Difference between revisions of "Sign test"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48694 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | + | A [[Non-parametric test|non-parametric test]] for a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850401.png" />, according to which a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850402.png" /> has a binomial distribution with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850403.png" />. If the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850404.png" /> is true, then | |
− | s0850401.png | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850405.png" /></td> </tr></table> | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850406.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
where | where | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850407.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | 0 | ||
− | |||
− | and | + | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850408.png" /> is the beta-function. According to the sign test with significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s0850409.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504010.png" />, the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504011.png" /> is rejected if |
− | is the beta-function. According to the sign test with significance level | ||
− | |||
− | the hypothesis | ||
− | is rejected if | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504012.png" /></td> </tr></table> | |
− | |||
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504013.png" />, the critical value of the test, is the integer solution of the inequalities |
− | the critical value of the test, is the integer solution of the inequalities | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504014.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | The sign test can be used to test a hypothesis | + | The sign test can be used to test a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504015.png" /> according to which the unknown continuous distribution of independent identically-distributed random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504016.png" /> is symmetric about zero, i.e. for any real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504017.png" />, |
− | according to which the unknown continuous distribution of independent identically-distributed random variables | ||
− | is symmetric about zero, i.e. for any real | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504018.png" /></td> </tr></table> | |
− | |||
− | |||
In this case the sign test is based on the statistic | In this case the sign test is based on the statistic | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504019.png" /></td> </tr></table> | |
− | |||
− | |||
− | which is governed by a binomial law with parameters | + | which is governed by a binomial law with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504020.png" /> if the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504021.png" /> is true. |
− | if the hypothesis | ||
− | is true. | ||
− | Similarly, the sign test is used to test a hypothesis | + | Similarly, the sign test is used to test a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504022.png" /> according to which the median of an unknown continuous distribution to which independent random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504023.png" /> are subject is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504024.png" />; to this end one simply replaces the given random variables by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085040/s08504025.png" />. |
− | according to which the median of an unknown continuous distribution to which independent random variables | ||
− | are subject is | ||
− | to this end one simply replaces the given random variables by | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian)</TD></TR></table> |
Revision as of 14:53, 7 June 2020
A non-parametric test for a hypothesis , according to which a random variable has a binomial distribution with parameters . If the hypothesis is true, then
where
and is the beta-function. According to the sign test with significance level , , the hypothesis is rejected if
where , the critical value of the test, is the integer solution of the inequalities
The sign test can be used to test a hypothesis according to which the unknown continuous distribution of independent identically-distributed random variables is symmetric about zero, i.e. for any real ,
In this case the sign test is based on the statistic
which is governed by a binomial law with parameters if the hypothesis is true.
Similarly, the sign test is used to test a hypothesis according to which the median of an unknown continuous distribution to which independent random variables are subject is ; to this end one simply replaces the given random variables by .
References
[1] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[2] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
[3] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
[4] | N.V. Smirnov, I.V. Dunin-Barkovskii, "Mathematische Statistik in der Technik" , Deutsch. Verlag Wissenschaft. (1969) (Translated from Russian) |
Sign test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sign_test&oldid=48694