Difference between revisions of "Schur theorems"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48627 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | Theorems for finding a solution to the [[Coefficient problem|coefficient problem]] for bounded analytic functions. They were obtained by I. Schur [[#References|[1]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834801.png" /> be the class of regular functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834802.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834803.png" /> satisfying in it the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834804.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834806.png" />, be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834807.png" />-dimensional complex Euclidean space, its points are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834808.png" />-tuples of complex numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s0834809.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348010.png" /> be a set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348011.png" /> such that the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348012.png" /> are the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348013.png" /> coefficients of some function from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348014.png" />. The sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348015.png" /> are closed, bounded and convex in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348016.png" />. Then the following theorems hold. |
− | s0834801.png | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | --> | ||
− | + | Schur's first theorem: To the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348017.png" /> on the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348018.png" /> there correspond in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348019.png" /> only rational functions of the form | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348020.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Schur's | + | Schur's second theorem: A necessary and sufficient condition for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348021.png" /> to be an interior point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348022.png" /> is that the following inequalities hold for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348023.png" />: |
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083480/s08348024.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | ||
Line 51: | Line 13: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" ''J. Reine Angew. Math.'' , '''147''' (1917) pp. 205–232</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Lehrbuch der Funktionentheorie" , '''2''' , Teubner (1931)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" ''J. Reine Angew. Math.'' , '''147''' (1917) pp. 205–232</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Lehrbuch der Funktionentheorie" , '''2''' , Teubner (1931)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
+ | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40</TD></TR></table> |
Revision as of 14:53, 7 June 2020
Theorems for finding a solution to the coefficient problem for bounded analytic functions. They were obtained by I. Schur [1]. Let be the class of regular functions in satisfying in it the condition . Let , , be the -dimensional complex Euclidean space, its points are -tuples of complex numbers ; let be a set of points such that the numbers are the first coefficients of some function from . The sets are closed, bounded and convex in . Then the following theorems hold.
Schur's first theorem: To the points on the boundary of there correspond in only rational functions of the form
Schur's second theorem: A necessary and sufficient condition for to be an interior point of is that the following inequalities hold for :
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.
References
[1] | I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" J. Reine Angew. Math. , 147 (1917) pp. 205–232 |
[2] | L. Bieberbach, "Lehrbuch der Funktionentheorie" , 2 , Teubner (1931) |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Comments
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |
[a2] | J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40 |
Schur theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_theorems&oldid=48627