Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/69"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (inserted blank)
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007048.png ; $u ( z _ { 1 } , z _ { 2 } ) = \left\{ \begin{array} { c l } { 0 } & { \text { if } | z _ { 1 } | ^ { 2 } , | z _ { 2 } | ^ { 2 } < \frac { 1 } { 2 } } \\ { \operatorname { max } \{ ( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } ) ^ { 2 } , } & { ( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } ) ^ { 2 } \} } \\ { \text { elsewhere on } D } \end{array} \right. ,$ ; confidence 0.287
+
1. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007048.png ; $u ( z _ { 1 } , z _ { 2 } ) = \left\{ \begin{array} { c l } { 0 } & { \text { if } | z _ { 1 } | ^ { 2 } , | z _ { 2 } | ^ { 2 } < \frac { 1 } { 2 } } ,\\ { \operatorname { max } \left\{ \left( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } \right. }, & { \left. \left( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } \right\} } \\ { \text { elsewhere on } D, } \end{array} \right. $ ; confidence 0.287
  
 
2. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d03055021.png ; $I_i$ ; confidence 0.287
 
2. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d03055021.png ; $I_i$ ; confidence 0.287
Line 8: Line 8:
 
4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180377.png ; $\tilde { g } | _ { M } = g$ ; confidence 0.287
 
4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180377.png ; $\tilde { g } | _ { M } = g$ ; confidence 0.287
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V  } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { \operatorname{l} } - P _ { U \cap V  } f \| \leq c ^ { 2 \operatorname{l} - 1 } \| f \|$ ; confidence 0.287
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260120.png ; $A ( X _ { 1 } , \dots , X _ { N } )$ ; confidence 0.287
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260120.png ; $A ( X _ { 1 } , \dots , X _ { n } )$ ; confidence 0.287
  
7. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002045.png ; $P ( X = 0 ) \leq e ^ { - \Omega ( 1 / ( n p ^ { 2 } ) ) }$ ; confidence 0.287
+
7. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002045.png ; $\mathsf{P} ( X = 0 ) \leq e ^ { - \Omega ( 1 / ( n p ^ { 2 } ) ) }$ ; confidence 0.287
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180116.png ; $\operatorname { co } ( R ) = U \times \operatorname { Rng } ( R )$ ; confidence 0.287
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180116.png ; $\operatorname { c }_{0} ( R ) = U \times \operatorname { Rng } ( R )$ ; confidence 0.287
  
 
9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120166.png ; $F \Psi ^ { q }$ ; confidence 0.287
 
9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120166.png ; $F \Psi ^ { q }$ ; confidence 0.287
Line 20: Line 20:
 
10. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b1303007.png ; $F _ { m } ^ { n }$ ; confidence 0.286
 
10. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b1303007.png ; $F _ { m } ^ { n }$ ; confidence 0.286
  
11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023094.png ; $X _ { i } = B U \Rightarrow A : = B$ ; confidence 0.286
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023094.png ; $X = B U \Rightarrow A : = B$ ; confidence 0.286
  
12. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006027.png ; $v _ { 1 } , \dots , v _ { N }$ ; confidence 0.286
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006027.png ; $v _ { 1 } , \dots , v _ { n }$ ; confidence 0.286
  
13. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014015.png ; $\langle A , \tilde { f } \rangle _ { f \in \Phi }$ ; confidence 0.286
+
13. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014015.png ; $\langle A , \tilde { f } \rangle _ { f \in \Phi },$ ; confidence 0.286
  
 
14. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009097.png ; $\mathfrak{S}_r$ ; confidence 0.286
 
14. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009097.png ; $\mathfrak{S}_r$ ; confidence 0.286
Line 32: Line 32:
 
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022063.png ; $\rightarrow \square _ { R } \text { Mod } ( ? , C ) \rightarrow S _ { C } \rightarrow 0.$ ; confidence 0.286
 
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022063.png ; $\rightarrow \square _ { R } \text { Mod } ( ? , C ) \rightarrow S _ { C } \rightarrow 0.$ ; confidence 0.286
  
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049063.png ; $| N _ { k } | ^ { 2 } \geq | N _ { k  - 1} | | N _ { k  + 1}$ ; confidence 0.285
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049063.png ; $| N _ { k } | ^ { 2 } \geq | N _ { k  - 1} | | N _ { k  + 1}|$ ; confidence 0.285
  
18. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302908.png ; $l _ { A } ( M / qM ) - e _ { q } ^ { 0 } ( M )$ ; confidence 0.285
+
18. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302908.png ; $\operatorname{l} _ { A } ( M / \mathfrak{q}M ) - e _ { \mathfrak{q} } ^ { 0 } ( M )$ ; confidence 0.285
  
 
19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024062.png ; $f ( t , \psi ) \in \mathbf{R} ^ { n }$ ; confidence 0.285
 
19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024062.png ; $f ( t , \psi ) \in \mathbf{R} ^ { n }$ ; confidence 0.285
Line 40: Line 40:
 
20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032062.png ; $s\leq s_ 1$ ; confidence 0.285
 
20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032062.png ; $s\leq s_ 1$ ; confidence 0.285
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058031.png ; $\varepsilon _ { l } - \varepsilon _ { l }$ ; confidence 0.285
+
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058031.png ; $\varepsilon _ { l } - \varepsilon _ { r }$ ; confidence 0.285
  
 
22. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017098.png ; $\mathcal{A} x = a x - x c$ ; confidence 0.285
 
22. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017098.png ; $\mathcal{A} x = a x - x c$ ; confidence 0.285
Line 46: Line 46:
 
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007062.png ; $Q _ { m , j_g }$ ; confidence 0.285
 
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007062.png ; $Q _ { m , j_g }$ ; confidence 0.285
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018094.png ; $\textbf{Alg} _ { vdash } ( \mathcal{L} )$ ; confidence 0.285
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018094.png ; $\textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.285
  
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011044.png ; $\alpha ^ { w } = \int _ { R ^ { 2 n } } \alpha ( X ) 2 ^ { n } \sigma _ { X } d X =$ ; confidence 0.285
+
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011044.png ; $\alpha ^ { w } = \int _ { \mathbf{R} ^ { 2 n } } a ( X ) 2 ^ { n } \sigma _ { X } d X =$ ; confidence 0.285
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040386.png ; $\mathcal{F} \subseteq Fi _ { \mathcal{D} } A$ ; confidence 0.285
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040386.png ; $\mathcal{F} \subseteq \operatorname{Fi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.285
  
 
27. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006059.png ; $A = B ^ { \uparrow X _ { 1 } , \ldots , X _ { n } }$ ; confidence 0.284
 
27. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006059.png ; $A = B ^ { \uparrow X _ { 1 } , \ldots , X _ { n } }$ ; confidence 0.284
Line 58: Line 58:
 
29. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004048.png ; $d _ { 2 }$ ; confidence 0.284
 
29. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004048.png ; $d _ { 2 }$ ; confidence 0.284
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009017.png ; $\alpha \in T _ { X } \cap T _ { Y }$ ; confidence 0.284
+
30. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009017.png ; $a \in T _ { X } \cap T _ { Y }$ ; confidence 0.284
  
 
31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005058.png ; $h ^ { \alpha } = h _ { 1 } ^ { \alpha _ { 1 } } \ldots h _ { m } ^ { \alpha _ { m } }$ ; confidence 0.284
 
31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005058.png ; $h ^ { \alpha } = h _ { 1 } ^ { \alpha _ { 1 } } \ldots h _ { m } ^ { \alpha _ { m } }$ ; confidence 0.284
Line 64: Line 64:
 
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { n }$ ; confidence 0.284
 
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { n }$ ; confidence 0.284
  
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015022.png ; $C^n$ ; confidence 0.284
+
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015022.png ; $\mathbf{C}^n$ ; confidence 0.284
  
34. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020204.png ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } \frac { d \vartheta } { 2 \pi } \leq c _ { 1 } ^ { 2 } | I |$ ; confidence 0.284
+
34. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020204.png ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } \frac { d \vartheta } { 2 \pi } \leq c _ { 1 } ^ { 2 } | I |,$ ; confidence 0.284
  
 
35. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011014.png ; $($ ; confidence 0.284
 
35. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011014.png ; $($ ; confidence 0.284
  
36. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008084.png ; $E [ T ( x ) ] _ { P S }$ ; confidence 0.284
+
36. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008084.png ; $\mathsf{E} [ T ( x ) ] _ { \operatorname{PS} }$ ; confidence 0.284
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008056.png ; $\alpha ( t , u , v ) = \langle \mathcal{A} ( t ) u , v \rangle _ { \langle H ^ { 1 } \rangle^ { \prime }  \times H ^ { 1 }}$ ; confidence 0.284
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008056.png ; $a ( t ; u , v ) = \langle \mathcal{A} ( t ) u , v \rangle _ { (H^1)^ { \prime }  \times H^1}$ ; confidence 0.284
  
 
38. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180419.png ; $\tilde { g } | _ { N } = g$ ; confidence 0.284
 
38. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180419.png ; $\tilde { g } | _ { N } = g$ ; confidence 0.284
Line 78: Line 78:
 
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300125.png ; $O _ { n }$ ; confidence 0.284
 
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300125.png ; $O _ { n }$ ; confidence 0.284
  
40. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004057.png ; $u _ { t } + 1 / 2 ( x , ( 1 / 2 ) \Delta t )$ ; confidence 0.283
+
40. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004057.png ; $u _ { + 1 / 2} ( x , ( 1 / 2 ) \Delta t )$ ; confidence 0.283
  
41. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028017.png ; $/tilde{c}$ ; confidence 0.283
+
41. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028017.png ; $\tilde{\mathbf{c}}$ ; confidence 0.283
  
 
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022029.png ; $\tilde { j } f = j$ ; confidence 0.283
 
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022029.png ; $\tilde { j } f = j$ ; confidence 0.283
  
43. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004040.png ; $c = \alpha \frac { \Delta t } { \Delta x }$ ; confidence 0.283
+
43. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004040.png ; $c = a \frac { \Delta t } { \Delta x },$ ; confidence 0.283
  
44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007029.png ; $\xi  { \alpha }$ ; confidence 0.283
+
44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007029.png ; $\xi  a $ ; confidence 0.283
  
 
45. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016087.png ; $\text{NSPACE} [ s ( n ) ] = \text { co } \text{NSPACE} [ s ( n ) ]$ ; confidence 0.283
 
45. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016087.png ; $\text{NSPACE} [ s ( n ) ] = \text { co } \text{NSPACE} [ s ( n ) ]$ ; confidence 0.283
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040745.png ; $\Sigma ( P , R ) \subseteq Fm_{ P \cup R}$ ; confidence 0.283
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040745.png ; $\Sigma ( P , R ) \subseteq \operatorname{Fm}_{ P \cup R}$ ; confidence 0.283
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004059.png ; $\textbf{FM}$ ; confidence 0.283
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004059.png ; $\textbf{Fm}$ ; confidence 0.283
  
 
48. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300804.png ; $L _ { 1 } ^ { \prime }$ ; confidence 0.283
 
48. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300804.png ; $L _ { 1 } ^ { \prime }$ ; confidence 0.283
Line 98: Line 98:
 
49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003045.png ; $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ ; confidence 0.283
 
49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003045.png ; $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ ; confidence 0.283
  
50. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840177.png ; $\epsilon ^ { \prime \prime }_\lambda$ ; confidence 0.283
+
50. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840177.png ; $\mathcal{E} ^ { \prime \prime }_\lambda$ ; confidence 0.283
  
51. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032090.png ; $\langle t ^ { * } ( n ^ { * } ) , m \} = ( - 1 ) ^ { p ( t ) p ( n ^ { * } ) } | n ^ { * } , t ( m ) \}$ ; confidence 0.283
+
51. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032090.png ; $\langle t ^ { * } ( n ^ { * } ) , m \rangle = ( - 1 ) ^ { p ( t ) p ( n ^ { * } ) } \langle n ^ { * } , t ( m ) \rangle.$ ; confidence 0.283
  
52. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001038.png ; $x ( n ) = \sum ( \text { residues of } z ^ { n - 1 } _ { \Re ( z ) } )$ ; confidence 0.283
+
52. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001038.png ; $x ( n ) = \sum ( \text { residues of } z ^ { n - 1 } \tilde{x}(z) )$ ; confidence 0.283
  
