis in is usually selected so that its first vectors are even and its last ones odd. Any endomorphism of the module is denoted in this basis by a block matrix
where , , such that if is even, then and consist of even elements and and consist of odd elements, whereas if is odd, then and consist of odd elements and and consist of even elements (in the former case the matrix is even, in the latter, odd).
References
[1] | F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian) |
[2] | D.A. Leites (ed.) , Seminar on super-manifolds , Kluwer (1990) |
Comments
References
[a1] | F.A. Berezin, M.A. Shubin, "The Schrödinger equation" , Kluwer (1991) (Translated from Russian) (Supplement 3: D.A. Leites, Quantization and supermanifolds) |
Super-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Super-space&oldid=48910