Difference between revisions of "Skew-symmetric bilinear form"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48725 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
''anti-symmetric bilinear form'' | ''anti-symmetric bilinear form'' | ||
− | A [[Bilinear form|bilinear form]] | + | A [[Bilinear form|bilinear form]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857101.png" /> on a unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857102.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857103.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857104.png" /> is a commutative ring with an identity) such that |
− | on a unitary | ||
− | module | ||
− | where | ||
− | is a commutative ring with an identity) such that | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857105.png" /></td> </tr></table> | |
− | |||
− | - | ||
− | |||
− | |||
− | |||
− | The structure of any skew-symmetric bilinear form | + | The structure of any skew-symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857106.png" /> on a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857107.png" /> over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857108.png" /> is uniquely determined by its Witt index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857109.png" /> (see [[Witt theorem|Witt theorem]]; [[Witt decomposition|Witt decomposition]]). Namely: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571010.png" /> is the orthogonal (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571011.png" />) direct sum of the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571013.png" /> and a subspace of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571014.png" />, the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571015.png" /> to which is a standard form. Two skew-symmetric bilinear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571016.png" /> are isometric if and only if their Witt indices are equal. In particular, a non-degenerate skew-symmetric bilinear form is standard, and in that case the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571017.png" /> is even. |
− | on a finite-dimensional vector space | ||
− | over a field of characteristic | ||
− | is uniquely determined by its Witt index | ||
− | see [[Witt theorem|Witt theorem]]; [[Witt decomposition|Witt decomposition]]). Namely: | ||
− | is the orthogonal (with respect to | ||
− | direct sum of the kernel | ||
− | of | ||
− | and a subspace of dimension | ||
− | the restriction of | ||
− | to which is a standard form. Two skew-symmetric bilinear forms on | ||
− | are isometric if and only if their Witt indices are equal. In particular, a non-degenerate skew-symmetric bilinear form is standard, and in that case the dimension of | ||
− | is even. | ||
− | For any skew-symmetric bilinear form | + | For any skew-symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571019.png" /> there exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571020.png" /> relative to which the matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571021.png" /> is of the form |
− | on | ||
− | there exists a basis | ||
− | relative to which the matrix of | ||
− | is of the form | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table> | |
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571024.png" /> is the identity matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571025.png" />. The matrix of a skew-symmetric bilinear form relative to any basis is skew-symmetric. Therefore, the above properties of skew-symmetric bilinear forms can be formulated as follows: For any skew-symmetric matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571026.png" /> over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571027.png" /> there exists a non-singular matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571028.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571029.png" /> is of the form (*). In particular, the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571030.png" /> is even, and the determinant of a skew-symmetric matrix of odd order is 0. |
− | and | ||
− | is the identity matrix of order | ||
− | The matrix of a skew-symmetric bilinear form relative to any basis is skew-symmetric. Therefore, the above properties of skew-symmetric bilinear forms can be formulated as follows: For any skew-symmetric matrix | ||
− | over a field of characteristic | ||
− | there exists a non-singular matrix | ||
− | such that | ||
− | is of the form (*). In particular, the rank of | ||
− | is even, and the determinant of a skew-symmetric matrix of odd order is 0. | ||
− | The above assertions remain valid for a field of characteristic 2, provided one replaces the skew-symmetry condition for the form | + | The above assertions remain valid for a field of characteristic 2, provided one replaces the skew-symmetry condition for the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571031.png" /> by the condition that the form be alternating: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571032.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571033.png" /> (for fields of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571034.png" /> the two conditions are equivalent). |
− | by the condition that the form be alternating: | ||
− | for any | ||
− | for fields of characteristic | ||
− | the two conditions are equivalent). | ||