 
53. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697020.png ; $i = 1 , \dots , s$ ; confidence 0.282
 
53. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697020.png ; $i = 1 , \dots , s$ ; confidence 0.282
  
54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120010/l12001050.png ; $\left\{ \begin{array} { c } { m } \\ { \lceil \frac { m + 1 } { 2 } \rceil } \end{array} \right\}$ ; confidence 0.282
+
54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120010/l12001050.png ; $\left( \begin{array} { c } { m } \\ { \lceil \frac { m + 1 } { 2 } \rceil } \end{array} \right).$ ; confidence 0.282
  
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028019.png ; $\pi X ^ { * }$ ; confidence 0.282
+
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028019.png ; $\pi X_{*} $ ; confidence 0.282
  
56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032052.png ; $U ( L ) = T ( L ) / \{ x \otimes y - ( - 1 ) ^ { p ( x ) p ( y ) } y \otimes x - [ x , y ] \}$ ; confidence 0.282
+
56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032052.png ; $\mathcal{U} ( L ) = \mathcal{T} ( L ) / \left( x \bigotimes y - ( - 1 ) ^ { p ( x ) p ( y ) } y \bigotimes x - [ x , y ] \right).$ ; confidence 0.282
  
57. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170107.png ; $C [ z , z ] / N$ ; confidence 0.282
+
57. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170107.png ; $\mathbf{C} [ z , \overline{z} ] / N$ ; confidence 0.282
  
58. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013084.png ; $Ext ^ { 2 } ( . . )$ ; confidence 0.282
+
58. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013084.png ; $\operatorname{Ext} ^ { 2 } ( ., . )$ ; confidence 0.282
  
59. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001071.png ; $P ^ { + } . P _ { \subseteq } P$ ; confidence 0.282
+
59. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001071.png ; $\mathbf{P} ^ { + } . P \subseteq P$ ; confidence 0.282
  
60. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013061.png ; $\delta ( 2 ) > K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.282
+
60. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013061.png ; $\delta_{( 2 )} > K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.282
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138088.png ; $u$ ; confidence 0.282
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138088.png ; $u_1$ ; confidence 0.282
  
 
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040723.png ; $P ^ { \prime }$ ; confidence 0.282
 
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040723.png ; $P ^ { \prime }$ ; confidence 0.282
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028076.png ; $L _ { w } ( X , Y ) *$ ; confidence 0.282
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028076.png ; $\mathcal{L} _ { w } ( \mathcal{X} , \mathcal{Y} )_{*}$ ; confidence 0.282
  
64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025097.png ; $T _ { V }$ ; confidence 0.282
+
64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025097.png ; $T_\nu$ ; confidence 0.282
  
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010172.png ; $a \in C ^ { n } \backslash \{ 0 \}$ ; confidence 0.282
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010172.png ; $a \in \mathbf{C} ^ { n } \backslash \{ 0 \}$ ; confidence 0.282
  
66. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012044.png ; $W ^ { \prime \prime } H ^ { \omega } [ 0,1 ]$ ; confidence 0.282
+
66. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012044.png ; $W ^ { r} H ^ { \omega } [ 0,1 ]$ ; confidence 0.282
  
 
67. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200160.png ; $\kappa \leq | \operatorname { arc } z _ { j } | \leq \pi$ ; confidence 0.282
 
67. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200160.png ; $\kappa \leq | \operatorname { arc } z _ { j } | \leq \pi$ ; confidence 0.282
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040450.png ; $D ( K ) = \langle F m , \vDash _ { K } \rangle$ ; confidence 0.282
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040450.png ; $\mathcal D(\mathsf K) = \langle \textbf{F m} , \vDash_{\mathcal K} \rangle$ ; confidence 0.282
  
69. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013075.png ; $\operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } }$ ; confidence 0.281
+
69. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013075.png ; $\operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } },$ ; confidence 0.281
  
70. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011035.png ; $\vec { C }$ ; confidence 0.281
+
70. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011035.png ; $G$ ; confidence 0.281
  
71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015015.png ; $P f ( g ) = ( \int _ { g K } f d \mu ) _ { K \in K } , g \in G$ ; confidence 0.281
+
71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015015.png ; $P f ( g ) = \left( \int _ { g K } f d \mu \right) _ { K \in \mathcal{K} } , g \in G,$ ; confidence 0.281
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018014.png ; $C$ ; confidence 0.281
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018014.png ; $\operatorname{Voc}_\mathcal{L}$ ; confidence 0.281
  
73. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015060.png ; $E$ ; confidence 0.281
+
73. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015060.png ; $c$ ; confidence 0.281
  
 
74. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222021.png ; $F = 0 , d F = 0 , \dots , d ^ { m } F = 0$ ; confidence 0.281
 
74. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222021.png ; $F = 0 , d F = 0 , \dots , d ^ { m } F = 0$ ; confidence 0.281
Line 150: Line 150:
 
75. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003028.png ; $L A$ ; confidence 0.281
 
75. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003028.png ; $L A$ ; confidence 0.281
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\widehat { \psi }$ ; confidence 0.281
  
77. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005010.png ; $\psi = \psi _ { 0 } + f ( y ) e ^ { i \langle \langle k , x \rangle + \mu t }$ ; confidence 0.281
+
77. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005010.png ; $\psi = \psi _ { 0 } + f ( y ) e ^ { i \langle k , x \rangle + \mu t }$ ; confidence 0.281
  
78. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007024.png ; $q \in Q _ { m } : = \left\{ \begin{array} { c } { q = \overline { q } } \\ { q : | q ( x ) | + | \nabla ^ { m } q | \leq c ( 1 + | x | ) ^ { - b } } \\ { b > 3 } \end{array} \right.$ ; confidence 0.281
+
78. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007024.png ; $q \in Q _ { m } : = \left\{ \begin{array} { c } { q = \overline { q } }, \\ { q : | q ( x ) | + | \nabla ^ { m } q | \leq c ( 1 + | x | ) ^ { - b } }, \\ { b > 3 } \end{array} \right\},$ ; confidence 0.281
  
79. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011018.png ; $\Gamma = \Delta \vec { U } .$ ; confidence 0.281
+
79. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011018.png ; $\Gamma = \Delta \overset{\rightharpoonup}{ U } . \overset{\rightharpoonup}{l}$ ; unknown symbol
  
80. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021028.png ; $t \in E ^ { x }$ ; confidence 0.281
+
80. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021028.png ; $t \in \mathbf{E} ^ { n }$ ; confidence 0.281
  
81. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c022850102.png ; $4 \sqrt { 3 }$ ; confidence 0.281
+
81. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c022850102.png ; $AN$ ; confidence 0.281
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050185.png ; $\zeta _ { A } ( z ) = \prod _ { r \geq 1 } \quad ( 1 - p ^ { - r z } ) ^ { - 1 } = \prod _ { r = 1 } ^ { \infty } \zeta ( r z )$ ; confidence 0.281
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050185.png ; $\zeta _ { A } ( z ) = \prod _ {\substack{ r \geq 1 \\ \text{primes } p \in \mathbf{N}}} \quad ( 1 - p ^ { - r z } ) ^ { - 1 } = \prod _ { r = 1 } ^ { \infty } \zeta ( r z ),$ ; confidence 0.281
  
 
83. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167011.png ; $\sigma | _ { A }$ ; confidence 0.281
 
83. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167011.png ; $\sigma | _ { A }$ ; confidence 0.281
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030065.png ; $\{ \alpha \in A : \alpha . \Im ( T ) = \Im ( T ) , \alpha = \{ 0 \} \}$ ; confidence 0.281
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030065.png ; $\{ a \in A : a . \mathfrak{S} ( T ) = \mathfrak{S} ( T ) , a = \{ 0 \} \}$ ; confidence 0.281
  
85. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250104.png ; $u v - ( T _ { d } v + T _ { v } u ) \in H ^ { r } ( R ^ { n } )$ ; confidence 0.281
+
85. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250104.png ; $u v - ( T _ { u } v + T _ { v } u ) \in H ^ { r } ( \mathbf{R} ^ { n } )$ ; confidence 0.281
  
86. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008015.png ; $\{ 1,1,2 \}$ ; confidence 0.280
+
86. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008015.png ; $\{ \operatorname{l}_{1}, \operatorname{l}_{2} \}$ ; confidence 0.280
  
87. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008070.png ; $\{ h ( t , p _ { j } ) \} _ { 1 } \leq j \leq x$ ; confidence 0.280
+
87. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008070.png ; $\{ h ( t , p _ { j } ) \} _ { 1 \leq j \leq n}$ ; confidence 0.280
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300901.png ; $u _ { t } + u _ { \lambda } + u u _ { X } - u _ { X x t } = 0$ ; confidence 0.280
+
88. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300901.png ; $u _ { t } + u _ { x } + u u _ { x } - u _ { xxt } = 0,$ ; confidence 0.280
  
 
89. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005018.png ; $\{ \lambda _ { n } = - \kappa _ { n } ^ { 2 } \} _ { n = 1 } ^ { N }$ ; confidence 0.280
 
89. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005018.png ; $\{ \lambda _ { n } = - \kappa _ { n } ^ { 2 } \} _ { n = 1 } ^ { N }$ ; confidence 0.280
  
90. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020113.png ; $P [ \operatorname { sup } _ { t \geq T } | X _ { t } - X _ { T } | > \lambda ] \leq C _ { e } ^ { - \lambda / e } P [ T < \infty ]$ ; confidence 0.280
+
90. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020113.png ; $\mathsf{P} \left[ \operatorname { sup } _ { t \geq T } | X _ { t } - X _ { T } | > \lambda \right] \leq C e^ { - \lambda / e } \mathsf{P} [ T < \infty ]$ ; confidence 0.280
  
91. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005037.png ; $A = R [ x _ { 1 } , \dots , x _ { N } ] / A$ ; confidence 0.280
+
91. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005037.png ; $A = \mathbf{R} [ x _ { 1 } , \dots , x _ { n } ] / \mathcal{A}$ ; confidence 0.280
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110840/b11084037.png ; $z ^ { x }$ ; confidence 0.280
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110840/b11084037.png ; $z ^ { * }$ ; confidence 0.280
  
93. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017064.png ; $Q = \langle a _ { 1 } , \dots , a _ { g } | S _ { 1 } , \dots , S _ { n } \rangle$ ; confidence 0.280
+
93. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017064.png ; $\mathcal{Q} = \langle a _ { 1 } , \dots , a _ { g } | S _ { 1 } , \dots , S _ { n } \rangle$ ; confidence 0.280
  
 
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040086.png ; $p \in \mathfrak { h } ^ { * }$ ; confidence 0.280
 
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040086.png ; $p \in \mathfrak { h } ^ { * }$ ; confidence 0.280
  
95. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300101.png ; $Q _ { D } ( v , z ) = z ^ { \operatorname { com } ( D ) - 1 } v ^ { - \operatorname { Tait } ( D ) } ( v ^ { - 1 } - v ) P _ { D } ( v , z )$ ; confidence 0.280
+
95. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300101.png ; $Q _ { D } ( v , z ) = z ^ { \operatorname { com } ( D ) - 1 } v ^ { - \operatorname { Tait } ( D ) } ( v ^ { - 1 } - v ) P _ { D } ( v , z ),$ ; confidence 0.280
  
96. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h0480703.png ; $p ( x ) = \frac { \Gamma ( ( n + 1 ) / 2 ) x ^ { k / 2 - 1 } ( 1 + x / n ) - ( n + 1 ) / 2 } { \Gamma ( ( n - k + 1 ) / 2 ) \Gamma ( k / 2 ) n ^ { k / 2 } }$ ; confidence 0.280
+
96. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h0480703.png ; $p ( x ) = \frac { \Gamma ( ( n + 1 ) / 2 ) x ^ { k / 2 - 1 } ( 1 + x / n ) ^{- ( n + 1 ) / 2 }} { \Gamma ( ( n - k + 1 ) / 2 ) \Gamma ( k / 2 ) n ^ { k / 2 } },$ ; confidence 0.280
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211020.png ; $x \in R ^ { 1 }$ ; confidence 0.280
+
97. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211020.png ; $x \in \mathbf{R} ^ { 1 }$ ; confidence 0.280
  
98. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008045.png ; $| f ( z _ { 0 } ) | ^ { 2 } \leq \frac { 1 } { \pi r ^ { 2 } } \int _ { D _ { z _ { 0 } , r } } | f ( \zeta ) | ^ { 2 } d x d y \leq \frac { 1 } { \pi r ^ { 2 } } ( f , f ) _ { L } 2 _ { ( D ) }$ ; confidence 0.280
+
98. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008045.png ; $| f ( z _ { 0 } ) | ^ { 2 } \leq \frac { 1 } { \pi r ^ { 2 } } \int _ { D _ { z _ { 0 } , r } } | f ( \zeta ) | ^ { 2 } d x d y \leq \frac { 1 } { \pi r ^ { 2 } } ( f , f ) _ { L^2(D) }.$ ; confidence 0.280
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080105.png ; $x _ { i j } \in R ^ { x }$ ; confidence 0.279
+
99. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080105.png ; $x _ { i j } \in \mathbf{R} ^ { n }$ ; confidence 0.279
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430115.png ; $\Delta \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) \otimes \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right)$ ; confidence 0.279
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430115.png ; $\Delta \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) \bigotimes \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right),$ ; confidence 0.279
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012097.png ; $\omega ( g , )$ ; confidence 0.279
+
101. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012097.png ; $\omega ( g , .)_p$ ; confidence 0.279
  
102. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230116.png ; $\omega ^ { i k }$ ; confidence 0.279
+
102. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230116.png ; $\omega ^ { a}$ ; confidence 0.279
  
103. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530161.png ; $X$ ; confidence 0.279
+
103. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530161.png ; $\dot{X}$ ; confidence 0.279
  
104. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021046.png ; $p _ { m } + 1 ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1$ ; confidence 0.279
+
104. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021046.png ; $p _ { m + 1} ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1.$ ; confidence 0.279
  
105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014089.png ; $D _ { j , k } ( \alpha ) = \{ z : b _ { j } ^ { 1 } | z _ { 1 } - \alpha _ { 1 } | ^ { 2 } + \ldots + b _ { j } ^ { n } | z _ { \lambda } - a _ { \lambda } | ^ { 2 } < r _ { j , k } ^ { 2 } \}$ ; confidence 0.279
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014089.png ; $\mathcal{D} _ { j , k } ( a ) = \{ z : b _ { j } ^ { 1 } | z _ { 1 } - a _ { 1 } | ^ { 2 } + \ldots + b _ { j } ^ { n } | z _ { n } - a _ { n } | ^ { 2 } < r _ { j , k } ^ { 2 } \},$ ; confidence 0.279
  
 
106. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c022030101.png ; $\gamma _ { i }$ ; confidence 0.279
 
106. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c022030101.png ; $\gamma _ { i }$ ; confidence 0.279
  
107. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300205.png ; $( u ; ) j \in N$ ; confidence 0.279
+
107. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300205.png ; $( u_j )_{ j \in \mathbf{N}}$ ; confidence 0.279
  
108. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313032.png ; $d x$ ; confidence 0.279
+
108. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313032.png ; $d _n$ ; confidence 0.279
  
109. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065020.png ; $\Phi _ { y } ^ { x }$ ; confidence 0.279
+
109. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065020.png ; $\Phi _ { n } ^ { * }$ ; confidence 0.279
  
110. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001072.png ; $c ^ { 0 } \neq 0$ ; confidence 0.279
+
110. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001072.png ; $C ^ { o } \neq \emptyset$ ; confidence 0.279
  
111. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700089.png ; $\equiv \lambda \text { pqf } x \cdot p f ( q f x )$ ; confidence 0.279
+
111. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700089.png ; $\textbf{Plus}\equiv \lambda pqf x . p f ( q f x )$ ; confidence 0.279
  
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006047.png ; $J ^ { \prime \prime } 0 ( R ^ { N } , M )$ ; confidence 0.279
+
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006047.png ; $J ^ { r_0 } ( \mathbf{R} ^ { n } , M )$ ; confidence 0.279
  
 
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046047.png ; $\chi _ { f }$ ; confidence 0.279
 
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046047.png ; $\chi _ { f }$ ; confidence 0.279
  
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170120.png ; $K ^ { \prime 2 } \times I \searrow p t$ ; confidence 0.278
+
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170120.png ; $K ^ { \prime 2 } \times I \searrow \operatorname{pt}$ ; confidence 0.278
  
115. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021012.png ; $( \alpha | b ) ^ { * } \dot { b } = a$ ; confidence 0.278
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021012.png ; $( a | b ) *   b = a$ ; confidence 0.278
  
116. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004050.png ; $K ( s ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { N } } \frac { 1 } { \{ s , \zeta - z \} ^ { n } } \times$ ; confidence 0.278
+
116. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004050.png ; $K ( s ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { 1 } { \langle s , \zeta - z \rangle ^ { n } } \times$ ; confidence 0.278
  
117. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007037.png ; $k \langle E , F , g , g ^ { - 1 } \rangle$ ; confidence 0.278
+
117. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007037.png ; $k ( E , F , g , g ^ { - 1 } )$ ; confidence 0.278
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022099.png ; $H _ { P } ^ { 2 } ( X _ { / R } , A ( j ) )$ ; confidence 0.278
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022099.png ; $H _ { \mathcal{D} } ^ { i} ( X _ { / \mathbf{R} } , A ( j ) )$ ; confidence 0.278
  
119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002019.png ; $0 \neq \mathfrak { c } _ { \lambda , } , v < \infty$ ; confidence 0.278
+
119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002019.png ; $0 \neq \mathfrak { c } _ { u , v} < \infty$ ; confidence 0.278
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $x \in X$ ; confidence 0.278
  
121. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023057.png ; $[ . . ] ^ { \wedge }$ ; confidence 0.278
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023057.png ; $[ ., . ] ^ { \wedge }$ ; confidence 0.278
  
122. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230135.png ; $F = Z \gg Z$ ; confidence 0.278
+
122. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230135.png ; $F = Z \oplus Z$ ; confidence 0.278
  
123. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200202.png ; $A = \operatorname { Fun } _ { q } ( SL ( n , C ) )$ ; confidence 0.278
+
123. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200202.png ; $\mathcal{A} = \operatorname { Fun } _ { q } ( \operatorname{SL} ( n , \mathbf{C} ) )$ ; confidence 0.278
  
124. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001073.png ; $S = M \circ e$ ; confidence 0.278
+
124. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001073.png ; $\mathcal{S} = \mathcal{M} \circ e$ ; confidence 0.278
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120139.png ; $G ( K ) ^ { 6 }$ ; confidence 0.278
+
125. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120139.png ; $G ( K ) ^ { e }$ ; confidence 0.278
  
126. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058029.png ; $\xi _ { i } ^ { 0 }$ ; confidence 0.278
+
126. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058029.png ; $\xi _ { l } ^ { 0 }$ ; confidence 0.278
  
127. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070136.png ; $R ( t ^ { i } \square j \otimes t ^ { k } \square l ) = R ^ { i } \square j \square ^ { k } \square l$ ; confidence 0.278
+
127. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070136.png ; $\mathcal{R} ( t ^ { i } \square_{j} \bigotimes t ^ { k } \square_{l} ) = \mathbf{R} ^ { i } \square_ j \square ^ { k } \square_{l} ,$ ; confidence 0.278
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003013.png ; $A \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n \in Z } \sum _ { m \in Z } \| f , g _ { n } , m \} | ^ { 2 } \leq B \| f \| _ { 2 } ^ { 2 }$ ; confidence 0.277
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003013.png ; $A \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n \in \mathbf Z } \sum _ { m \in \mathbf Z } |\langle f , g _ { n , m} \rangle | ^ { 2 } \leq B \| f \| _ { 2 } ^ { 2 }.$ ; confidence 0.277
  
 
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018029.png ; $T _ { n }$ ; confidence 0.277
 
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018029.png ; $T _ { n }$ ; confidence 0.277
  
130. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410009.png ; $c _ { n }$ ; confidence 0.277
+
130. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410009.png ; $c _ { m}$ ; confidence 0.277
  
131. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075340/p07534060.png ; $A _ { 2 }$ ; confidence 0.277
+
131. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075340/p07534060.png ; $A _ { 2n }$ ; confidence 0.277
  
132. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005050.png ; $A = P T | _ { \mathfrak { h } }$ ; confidence 0.277
+
132. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005050.png ; $A = P T | _ { \mathfrak { H } }$ ; confidence 0.277
  
133. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007066.png ; $f ( x ) : = \sum _ { j = 1 } ^ { J } K ( x , y ; ) c j , c j =$ ; confidence 0.277
+
133. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007066.png ; $f ( x ) : = \sum _ { j = 1 } ^ { J } K ( x , y_j ) c_j , c_j =\text{const.}$ ; confidence 0.277
  
134. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520226.png ; $C \in GL _ { N } ( K )$ ; confidence 0.277
+
134. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520226.png ; $C \in \operatorname{GL} _ { n } ( K )$ ; confidence 0.277
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104203.png ; $n = 1,2 , . .$ ; confidence 0.277
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104203.png ; $n = 1,2 , \dots$ ; confidence 0.277
  
136. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110206.png ; $G _ { X } ^ { g } = \sum _ { 1 \leq j \leq n } h _ { j } ^ { - 1 } ( | \alpha q _ { j } | ^ { 2 } + | \alpha p _ { j } | ^ { 2 } )$ ; confidence 0.277
+
136. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110206.png ; $G _ { X } ^ { g } = \sum _ { 1 \leq j \leq n } h _ { j } ^ { - 1 } ( | d q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } ).$ ; confidence 0.277
  
137. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170306.png ; $X ^ { 2 } \times I$ ; confidence 0.277
+
137. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170306.png ; $X ^ { 2 \times } I$ ; confidence 0.277
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $\mathbf{X} ^ { \prime } \mathbf{X} \widehat { \beta } = \mathbf{X} ^ { \prime } \mathbf{y} .$ ; confidence 0.277
  
139. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004058.png ; $( u _ { q } ^ { n } , u _ { t } ^ { n } + 1 )$ ; confidence 0.277
+
139. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004058.png ; $( u _ { i } ^ { n } , u _ { i + 1 } ^ { n } )$ ; confidence 0.277
  
140. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p074160167.png ; $T _ { 0 }$ ; confidence 0.277
+
140. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p074160167.png ; $T _ { \alpha }$ ; confidence 0.277
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010173.png ; $( a , 0 )$ ; confidence 0.277
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010173.png ; $( a , \partial )$ ; confidence 0.277
  
142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210143.png ; $k = 1 , \dots , r = \operatorname { dim } n ^ { - }$ ; confidence 0.277
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210143.png ; $k = 1 , \dots , r = \operatorname { dim } \mathfrak{n} ^ { - }$ ; confidence 0.277
  
143. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p07285027.png ; $H \times$ ; confidence 0.277
+
143. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p07285027.png ; $H_{*}$ ; confidence 0.277
  
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b1302601.png ; $f _ { 0 } , \dots , f _ { N }$ ; confidence 0.277
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b1302601.png ; $f _ { 0 } , \dots , f _ { n }$ ; confidence 0.277
  
 
145. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001052.png ; $\{ \langle x _ { 1 } , y _ { 1 } \rangle , \dots , \langle x _ { m } , y _ { m } \rangle \}$ ; confidence 0.277
 
145. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001052.png ; $\{ \langle x _ { 1 } , y _ { 1 } \rangle , \dots , \langle x _ { m } , y _ { m } \rangle \}$ ; confidence 0.277
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020031.png ; $d i j > 0$ ; confidence 0.277
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020031.png ; $d_{ ii} > 0$ ; confidence 0.277
  
147. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009021.png ; $w \in R ^ { x } \backslash \{ 0 \}$ ; confidence 0.277
+
147. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009021.png ; $\mathbf{w} \in \mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.277
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225031.png ; $z = ( z 1 , \dots , z _ { r } )$ ; confidence 0.277
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225031.png ; $z = ( z_ 1 , \dots , z _ { n } )$ ; confidence 0.277
  
149. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302702.png ; $p = 0 , \ldots , n ; \quad n = 0,1 , \ldots$ ; confidence 0.277
+
149. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302702.png ; $p = 0 , \ldots , n ; \quad n = 0,1 , \ldots,$ ; confidence 0.277
  
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002032.png ; $\operatorname { lim } _ { | | \rightarrow 0 } \frac { 1 } { | T | } \int _ { I } | f - f _ { I } | d m = 0$ ; confidence 0.276
+
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002032.png ; $\operatorname { lim } _ { | I | \rightarrow 0 } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m = 0.$ ; confidence 0.276
  
151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200209.png ; $( L ) v ^ { * } = \left\{ \begin{array} { l l } { \operatorname { max } } & { g ( u _ { 1 } ) } \\ { s.t. } & { u _ { 1 } \in U _ { 1 } } \end{array} \right.$ ; confidence 0.276
+
151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200209.png ; $( \operatorname{L} ) v ^ { * } = \left\{ \begin{array} { l l } { \operatorname { max } } & { g ( u _ { 1 } ) } \\ { s.t. } & { u _ { 1 } \in U _ { 1 }, } \end{array} \right.$ ; confidence 0.276
  
152. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d1201309.png ; $GL ( V ) = \operatorname { Aut } _ { F _ { q } } ( V )$ ; confidence 0.276
+
152. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d1201309.png ; $\operatorname{GL} ( V ) = \operatorname { Aut } _ { \mathbf{F} _ { q } } ( V )$ ; confidence 0.276
  
153. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s08336010.png ; $J _ { x } ( z )$ ; confidence 0.276
+
153. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s08336010.png ; $J _ { n } ( z )$ ; confidence 0.276
  
154. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010090.png ; $A _ { Y }$ ; confidence 0.276
+
154. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010090.png ; $\mathbf{A} _ { n }$ ; confidence 0.276
  
155. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029090.png ; $I ^ { Y }$ ; confidence 0.276
+
155. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029090.png ; $L ^ { Y }$ ; confidence 0.276
  
156. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200149.png ; $| g ( k ) | \geq ( \frac { \delta } { 2 + 2 \delta } ) ^ { n - 1 } | b _ { \gamma } z _ { i } ^ { k } |$ ; confidence 0.276
+
156. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200149.png ; $| g ( k ) | \geq ( \frac { \delta } { 2 + 2 \delta } ) ^ { n - 1 } | b _ { r } z _ { r} ^ { k } |.$ ; confidence 0.276
  
157. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230116.png ; $- ( - 1 ) ^ { ( q + 1 _ { 1 } - 1 ) ( l _ { 2 } - 1 ) } i ( L _ { 2 } ) \omega \wedge L _ { 1 } , [ \omega \wedge K _ { 1 } , K _ { 2 } ] = \omega \wedge [ K _ { 1 } , K _ { 2 } ] +$ ; confidence 0.276
+
157. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230116.png ; $- ( - 1 ) ^ { ( q + \operatorname{l} _ { 1 } - 1 ) ( \operatorname{l} _ { 2 } - 1 ) } i ( L _ { 2 } ) \omega \bigwedge L _ { 1 } , [ \omega \bigwedge K _ { 1 } , K _ { 2 } ] = \omega \bigwedge [ K _ { 1 } , K _ { 2 } ] +$ ; confidence 0.276
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013064.png ; $f ( x _ { p } )$ ; confidence 0.276
+
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013064.png ; $\operatorname{Gal}(\tilde{\mathbf{Q}_p}/\mathbf{Q}_p)$ ; confidence 0.276
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022060.png ; $H _ { M } ^ { * } ( X , Q ( * ) ) _ { Z } =$ ; confidence 0.276
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022060.png ; $H _ { \mathcal{M} } ^ { \bullet } ( X , \mathbf Q ( * ) ) _ { \mathbf Z } =$ ; confidence 0.276
  
160. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023074.png ; $( 0 , T ) \times R ^ { N }$ ; confidence 0.276
+
160. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023074.png ; $( 0 , T ) \times \mathbf{R} ^ { n }$ ; confidence 0.276
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015079.png ; $a ^ { x }$ ; confidence 0.276
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015079.png ; $\mathfrak{g} ^ { * }$ ; confidence 0.276
  
162. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003053.png ; $\alpha \| c$ ; confidence 0.275
+
162. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003053.png ; $a \| c$ ; confidence 0.275
  
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005096.png ; $50 ( S )$ ; confidence 0.275
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005096.png ; $\mathfrak{H} ( S )$ ; confidence 0.275
  
164. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130106.png ; $g _ { 1 } ( \alpha ) , \ldots , g _ { m } ( \alpha )$ ; confidence 0.275
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130106.png ; $g _ { 1 } ( a ) , \ldots , g _ { m } ( a )$ ; confidence 0.275
  
165. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010044.png ; $t ^ { em } = t ^ { em } + ( P \otimes E ^ { \prime } - B \otimes M ^ { \prime } + 2 ( M ^ { \prime } B ) 1 )$ ; confidence 0.275
+
165. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010044.png ; $\mathbf{t} ^ { \operatorname{em} } = \mathbf{t} ^ { \operatorname{em}.f } + ( \mathbf{P} \bigotimes \mathbf{E} ^ { \prime } - B \bigotimes \mathbf{M} ^ { \prime } + 2 ( \mathbf{M} ^ { \prime }. \mathbf{B} ) 1 ),$ ; confidence 0.275
  
 
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027072.png ; $a \in K ^ { * }$ ; confidence 0.275
 
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027072.png ; $a \in K ^ { * }$ ; confidence 0.275
  
167. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003012.png ; $\vec { M }$ ; confidence 0.275
+
167. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003012.png ; $\widetilde { \mathcal{M} }$ ; confidence 0.275
  
168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232032.png ; $J ( \rho ) = J ( \rho ; x _ { 0 } , u ) = \frac { 1 } { \sigma _ { N } ( \rho ) } \int _ { S _ { R } ( x _ { 0 } , \rho ) } u ( y ) d \sigma _ { N } ( y )$ ; confidence 0.275
+
168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232032.png ; $J ( \rho ) = J ( \rho ; x _ { 0 } , u ) = \frac { 1 } { \sigma _ { n } ( \rho ) } \int _ { S _ { n } ( x _ { 0 } , \rho ) } u ( y ) d \sigma _ { n } ( y ),$ ; confidence 0.275
  
169. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300507.png ; $Ma = \frac { u } { c } , Re = \frac { u l } { \nu } , Pr = \frac { \nu } { \kappa }$ ; confidence 0.275
+
169. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300507.png ; $\operatorname{Ma} = \frac { u } { c } , \operatorname{Re} = \frac { u l } { \nu } , \operatorname{Pr} = \frac { \nu } { \kappa }.$ ; confidence 0.275
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $\mathbf{a} ^ { \prime } \Theta \mathbf b $ ; confidence 0.275
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010039.png ; $= F _ { N } ( X _ { 1 } ( - t , x _ { 1 } , \ldots , x _ { N } ) , \ldots , X _ { N } ( - t , x _ { 1 } , \ldots , x _ { N } ) )$ ; confidence 0.275
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010039.png ; $= F _ { n } ( X _ { 1 } ( - t , x _ { 1 } , \ldots , x _ { n } ) , \ldots , X _ { n } ( - t , x _ { 1 } , \ldots , x _ { n } ) ),$ ; confidence 0.275
  
172. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700091.png ; $Q \equiv \lambda p f x \cdot p ( \lambda a b \cdot b ( a f ) ) ( \lambda q \cdot x ) I$ ; confidence 0.275
+
172. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700091.png ; $Q \equiv \lambda p f x . p ( \lambda a b . b ( a f ) ) ( \lambda q . x ) \mathbf{I}$ ; confidence 0.275
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099045.png ; $g$ ; confidence 0.275
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099045.png ; $g_{ij}$ ; confidence 0.275
  
174. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900227.png ; $I _ { N }$ ; confidence 0.275
+
174. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900227.png ; $\operatorname{I} _ { n }$ ; confidence 0.275
  
 
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510135.png ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275
 
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510135.png ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040516.png ; $c \in FFI _ { D } A$ ; confidence 0.275
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040516.png ; $\mathcal{C} \in \operatorname{FFi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.275
  
177. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201107.png ; $Y$ ; confidence 0.275
+
177. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201107.png ; $n$ ; confidence 0.275
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040322.png ; $Q = \operatorname { Alg } \operatorname { Mod } ^ { * S } D$ ; confidence 0.274
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040322.png ; $\mathsf{Q} = \operatorname { Alg } \operatorname { Mod } ^ { * S } \mathcal{D}$ ; confidence 0.274
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031080.png ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { tim } e _ { A } ( X ) ) ^ { 1 / k } } { | X | } < \infty$ ; confidence 0.274
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031080.png ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { time } _ { \mathcal{A} } ( X ) ) ^ { 1 / k } } { | X | } < \infty$ ; confidence 0.274
  
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201908.png ; $f _ { W } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { W }$ ; confidence 0.274
+
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201908.png ; $f _ { \mathbf{W} } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { \mathbf{W} }$ ; confidence 0.274
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027043.png ; $( T ( x _ { x } ) , \psi _ { j } ) = ( f , \psi _ { j } ) , j = 1 , \ldots , n$ ; confidence 0.274
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027043.png ; $( T ( x _ { n } ) , \psi _ { j } ) = ( f , \psi _ { j } ) , j = 1 , \ldots , n.$ ; confidence 0.274
  
 
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260138.png ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274
 
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260138.png ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050271.png ; $\pi _ { C } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty$ ; confidence 0.274
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050271.png ; $\pi _ { \mathcal{C} } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty.$ ; confidence 0.274
  
184. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001020.png ; $\rho ^ { v }$ ; confidence 0.274
+
184. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001020.png ; $\rho ^ { v(.) }$ ; confidence 0.274
  
185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150133.png ; $\pi _ { G \times G _ { x } } s : G \times _ { G _ { X } } S \rightarrow ( G \times _ { G _ { X } } S ) / / G$ ; confidence 0.274
+
185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150133.png ; $\pi _ { G \times_{ Gx } S} : G \times _ { G _ { X } } S \rightarrow ( G \times _ { Gx } S ) / / G$ ; confidence 0.274
  
186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035027.png ; $P = \operatorname { lim } _ { N \rightarrow \infty } N \cdot \operatorname { Cov } ( \hat { \theta } N ) =$ ; confidence 0.274
+
186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035027.png ; $P = \operatorname { lim } _ { N \rightarrow \infty } N . \operatorname{Cov} ( \hat{\theta}_ N ) =$ ; confidence 0.274
  
187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200106.png ; $I \subset C ^ { x }$ ; confidence 0.274
+
187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200106.png ; $\operatorname{l} \subset \mathbf{C} ^ { n }$ ; confidence 0.274
  
 
188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006045.png ; $\{ \operatorname { Pred } ( x ) , x \in X _ { P } \} \cup \{ \operatorname { Pred } \operatorname { Succ } ( x ) , x \in X _ { P } \}$ ; confidence 0.274
 
188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006045.png ; $\{ \operatorname { Pred } ( x ) , x \in X _ { P } \} \cup \{ \operatorname { Pred } \operatorname { Succ } ( x ) , x \in X _ { P } \}$ ; confidence 0.274
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120126.png ; $\phi ( x ) \in O$ ; confidence 0.274
+
189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120126.png ; $\phi ( x ) \in O^r_K$ ; confidence 0.274
  
190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017093.png ; $S = ( S _ { 1 } , \ldots , S _ { m } )$ ; confidence 0.274
+
190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017093.png ; $s = ( s _ { 1 } , \ldots , s _ { m } )$ ; confidence 0.274
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010143.png ; $n 1$ ; confidence 0.274
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010143.png ; $n_ 1$ ; confidence 0.274
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008028.png ; $a ( u , v ) = ( f , v ) _ { L } ^ { 2 }$ ; confidence 0.273
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008028.png ; $a ( u , v ) = ( f , v ) _ { L ^ { 2 }}$ ; confidence 0.273
  
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200154.png ; $z _ { 1 } \dots z _ { x } \neq 0$ ; confidence 0.273
+
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200154.png ; $z _ { 1 } \dots z _ { n } \neq 0$ ; confidence 0.273
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019012.png ; $a + 7$ ; confidence 0.273
+
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019012.png ; $a /q$ ; confidence 0.273
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014010.png ; $I \in V$ ; confidence 0.273
+
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014010.png ; $I \in W$ ; confidence 0.273
  
196. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009034.png ; $x e ^ { x }$ ; confidence 0.273
+
196. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009034.png ; $x e ^ { rx }$ ; confidence 0.273
  
197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048055.png ; $E _ { 2 } ^ { p A } = H ^ { p } ( B ) \otimes H _ { S } ^ { q } ( D _ { \pi } )$ ; confidence 0.273
+
197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048055.png ; $E _ { 2 } ^ { p q } = H ^ { p } ( B ) \otimes H _ { S } ^ { q } ( D _ { \pi } )$ ; confidence 0.273
  
198. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010017.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in C ^ { n }$ ; confidence 0.273
+
198. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010017.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in \mathbf{C} ^ { n },$ ; confidence 0.273
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n_ j } ^ { \prime } \}$ ; confidence 0.273
  
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010011.png ; $25$ ; confidence 0.273
+
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010011.png ; $DT$ ; confidence 0.273
  
201. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008036.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } z ^ { k } z ^ { l } F ( - k , - l ; - k - l - \alpha ; \frac { 1 } { 2 z } )$ ; confidence 0.273
+
201. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008036.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } z ^ { k } z ^ { l } F \left( - k , - l ; - k - l - \alpha ; \frac { 1 } { z \overline{z} } \right).$ ; confidence 0.273
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006023.png ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) \cdot f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) \overline { g ^ { ( k ) } ( z ) }$ ; confidence 0.273
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006023.png ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) . f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) . \overline { g ^ { ( k ) } ( z ) },$ ; confidence 0.273
  
203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220133.png ; $_ { S = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } H _ { D } ^ { i + 1 } ( X / R , R ( i + 1 - m ) )$ ; confidence 0.273
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220133.png ; $\operatorname{ord}_ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) )$ ; confidence 0.273
  
204. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006021.png ; $5 \longdiv { ( n ) }$ ; confidence 0.272
+
204. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006021.png ; $ \widehat{ { \mathfrak{sl}( n ) }}$ ; confidence 0.272
  
205. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670103.png ; $W = GL ^ { k } ( n ) \nmid G$ ; confidence 0.272
+
205. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670103.png ; $W = \operatorname{GL} ^ { k } ( n ) / G$ ; confidence 0.272
  
206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005037.png ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) }$ ; confidence 0.272
+
206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005037.png ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) },$ ; confidence 0.272
  
 
207. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260132.png ; $\pi _ { v , p } ( d \theta ) = A ( m , p ) ( L _ { \mu } ( \theta ) ) ^ { - p } \operatorname { exp } \langle \theta , v \rangle \alpha ( d \theta )$ ; confidence 0.272
 
207. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260132.png ; $\pi _ { v , p } ( d \theta ) = A ( m , p ) ( L _ { \mu } ( \theta ) ) ^ { - p } \operatorname { exp } \langle \theta , v \rangle \alpha ( d \theta )$ ; confidence 0.272
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220205.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { M } ^ { i + 1 } ( X , Q ( m ) ) _ { Z } ^ { 0 }$ ; confidence 0.272
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220205.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { \mathbf{Z} } ^ { 0 }$ ; confidence 0.272
  
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180388.png ; $M \subset \hat { M }$ ; confidence 0.272
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180388.png ; $M \subset \tilde { M }$ ; confidence 0.272
  
210. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663025.png ; $f _ { X _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial _ { i } ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } }$ ; confidence 0.272
+
210. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663025.png ; $f _ { x _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } },$ ; confidence 0.272
  
211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018018.png ; $15$ ; confidence 0.272
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018018.png ; $I_E$ ; confidence 0.272
  
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027069.png ; $\alpha ( t ) = b ( t ) + \int _ { \langle 0 , t ] } a ( t - u ) d F ( u ) \text { for } t \geq 0$ ; confidence 0.272
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027069.png ; $a ( t ) = b ( t ) + \int _ { ( 0 , t ] } a ( t - u ) d F ( u ) \text { for } t \geq 0.$ ; confidence 0.272
  
213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140104.png ; $D _ { 1 } \subset C ^ { N }$ ; confidence 0.272
+
213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140104.png ; $\mathcal{D} _ { 1 } \subset \mathbf{C} ^ { n }$ ; confidence 0.272
  
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017064.png ; $pp \mu \subseteq K$ ; confidence 0.271
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017064.png ; $\operatorname{supp} \mu \subseteq K$ ; confidence 0.271
  
215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002012.png ; $\partial _ { x } \alpha L = L _ { x _ { 1 } } \alpha _ { 1 \ldots x _ { D } } ^ { \alpha _ { D } }$ ; confidence 0.271
+
215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002012.png ; $\partial _ { x ^ \alpha} L = L _ { x _ { 1 } ^ {\alpha _ { 1}} \ldots x _ { D } ^ { \alpha _ { D } } }$ ; confidence 0.271
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055027.png ; $\hat { b } _ { n }$ ; confidence 0.271
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055027.png ; $ b _ { \gamma }$ ; confidence 0.271
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007045.png ; $v _ { i } , 0$ ; confidence 0.271
+
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007045.png ; $v _ { i ,0} $ ; confidence 0.271
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $\| e \| \leq 1$ ; confidence 0.271
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302301.png ; $P _ { L I \cap V }$ ; confidence 0.271
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302301.png ; $P _ { U \cap V }$ ; confidence 0.271
  
220. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011019.png ; $a \in C$ ; confidence 0.271
+
220. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011019.png ; $a \in \mathbf{C}$ ; confidence 0.271
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019062.png ; $\overline { a } + q$ ; confidence 0.271
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019062.png ; $\overline { a } / q$ ; confidence 0.271
  
222. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300504.png ; $\sum _ { n \geq - 1 } ( \operatorname { dim } V _ { n } ^ { n } ) q ^ { n }$ ; confidence 0.271
+
222. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300504.png ; $\sum _ { n \geq - 1 } ( \operatorname { dim } V _ { n } ^ { \natural } ) q ^ { n }$ ; confidence 0.271
  
223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009040.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes \cdots \otimes \sim h _ { n } )$ ; confidence 0.271
+
223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009040.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes^\wedge \ldots \otimes^\wedge \sim h _ { n } )$ ; confidence 0.271
  
224. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028035.png ; $E * ( | \overline { S } ( X ) | )$ ; confidence 0.270
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028035.png ; $\mathbf{E}_{*} ( | \overline { S } ( X ) | )$ ; confidence 0.270
  
225. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002079.png ; $\sum _ { x \in N }$ ; confidence 0.270
+
225. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002079.png ; $\sum _ { x \in \mathbf{N} } |c_n| \|X\|_1$ ; confidence 0.270
  
 
226. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520380.png ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270
 
226. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520380.png ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270
Line 454: Line 454:
 
227. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005031.png ; $\alpha \mapsto a ^ { g }$ ; confidence 0.270
 
227. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005031.png ; $\alpha \mapsto a ^ { g }$ ; confidence 0.270
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010032.png ; $i$ ; confidence 0.270
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010032.png ; $(.)$ ; confidence 0.270
  
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032022.png ; $B _ { V } \otimes _ { W } ( x \otimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \otimes x )$ ; confidence 0.270
+
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032022.png ; $B _ {{ V } \bigotimes { W }} ( x \bigotimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \bigotimes x ).$ ; confidence 0.270
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120161.png ; $p \in S _ { \| }$ ; confidence 0.270
+
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120161.png ; $\operatorname{p} \in S _ { M}$ ; confidence 0.270
  
231. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006059.png ; $\beta$ ; confidence 0.270
+
231. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006059.png ; $\operatorname{CTop}/B$ ; confidence 0.270
  
232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021071.png ; $i = 0 , \dots , n _ { 2 } - 1$ ; confidence 0.270
+
232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021071.png ; $l = 0 , \dots , n _ { 2 } - 1$ ; confidence 0.270
  
233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110252.png ; $\mathfrak { g } _ { X } = H ( X ) ^ { - 1 } \tilde { h } ( X ) G _ { X } ( T )$ ; confidence 0.270
+
233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110252.png ; $\tilde { g } _ { X } = H ( X ) ^ { - 1 } \tilde { h } ( X ) G _ { X } ( T )$ ; confidence 0.270
  
234. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001031.png ; $C ( F ) \subset C ( X )$ ; confidence 0.270
+
234. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001031.png ; $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ ; confidence 0.270
  
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007019.png ; $C ^ { \gamma } ( C , M ) \rightarrow M$ ; confidence 0.270
+
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007019.png ; $C ^ { n } ( \mathcal{C} , M ) \rightarrow M( \operatorname{ codom } \alpha_n$ ; confidence 0.270
  
236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040037.png ; $X _ { G } E G = ( X \times E G ) / G$ ; confidence 0.270
+
236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040037.png ; $X \times_ { G } E G = ( X \times E G ) / G$ ; confidence 0.270
  
237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041010.png ; $\| p \| _ { s } ^ { 2 } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { R } | p ^ { ( i ) } ( t ) | ^ { 2 } d \mu _ { i } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \| p ^ { ( i ) } ( t ) \| _ { \mu _ { i } } ^ { 2 }$ ; confidence 0.270
+
237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041010.png ; $\| p \| _ { s } ^ { 2 } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \mathbf{R} } | p ^ { ( i ) } ( t ) | ^ { 2 } d \mu _ { i } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \| p ^ { ( i ) } ( t ) \| _ { \mu _ { i } } ^ { 2 }.$ ; confidence 0.270
  
238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280140.png ; $g _ { \lambda } = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { \partial u } { \partial z _ { k } } d z [ k ] / d z$ ; confidence 0.270
+
238. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280140.png ; $g _ { u } = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { \partial u } { \partial z _ { k } } d \bar{z} [ k ] \wedge d z,$ ; confidence 0.270
  
 
239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270111.png ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270
 
239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270111.png ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270
  
240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300509.png ; $\sum _ { l = 1 } ^ { m } \| p _ { l } - x \| = c ( a \text { constant } )$ ; confidence 0.270
+
240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300509.png ; $\sum _ { i = 1 } ^ { m } \| p _ { i } - x \| = c ( a \text { constant } ),$ ; confidence 0.270
  
241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015010.png ; $ad _ { \alpha } = [ \alpha , ]$ ; confidence 0.270
+
241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015010.png ; $\operatorname{ad} _ { a } = [ a ,. ]$ ; confidence 0.270
  
242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014036.png ; $r _ { 1 } / r _ { 2 } \notin H _ { r }$ ; confidence 0.269
+
242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014036.png ; $r _ { 1 } / r _ { 2 } \notin H _ { n}$ ; confidence 0.269
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019061.png ; $S ^ { j - 1 }$ ; confidence 0.269
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019061.png ; $S ^ { l - 1 }$ ; confidence 0.269
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty$ ; confidence 0.269
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty,$ ; confidence 0.269
  
245. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013019.png ; $\Gamma ^ { \diamond p }$ ; confidence 0.269
+
245. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013019.png ; $\Gamma ^ { \operatorname{op} }$ ; confidence 0.269
  
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
+
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \bigcup _ { x \in G } x ^ { - 1 } H x ) \} \bigcup \{ 1 \}$ ; confidence 0.269
  
247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027021.png ; $y _ { 1 } , m , < \ldots < y _ { m , m }$ ; confidence 0.269
+
247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027021.png ; $y _ { 1 , m< \ldots < y _ { m , m }$ ; confidence 0.269
  
248. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262078.png ; $2 \times 2$ ; confidence 0.269
+
248. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262078.png ; $l \times l$ ; confidence 0.269
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211035.png ; $X ^ { 2 } ( \theta ) = \sum _ { l = 1 } ^ { k } \frac { [ \nu _ { l } - n p _ { l } ( \theta ) ] ^ { 2 } } { n p _ { l } ( \theta ) }$ ; confidence 0.269
+
249. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211035.png ; $X ^ { 2 } ( \theta ) = \sum _ { i = 1 } ^ { k } \frac { [ \nu _ { i } - n p _ { i } ( \theta ) ] ^ { 2 } } { n p _ { i } ( \theta ) }$ ; confidence 0.269
  
250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010030.png ; $75$ ; confidence 0.268
+
250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010030.png ; $q_f$ ; confidence 0.268
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017024.png ; $K _ { R } \equiv \{ x \in R ^ { n } : r ; ( x ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.268
+
251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017024.png ; $K _ { R } \equiv \{ x \in \mathbf{R} ^ { n } : r_j ( x ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.268
  
252. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584054.png ; $( H , ( , \ldots ) )$ ; confidence 0.268
+
252. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584054.png ; $( \mathcal{H} , ( .,. ) )$ ; confidence 0.268
  
253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110177.png ; $b = b _ { m } + b _ { m } - 1 + \ldots$ ; confidence 0.268
+
253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110177.png ; $b = b _ { m } + b _ { m - 1} + \ldots$ ; confidence 0.268
  
254. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014018.png ; $J _ { t r }$ ; confidence 0.268
+
254. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014018.png ; $J _ { k }$ ; confidence 0.268
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b0154509.png ; $\{ x _ { 1 } , x \}$ ; confidence 0.268
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b0154509.png ; $\{ x_k \}$ ; confidence 0.268
  
256. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013012.png ; $T ^ { \gamma }$ ; confidence 0.268
+
256. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013012.png ; $\mathbf{T} ^ { n }$ ; confidence 0.268
  
257. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014046.png ; $R$ ; confidence 0.268
+
257. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014046.png ; $q_Q$ ; confidence 0.268
  
 
258. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001035.png ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268
 
258. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001035.png ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268
  
259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012079.png ; $K _ { tot S } = \cap _ { p \in S } \prod _ { \sigma \in G ( K ) } K _ { p } ^ { \sigma }$ ; confidence 0.268
+
259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012079.png ; $K _ { \operatorname{tot} S } = \bigcap _ { \operatorname{p} \in S } \bigcap _ { \sigma \in G ( K ) } K _ { \operatorname{p} } ^ { \sigma }$ ; confidence 0.268
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430146.png ; $B \in \square _ { H } ^ { H } M$ ; confidence 0.268
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430146.png ; $B \in \square _ { H } ^ { H } \mathcal{M}$ ; confidence 0.268
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220158.png ; $H _ { M } ^ { i } ( X , Q ( j ) )$ ; confidence 0.268
+
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220158.png ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) )$ ; confidence 0.268
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245047.png ; $b - 1$ ; confidence 0.267
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245047.png ; $b_{1}$ ; confidence 0.267
  
 
263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007037.png ; $A ^ { \text { in/out } } ( f )$ ; confidence 0.267
 
263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007037.png ; $A ^ { \text { in/out } } ( f )$ ; confidence 0.267
  
264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005033.png ; $N \nmid N ^ { 2 }$ ; confidence 0.267
+
264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005033.png ; $N / N ^ { 2 }$ ; confidence 0.267
  
 
265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306508.png ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267
 
265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306508.png ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267
  
266. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012015.png ; $x \in \Sigma ^ { \gamma }$ ; confidence 0.267
+
266. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012015.png ; $x \in \Sigma ^ { n }$ ; confidence 0.267
  
267. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m1202108.png ; $K ^ { \gamma }$ ; confidence 0.267
+
267. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m1202108.png ; $\mathcal{K} ^ { n }$ ; confidence 0.267
  
268. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002015.png ; $x ( y \wedge z ) t = x y t / | x z t$ ; confidence 0.267
+
268. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002015.png ; $x ( y \bigwedge z ) t = x y t \bigwedge x z t.$ ; confidence 0.267
  
 
269. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029047.png ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267
 
269. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029047.png ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267
  
270. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400209.png ; $x \in K _ { y }$ ; confidence 0.267
+
270. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400209.png ; $x \in K _ { n }$ ; confidence 0.267
  
 
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110138.png ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267
 
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110138.png ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267
  
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027035.png ; $z _ { 1 } , \dots , z _ { x } , 1 / z _ { 1 } , \dots , 1 / z _ { x }$ ; confidence 0.267
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027035.png ; $z _ { 1 } , \dots , z _ { n } , 1 / z _ { 1 } , \dots , 1 / z _ { n }$ ; confidence 0.267
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583038.png ; $COO$ ; confidence 0.267
+
273. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583038.png ; $C_{00}$ ; confidence 0.267
  
274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040028.png ; $\sum _ { l = 0 } \operatorname { dim } H ^ { i } ( X , Z / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , Z / p )$ ; confidence 0.266
+
274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040028.png ; $\sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X , \mathbf{Z} / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , \mathbf{Z} / p ).$ ; confidence 0.266
  
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012042.png ; $\hat { K } _ { p } = C$ ; confidence 0.266
+
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012042.png ; $\hat { K } _ { \operatorname{p} } = \mathbf{C}$ ; confidence 0.266
  
276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066083.png ; $g 1 , \ldots , g _ { x }$ ; confidence 0.266
+
276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066083.png ; $g_ 1 , \ldots , g_ { n }$ ; confidence 0.266
  
277. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010075.png ; $K _ { N } : = n ( 2 / L _ { 1 , R } ) ^ { 2 / N } ( n + 2 ) ^ { - 1 - 2 / n }$ ; confidence 0.266
+
277. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010075.png ; $K _ { n } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / n } ( n + 2 ) ^ { - 1 - 2 / n }$ ; confidence 0.266
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200121.png ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ { j }$ ; confidence 0.266
+
278. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200121.png ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ {i j }$ ; confidence 0.266
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $21$ ; confidence 0.266
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $\mathsf{DL}$ ; confidence 0.266
  
280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026021.png ; $P ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.266
+
280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026021.png ; $\mathsf{P} ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x ),$ ; confidence 0.266
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026082.png ; $( a _ { i } ) _ { i \in N }$ ; confidence 0.266
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026082.png ; $( a _ { i } ) _ { i \in \mathbf{N} }$ ; confidence 0.266
  
282. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300205.png ; $\dot { i } \in \Gamma$ ; confidence 0.266
+
282. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300205.png ; $ i \in \Gamma$ ; confidence 0.266
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $1$ ; confidence 0.266
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $\Lambda$ ; confidence 0.266
  
 
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266
 
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201206.png ; $\alpha ( n ) = \text { Vol } ( S ^ { x } )$ ; confidence 0.266
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201206.png ; $\alpha ( n ) = \text { Vol } ( S ^ { n } )$ ; confidence 0.266
  
286. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027019.png ; $O ( E [ ( 1 - c ) n ] ( f ) )$ ; confidence 0.266
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027019.png ; $O ( E _{[ ( 1 - c ) n ] }( f ) )$ ; confidence 0.266
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023033.png ; $p _ { 1 } , \dots , p _ { \gamma }$ ; confidence 0.265
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023033.png ; $p _ { 1 } , \dots , p _ { n }$ ; confidence 0.265
  
288. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210100.png ; $X _ { 0 } , \dots , X _ { N }$ ; confidence 0.265
+
288. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210100.png ; $X _ { 0 } , \dots , X _ { n }$ ; confidence 0.265
  
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( \mathcal{S} ) , \overline { g } ) = ( \mathbf{R} _ { + } \times \mathcal{S} , d r ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006089.png ; $\Rightarrow ( \mu I - A ) ^ { - 1 } \cdot E x = x \Rightarrow \| ( \mu I - A ) ^ { - 1 } \cdot E \| \cdot \| x \| \geq \| x \|$ ; confidence 0.265
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006089.png ; $\Rightarrow ( \mu I - A ) ^ { - 1 } . E x = x \Rightarrow \Rightarrow \| ( \mu I - A ) ^ { - 1 } . E \| . \| x \| \geq \| x \|.$ ; confidence 0.265
  
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170169.png ; $f , g \in P _ { X } - k$ ; confidence 0.265
+
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170169.png ; $f , g \in P _ { n-k } $ ; confidence 0.265
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220187.png ; $x / Q$ ; confidence 0.265
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220187.png ; $X / \mathbf{Q}$ ; confidence 0.265
  
293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
+
293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $\operatorname{Ch} ( [ a ] )$ ; confidence 0.265
  
294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004026.png ; $c = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { cr } ( K _ { \alpha , n } ) \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) ^ { - 2 }$ ; confidence 0.265
+
294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004026.png ; $c = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { cr } ( K _ { n , n } ) \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) ^ { - 2 }$ ; confidence 0.265
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106705.png ; $Y$ ; confidence 0.265
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106705.png ; $\mathcal{Y}$ ; confidence 0.265
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040635.png ; $F _ { S _ { P } } \mathfrak { M }$ ; confidence 0.264
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040635.png ; $F _ { \mathcal{S} _ { P } } \mathfrak { M }$ ; confidence 0.264
  
297. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202407.png ; $S , y$ ; confidence 0.264
+
297. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202407.png ; $s , y$ ; confidence 0.264
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070208.png ; $\sum _ { \text { ord } T } ( u d v )$ ; confidence 0.264
+
298. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070208.png ; $\sum \text { ord }_{ T } ( u d v )$ ; confidence 0.264
  
299. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029015.png ; $P _ { N } ( x ) = \sum _ { k = 0 } ^ { N } c _ { k } s _ { k } ( x )$ ; confidence 0.264
+
299. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029015.png ; $P _ { n } ( x ) = \sum _ { k = 0 } ^ { n } c _ { k } s _ { k } ( x ),$ ; confidence 0.264
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051084.png ; $H _ { x } - 1 _ { d } d$ ; confidence 0.264
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051084.png ; $H _ { n}^{ - 1} d$ ; confidence 0.264

Latest revision as of 13:11, 25 May 2020

List

1. p13007048.png ; $u ( z _ { 1 } , z _ { 2 } ) = \left\{ \begin{array} { c l } { 0 } & { \text { if } | z _ { 1 } | ^ { 2 } , | z _ { 2 } | ^ { 2 } < \frac { 1 } { 2 } } ,\\ { \operatorname { max } \left\{ \left( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } \right. }, & { \left. \left( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } \right\} } \\ { \text { elsewhere on } D, } \end{array} \right. $ ; confidence 0.287

2. d03055021.png ; $I_i$ ; confidence 0.287

3. c02289095.png ; $B _ { m }$ ; confidence 0.287

4. c120180377.png ; $\tilde { g } | _ { M } = g$ ; confidence 0.287

5. a13023034.png ; $\| f _ { \operatorname{l} } - P _ { U \cap V } f \| \leq c ^ { 2 \operatorname{l} - 1 } \| f \|$ ; confidence 0.287

6. a120260120.png ; $A ( X _ { 1 } , \dots , X _ { n } )$ ; confidence 0.287

7. j13002045.png ; $\mathsf{P} ( X = 0 ) \leq e ^ { - \Omega ( 1 / ( n p ^ { 2 } ) ) }$ ; confidence 0.287

8. a130180116.png ; $\operatorname { c }_{0} ( R ) = U \times \operatorname { Rng } ( R )$ ; confidence 0.287

9. h120120166.png ; $F \Psi ^ { q }$ ; confidence 0.287

10. b1303007.png ; $F _ { m } ^ { n }$ ; confidence 0.286

11. s12023094.png ; $X = B U \Rightarrow A : = B$ ; confidence 0.286

12. b13006027.png ; $v _ { 1 } , \dots , v _ { n }$ ; confidence 0.286

13. e12014015.png ; $\langle A , \tilde { f } \rangle _ { f \in \Phi },$ ; confidence 0.286

14. w12009097.png ; $\mathfrak{S}_r$ ; confidence 0.286

15. s13063022.png ; $m _ { 1 } , \dots , m _ { r }$ ; confidence 0.286

16. a13022063.png ; $\rightarrow \square _ { R } \text { Mod } ( ? , C ) \rightarrow S _ { C } \rightarrow 0.$ ; confidence 0.286

17. s13049063.png ; $| N _ { k } | ^ { 2 } \geq | N _ { k - 1} | | N _ { k + 1}|$ ; confidence 0.285

18. b1302908.png ; $\operatorname{l} _ { A } ( M / \mathfrak{q}M ) - e _ { \mathfrak{q} } ^ { 0 } ( M )$ ; confidence 0.285

19. f12024062.png ; $f ( t , \psi ) \in \mathbf{R} ^ { n }$ ; confidence 0.285

20. b12032062.png ; $s\leq s_ 1$ ; confidence 0.285

21. s13058031.png ; $\varepsilon _ { l } - \varepsilon _ { r }$ ; confidence 0.285