− | These results can be generalized to the case where | + | These results can be generalized to the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571035.png" /> is a commutative principal ideal ring, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571036.png" /> is a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571037.png" />-module of finite dimension and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571038.png" /> is an alternating bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571039.png" />. To be precise: Under these assumptions there exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571040.png" /> of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571041.png" /> and a non-negative integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571042.png" /> such that |
− | is a commutative principal ideal ring, | ||
− | is a free | ||
− | module of finite dimension and | ||
− | is an alternating bilinear form on | ||
− | To be precise: Under these assumptions there exists a basis | ||
− | of the module | ||
− | and a non-negative integer | ||
− | such that | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571043.png" /></td> </tr></table> | |
− | 0 | ||
− | |||
− | |||
− | |||
− | and | + | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571044.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571045.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571046.png" />; otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571047.png" />. The ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571048.png" /> are uniquely determined by these conditions, and the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571049.png" /> is generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571050.png" />. |
− | divides | ||
− | for | ||
− | otherwise | ||
− | The ideals | ||
− | are uniquely determined by these conditions, and the module | ||
− | is generated by | ||
− | The determinant of an alternating matrix of odd order equals 0 for any commutative ring | + | The determinant of an alternating matrix of odd order equals 0 for any commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571051.png" /> with an identity. In case the order of the alternating matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571052.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571053.png" /> is even, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571054.png" /> is a square in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s08571055.png" /> (see [[Pfaffian|Pfaffian]]). |
− | with an identity. In case the order of the alternating matrix | ||
− | over | ||
− | is even, the element | ||
− | is a square in | ||
− | see [[Pfaffian|Pfaffian]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , Hermann (1970) pp. Chapt. II. Algèbre linéaire</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , Hermann (1970) pp. Chapt. II. Algèbre linéaire</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== |
Revision as of 14:53, 7 June 2020
anti-symmetric bilinear form
A bilinear form on a unitary -module (where is a commutative ring with an identity) such that
The structure of any skew-symmetric bilinear form on a finite-dimensional vector space over a field of characteristic is uniquely determined by its Witt index (see Witt theorem; Witt decomposition). Namely: is the orthogonal (with respect to ) direct sum of the kernel of and a subspace of dimension , the restriction of to which is a standard form. Two skew-symmetric bilinear forms on are isometric if and only if their Witt indices are equal. In particular, a non-degenerate skew-symmetric bilinear form is standard, and in that case the dimension of is even.
For any skew-symmetric bilinear form on there exists a basis relative to which the matrix of is of the form
(*) |
where and is the identity matrix of order . The matrix of a skew-symmetric bilinear form relative to any basis is skew-symmetric. Therefore, the above properties of skew-symmetric bilinear forms can be formulated as follows: For any skew-symmetric matrix over a field of characteristic there exists a non-singular matrix such that is of the form (*). In particular, the rank of is even, and the determinant of a skew-symmetric matrix of odd order is 0.
The above assertions remain valid for a field of characteristic 2, provided one replaces the skew-symmetry condition for the form by the condition that the form be alternating: for any (for fields of characteristic the two conditions are equivalent).
These results can be generalized to the case where is a commutative principal ideal ring, is a free -module of finite dimension and is an alternating bilinear form on . To be precise: Under these assumptions there exists a basis of the module and a non-negative integer such that
and divides for ; otherwise . The ideals are uniquely determined by these conditions, and the module is generated by .
The determinant of an alternating matrix of odd order equals 0 for any commutative ring with an identity. In case the order of the alternating matrix over is even, the element is a square in (see Pfaffian).
References
[1] | N. Bourbaki, "Algèbre" , Eléments de mathématiques , Hermann (1970) pp. Chapt. II. Algèbre linéaire |
[2] | S. Lang, "Algebra" , Addison-Wesley (1984) |
[3] | E. Artin, "Geometric algebra" , Interscience (1957) |
Comments
The kernel of a skew-symmetric bilinear form is the left kernel of the corresponding bilinear mapping, which is equal to the right kernel by skew symmetry.
References
[a1] | J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) |
Skew-symmetric bilinear form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skew-symmetric_bilinear_form&oldid=48725