22. p12017098.png ; $\mathcal{A} x = a x - x c$ ; confidence 0.285

23. t12007062.png ; $Q _ { m , j_g }$ ; confidence 0.285

24. a13018094.png ; $\textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.285

25. w12011044.png ; $\alpha ^ { w } = \int _ { \mathbf{R} ^ { 2 n } } a ( X ) 2 ^ { n } \sigma _ { X } d X =$ ; confidence 0.285

26. a130040386.png ; $\mathcal{F} \subseteq \operatorname{Fi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.285

27. d13006059.png ; $A = B ^ { \uparrow X _ { 1 } , \ldots , X _ { n } }$ ; confidence 0.284

28. l12020012.png ; $\mathbf{Z} / 2$ ; confidence 0.284

29. a11004048.png ; $d _ { 2 }$ ; confidence 0.284

30. t13009017.png ; $a \in T _ { X } \cap T _ { Y }$ ; confidence 0.284

31. w12005058.png ; $h ^ { \alpha } = h _ { 1 } ^ { \alpha _ { 1 } } \ldots h _ { m } ^ { \alpha _ { m } }$ ; confidence 0.284

32. a13013031.png ; $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { n }$ ; confidence 0.284

33. p12015022.png ; $\mathbf{C}^n$ ; confidence 0.284

34. j120020204.png ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } \frac { d \vartheta } { 2 \pi } \leq c _ { 1 } ^ { 2 } | I |,$ ; confidence 0.284

35. k12011014.png ; $($ ; confidence 0.284

36. q12008084.png ; $\mathsf{E} [ T ( x ) ] _ { \operatorname{PS} }$ ; confidence 0.284

37. a12008056.png ; $a ( t ; u , v ) = \langle \mathcal{A} ( t ) u , v \rangle _ { (H^1)^ { \prime } \times H^1}$ ; confidence 0.284

38. c120180419.png ; $\tilde { g } | _ { N } = g$ ; confidence 0.284

39. c120300125.png ; $O _ { n }$ ; confidence 0.284

40. l12004057.png ; $u _ { i + 1 / 2} ( x , ( 1 / 2 ) \Delta t )$ ; confidence 0.283

41. f13028017.png ; $\tilde{\mathbf{c}}$ ; confidence 0.283

42. a13022029.png ; $\tilde { j } f = j$ ; confidence 0.283

43. l12004040.png ; $c = a \frac { \Delta t } { \Delta x },$ ; confidence 0.283

44. w12007029.png ; $\xi a $ ; confidence 0.283

45. c13016087.png ; $\text{NSPACE} [ s ( n ) ] = \text { co } \text{NSPACE} [ s ( n ) ]$ ; confidence 0.283

46. a130040745.png ; $\Sigma ( P , R ) \subseteq \operatorname{Fm}_{ P \cup R}$ ; confidence 0.283

47. a13004059.png ; $\textbf{Fm}$ ; confidence 0.283

48. i1300804.png ; $L _ { 1 } ^ { \prime }$ ; confidence 0.283

49. o13003045.png ; $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ ; confidence 0.283

50. k055840177.png ; $\mathcal{E} ^ { \prime \prime }_\lambda$ ; confidence 0.283

51. s12032090.png ; $\langle t ^ { * } ( n ^ { * } ) , m \rangle = ( - 1 ) ^ { p ( t ) p ( n ^ { * } ) } \langle n ^ { * } , t ( m ) \rangle.$ ; confidence 0.283

52. z13001038.png ; $x ( n ) = \sum ( \text { residues of } z ^ { n - 1 } \tilde{x}(z) )$ ; confidence 0.283

53. b01697020.png ; $i = 1 , \dots , s$ ; confidence 0.282

54. l12001050.png ; $\left( \begin{array} { c } { m } \\ { \lceil \frac { m + 1 } { 2 } \rceil } \end{array} \right).$ ; confidence 0.282

55. c12028019.png ; $\pi X_{*} $ ; confidence 0.282

56. s12032052.png ; $\mathcal{U} ( L ) = \mathcal{T} ( L ) / \left( x \bigotimes y - ( - 1 ) ^ { p ( x ) p ( y ) } y \bigotimes x - [ x , y ] \right).$ ; confidence 0.282

57. c120170107.png ; $\mathbf{C} [ z , \overline{z} ] / N$ ; confidence 0.282

58. t13013084.png ; $\operatorname{Ext} ^ { 2 } ( ., . )$ ; confidence 0.282

59. l11001071.png ; $\mathbf{P} ^ { + } . P \subseteq P$ ; confidence 0.282

60. m12013061.png ; $\delta_{( 2 )} > K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.282

61. a01138088.png ; $u_1$ ; confidence 0.282

62. a130040723.png ; $P ^ { \prime }$ ; confidence 0.282

63. a12028076.png ; $\mathcal{L} _ { w } ( \mathcal{X} , \mathcal{Y} )_{*}$ ; confidence 0.282

64. m13025097.png ; $T_\nu$ ; confidence 0.282

65. c120010172.png ; $a \in \mathbf{C} ^ { n } \backslash \{ 0 \}$ ; confidence 0.282

66. z13012044.png ; $W ^ { r} H ^ { \omega } [ 0,1 ]$ ; confidence 0.282

67. t120200160.png ; $\kappa \leq | \operatorname { arc } z _ { j } | \leq \pi$ ; confidence 0.282

68. a130040450.png ; $\mathcal D(\mathsf K) = \langle \textbf{F m} , \vDash_{\mathcal K} \rangle$ ; confidence 0.282

69. p13013075.png ; $\operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } },$ ; confidence 0.281

70. p12011035.png ; $G$ ; confidence 0.281

71. p12015015.png ; $P f ( g ) = \left( \int _ { g K } f d \mu \right) _ { K \in \mathcal{K} } , g \in G,$ ; confidence 0.281

72. a13018014.png ; $\operatorname{Voc}_\mathcal{L}$ ; confidence 0.281

73. p12015060.png ; $c$ ; confidence 0.281

74. m06222021.png ; $F = 0 , d F = 0 , \dots , d ^ { m } F = 0$ ; confidence 0.281

75. n12003028.png ; $L A$ ; confidence 0.281

76. a130240196.png ; $\widehat { \psi }$ ; confidence 0.281

77. g12005010.png ; $\psi = \psi _ { 0 } + f ( y ) e ^ { i \langle k , x \rangle + \mu t }$ ; confidence 0.281

78. i13007024.png ; $q \in Q _ { m } : = \left\{ \begin{array} { c } { q = \overline { q } }, \\ { q : | q ( x ) | + | \nabla ^ { m } q | \leq c ( 1 + | x | ) ^ { - b } }, \\ { b > 3 } \end{array} \right\},$ ; confidence 0.281

79. v13011018.png ; $\Gamma = \Delta \overset{\rightharpoonup}{ U } . \overset{\rightharpoonup}{l}$ ; unknown symbol

80. m12021028.png ; $t \in \mathbf{E} ^ { n }$ ; confidence 0.281

81. c022850102.png ; $AN$ ; confidence 0.281

82. a130050185.png ; $\zeta _ { A } ( z ) = \prod _ {\substack{ r \geq 1 \\ \text{primes } p \in \mathbf{N}}} \quad ( 1 - p ^ { - r z } ) ^ { - 1 } = \prod _ { r = 1 } ^ { \infty } \zeta ( r z ),$ ; confidence 0.281

83. d03167011.png ; $\sigma | _ { A }$ ; confidence 0.281

84. a13030065.png ; $\{ a \in A : a . \mathfrak{S} ( T ) = \mathfrak{S} ( T ) , a = \{ 0 \} \}$ ; confidence 0.281

85. m130250104.png ; $u v - ( T _ { u } v + T _ { v } u ) \in H ^ { r } ( \mathbf{R} ^ { n } )$ ; confidence 0.281

86. o13008015.png ; $\{ \operatorname{l}_{1}, \operatorname{l}_{2} \}$ ; confidence 0.280

87. r13008070.png ; $\{ h ( t , p _ { j } ) \} _ { 1 \leq j \leq n}$ ; confidence 0.280

88. b1300901.png ; $u _ { t } + u _ { x } + u u _ { x } - u _ { xxt } = 0,$ ; confidence 0.280

89. h13005018.png ; $\{ \lambda _ { n } = - \kappa _ { n } ^ { 2 } \} _ { n = 1 } ^ { N }$ ; confidence 0.280

90. j120020113.png ; $\mathsf{P} \left[ \operatorname { sup } _ { t \geq T } | X _ { t } - X _ { T } | > \lambda \right] \leq C e^ { - \lambda / e } \mathsf{P} [ T < \infty ]$ ; confidence 0.280

91. w12005037.png ; $A = \mathbf{R} [ x _ { 1 } , \dots , x _ { n } ] / \mathcal{A}$ ; confidence 0.280

92. b11084037.png ; $z ^ { * }$ ; confidence 0.280

93. l12017064.png ; $\mathcal{Q} = \langle a _ { 1 } , \dots , a _ { g } | S _ { 1 } , \dots , S _ { n } \rangle$ ; confidence 0.280

94. b12040086.png ; $p \in \mathfrak { h } ^ { * }$ ; confidence 0.280

95. j1300101.png ; $Q _ { D } ( v , z ) = z ^ { \operatorname { com } ( D ) - 1 } v ^ { - \operatorname { Tait } ( D ) } ( v ^ { - 1 } - v ) P _ { D } ( v , z ),$ ; confidence 0.280

96. h0480703.png ; $p ( x ) = \frac { \Gamma ( ( n + 1 ) / 2 ) x ^ { k / 2 - 1 } ( 1 + x / n ) ^{- ( n + 1 ) / 2 }} { \Gamma ( ( n - k + 1 ) / 2 ) \Gamma ( k / 2 ) n ^ { k / 2 } },$ ; confidence 0.280

97. c02211020.png ; $x \in \mathbf{R} ^ { 1 }$ ; confidence 0.280

98. r13008045.png ; $| f ( z _ { 0 } ) | ^ { 2 } \leq \frac { 1 } { \pi r ^ { 2 } } \int _ { D _ { z _ { 0 } , r } } | f ( \zeta ) | ^ { 2 } d x d y \leq \frac { 1 } { \pi r ^ { 2 } } ( f , f ) _ { L^2(D) }.$ ; confidence 0.280

99. c120080105.png ; $x _ { i j } \in \mathbf{R} ^ { n }$ ; confidence 0.279

100. b120430115.png ; $\Delta \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) \bigotimes \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right),$ ; confidence 0.279

101. b13012097.png ; $\omega ( g , .)_p$ ; confidence 0.279

102. e120230116.png ; $\omega ^ { a}$ ; confidence 0.279

103. c023530161.png ; $\dot{X}$ ; confidence 0.279

104. e12021046.png ; $p _ { m + 1} ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1.$ ; confidence 0.279

105. m13014089.png ; $\mathcal{D} _ { j , k } ( a ) = \{ z : b _ { j } ^ { 1 } | z _ { 1 } - a _ { 1 } | ^ { 2 } + \ldots + b _ { j } ^ { n } | z _ { n } - a _ { n } | ^ { 2 } < r _ { j , k } ^ { 2 } \},$ ; confidence 0.279

106. c022030101.png ; $\gamma _ { i }$ ; confidence 0.279

107. e1300205.png ; $( u_j )_{ j \in \mathbf{N}}$ ; confidence 0.279

108. c02313032.png ; $d _n$ ; confidence 0.279

109. s13065020.png ; $\Phi _ { n } ^ { * }$ ; confidence 0.279

110. q12001072.png ; $C ^ { o } \neq \emptyset$ ; confidence 0.279

111. l05700089.png ; $\textbf{Plus}\equiv \lambda pqf x . p f ( q f x )$ ; confidence 0.279

112. w12006047.png ; $J ^ { r_0 } ( \mathbf{R} ^ { n } , M )$ ; confidence 0.279

113. b12046047.png ; $\chi _ { f }$ ; confidence 0.279

114. l120170120.png ; $K ^ { \prime 2 } \times I \searrow \operatorname{pt}$ ; confidence 0.278

115. c13021012.png ; $( a | b ) * b = a$ ; confidence 0.278

116. i12004050.png ; $K ( s ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { 1 } { \langle s , \zeta - z \rangle ^ { n } } \times$ ; confidence 0.278

117. q12007037.png ; $k ( E , F , g , g ^ { - 1 } )$ ; confidence 0.278

118. b11022099.png ; $H _ { \mathcal{D} } ^ { i} ( X _ { / \mathbf{R} } , A ( j ) )$ ; confidence 0.278

119. c12002019.png ; $0 \neq \mathfrak { c } _ { u , v} < \infty$ ; confidence 0.278

120. a130040685.png ; $x \in X$ ; confidence 0.278

121. f12023057.png ; $[ ., . ] ^ { \wedge }$ ; confidence 0.278

122. d120230135.png ; $F = Z \oplus Z$ ; confidence 0.278

123. q1200202.png ; $\mathcal{A} = \operatorname { Fun } _ { q } ( \operatorname{SL} ( n , \mathbf{C} ) )$ ; confidence 0.278

124. e12001073.png ; $\mathcal{S} = \mathcal{M} \circ e$ ; confidence 0.278

125. l120120139.png ; $G ( K ) ^ { e }$ ; confidence 0.278

126. s13058029.png ; $\xi _ { l } ^ { 0 }$ ; confidence 0.278

127. q120070136.png ; $\mathcal{R} ( t ^ { i } \square_{j} \bigotimes t ^ { k } \square_{l} ) = \mathbf{R} ^ { i } \square_ j \square ^ { k } \square_{l} ,$ ; confidence 0.278

128. b12003013.png ; $A \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n \in \mathbf Z } \sum _ { m \in \mathbf Z } |\langle f , g _ { n , m} \rangle | ^ { 2 } \leq B \| f \| _ { 2 } ^ { 2 }.$ ; confidence 0.277

129. a12018029.png ; $T _ { n }$ ; confidence 0.277

130. f0410009.png ; $c _ { m}$ ; confidence 0.277

131. p07534060.png ; $A _ { 2n }$ ; confidence 0.277

132. s12005050.png ; $A = P T | _ { \mathfrak { H } }$ ; confidence 0.277

133. r13007066.png ; $f ( x ) : = \sum _ { j = 1 } ^ { J } K ( x , y_j ) c_j , c_j =\text{const.}$ ; confidence 0.277

134. n067520226.png ; $C \in \operatorname{GL} _ { n } ( K )$ ; confidence 0.277

135. a0104203.png ; $n = 1,2 , \dots$ ; confidence 0.277

136. w120110206.png ; $G _ { X } ^ { g } = \sum _ { 1 \leq j \leq n } h _ { j } ^ { - 1 } ( | d q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } ).$ ; confidence 0.277

137. l120170306.png ; $X ^ { 2 \times } I$ ; confidence 0.277

138. a130240191.png ; $\mathbf{X} ^ { \prime } \mathbf{X} \widehat { \beta } = \mathbf{X} ^ { \prime } \mathbf{y} .$ ; confidence 0.277

139. l12004058.png ; $( u _ { i } ^ { n } , u _ { i + 1 } ^ { n } )$ ; confidence 0.277

140. p074160167.png ; $T _ { \alpha }$ ; confidence 0.277

141. c120010173.png ; $( a , \partial )$ ; confidence 0.277

142. b120210143.png ; $k = 1 , \dots , r = \operatorname { dim } \mathfrak{n} ^ { - }$ ; confidence 0.277

143. p07285027.png ; $H_{*}$ ; confidence 0.277

144. b1302601.png ; $f _ { 0 } , \dots , f _ { n }$ ; confidence 0.277

145. m13001052.png ; $\{ \langle x _ { 1 } , y _ { 1 } \rangle , \dots , \langle x _ { m } , y _ { m } \rangle \}$ ; confidence 0.277

146. b13020031.png ; $d_{ ii} > 0$ ; confidence 0.277

147. r13009021.png ; $\mathbf{w} \in \mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.277

148. a01225031.png ; $z = ( z_ 1 , \dots , z _ { n } )$ ; confidence 0.277

149. d0302702.png ; $p = 0 , \ldots , n ; \quad n = 0,1 , \ldots,$ ; confidence 0.277

150. h12002032.png ; $\operatorname { lim } _ { | I | \rightarrow 0 } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m = 0.$ ; confidence 0.276

151. d1200209.png ; $( \operatorname{L} ) v ^ { * } = \left\{ \begin{array} { l l } { \operatorname { max } } & { g ( u _ { 1 } ) } \\ { s.t. } & { u _ { 1 } \in U _ { 1 }, } \end{array} \right.$ ; confidence 0.276

152. d1201309.png ; $\operatorname{GL} ( V ) = \operatorname { Aut } _ { \mathbf{F} _ { q } } ( V )$ ; confidence 0.276

153. s08336010.png ; $J _ { n } ( z )$ ; confidence 0.276

154. r13010090.png ; $\mathbf{A} _ { n }$ ; confidence 0.276

155. f13029090.png ; $L ^ { Y }$ ; confidence 0.276

156. t120200149.png ; $| g ( k ) | \geq ( \frac { \delta } { 2 + 2 \delta } ) ^ { n - 1 } | b _ { r } z _ { r} ^ { k } |.$ ; confidence 0.276

157. f120230116.png ; $- ( - 1 ) ^ { ( q + \operatorname{l} _ { 1 } - 1 ) ( \operatorname{l} _ { 2 } - 1 ) } i ( L _ { 2 } ) \omega \bigwedge L _ { 1 } , [ \omega \bigwedge K _ { 1 } , K _ { 2 } ] = \omega \bigwedge [ K _ { 1 } , K _ { 2 } ] +$ ; confidence 0.276

158. l12013064.png ; $\operatorname{Gal}(\tilde{\mathbf{Q}_p}/\mathbf{Q}_p)$ ; confidence 0.276

159. b11022060.png ; $H _ { \mathcal{M} } ^ { \bullet } ( X , \mathbf Q ( * ) ) _ { \mathbf Z } =$ ; confidence 0.276

160. m12023074.png ; $( 0 , T ) \times \mathbf{R} ^ { n }$ ; confidence 0.276

161. a12015079.png ; $\mathfrak{g} ^ { * }$ ; confidence 0.276

162. l06003053.png ; $a \| c$ ; confidence 0.275

163. s12005096.png ; $\mathfrak{H} ( S )$ ; confidence 0.275

164. l120130106.png ; $g _ { 1 } ( a ) , \ldots , g _ { m } ( a )$ ; confidence 0.275

165. e12010044.png ; $\mathbf{t} ^ { \operatorname{em} } = \mathbf{t} ^ { \operatorname{em}.f } + ( \mathbf{P} \bigotimes \mathbf{E} ^ { \prime } - B \bigotimes \mathbf{M} ^ { \prime } + 2 ( \mathbf{M} ^ { \prime }. \mathbf{B} ) 1 ),$ ; confidence 0.275

166. a12027072.png ; $a \in K ^ { * }$ ; confidence 0.275

167. e13003012.png ; $\widetilde { \mathcal{M} }$ ; confidence 0.275

168. r08232032.png ; $J ( \rho ) = J ( \rho ; x _ { 0 } , u ) = \frac { 1 } { \sigma _ { n } ( \rho ) } \int _ { S _ { n } ( x _ { 0 } , \rho ) } u ( y ) d \sigma _ { n } ( y ),$ ; confidence 0.275

169. k1300507.png ; $\operatorname{Ma} = \frac { u } { c } , \operatorname{Re} = \frac { u l } { \nu } , \operatorname{Pr} = \frac { \nu } { \kappa }.$ ; confidence 0.275

170. a130240430.png ; $\mathbf{a} ^ { \prime } \Theta \mathbf b $ ; confidence 0.275

171. b12010039.png ; $= F _ { n } ( X _ { 1 } ( - t , x _ { 1 } , \ldots , x _ { n } ) , \ldots , X _ { n } ( - t , x _ { 1 } , \ldots , x _ { n } ) ),$ ; confidence 0.275

172. l05700091.png ; $Q \equiv \lambda p f x . p ( \lambda a b . b ( a f ) ) ( \lambda q . x ) \mathbf{I}$ ; confidence 0.275

173. a01099045.png ; $g_{ij}$ ; confidence 0.275

174. v096900227.png ; $\operatorname{I} _ { n }$ ; confidence 0.275

175. s130510135.png ; $\gamma ( v ) = \infty ( K )$ ; confidence 0.275

176. a130040516.png ; $\mathcal{C} \in \operatorname{FFi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.275

177. p1201107.png ; $n$ ; confidence 0.275

178. a130040322.png ; $\mathsf{Q} = \operatorname { Alg } \operatorname { Mod } ^ { * S } \mathcal{D}$ ; confidence 0.274

179. a13031080.png ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { time } _ { \mathcal{A} } ( X ) ) ^ { 1 / k } } { | X | } < \infty$ ; confidence 0.274

180. w1201908.png ; $f _ { \mathbf{W} } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { \mathbf{W} }$ ; confidence 0.274

181. a13027043.png ; $( T ( x _ { n } ) , \psi _ { j } ) = ( f , \psi _ { j } ) , j = 1 , \ldots , n.$ ; confidence 0.274

182. e120260138.png ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274

183. a130050271.png ; $\pi _ { \mathcal{C} } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty.$ ; confidence 0.274

184. s13001020.png ; $\rho ^ { v(.) }$ ; confidence 0.274

185. s120150133.png ; $\pi _ { G \times_{ Gx } S} : G \times _ { G _ { X } } S \rightarrow ( G \times _ { Gx } S ) / / G$ ; confidence 0.274

186. s12035027.png ; $P = \operatorname { lim } _ { N \rightarrow \infty } N . \operatorname{Cov} ( \hat{\theta}_ N ) =$ ; confidence 0.274

187. c1200106.png ; $\operatorname{l} \subset \mathbf{C} ^ { n }$ ; confidence 0.274

188. i12006045.png ; $\{ \operatorname { Pred } ( x ) , x \in X _ { P } \} \cup \{ \operatorname { Pred } \operatorname { Succ } ( x ) , x \in X _ { P } \}$ ; confidence 0.274

189. l120120126.png ; $\phi ( x ) \in O^r_K$ ; confidence 0.274

190. s12017093.png ; $s = ( s _ { 1 } , \ldots , s _ { m } )$ ; confidence 0.274

191. a013010143.png ; $n_ 1$ ; confidence 0.274

192. a12008028.png ; $a ( u , v ) = ( f , v ) _ { L ^ { 2 }}$ ; confidence 0.273

193. t120200154.png ; $z _ { 1 } \dots z _ { n } \neq 0$ ; confidence 0.273

194. b13019012.png ; $a /q$ ; confidence 0.273

195. c13014010.png ; $I \in W$ ; confidence 0.273

196. m12009034.png ; $x e ^ { rx }$ ; confidence 0.273

197. s13048055.png ; $E _ { 2 } ^ { p q } = H ^ { p } ( B ) \otimes H _ { S } ^ { q } ( D _ { \pi } )$ ; confidence 0.273

198. n12010017.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in \mathbf{C} ^ { n },$ ; confidence 0.273

199. a13027051.png ; $\{ x _ { n_ j } ^ { \prime } \}$ ; confidence 0.273

200. w12010011.png ; $DT$ ; confidence 0.273

201. z13008036.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } z ^ { k } z ^ { l } F \left( - k , - l ; - k - l - \alpha ; \frac { 1 } { z \overline{z} } \right).$ ; confidence 0.273

202. b12006023.png ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) . f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) . \overline { g ^ { ( k ) } ( z ) },$ ; confidence 0.273

203. b110220133.png ; $\operatorname{ord}_ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) )$ ; confidence 0.273

204. v13006021.png ; $ \widehat{ { \mathfrak{sl}( n ) }}$ ; confidence 0.272

205. s090670103.png ; $W = \operatorname{GL} ^ { k } ( n ) / G$ ; confidence 0.272

206. i13005037.png ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) },$ ; confidence 0.272

207. e120260132.png ; $\pi _ { v , p } ( d \theta ) = A ( m , p ) ( L _ { \mu } ( \theta ) ) ^ { - p } \operatorname { exp } \langle \theta , v \rangle \alpha ( d \theta )$ ; confidence 0.272

208. b110220205.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { \mathbf{Z} } ^ { 0 }$ ; confidence 0.272

209. c120180388.png ; $M \subset \tilde { M }$ ; confidence 0.272

210. n06663025.png ; $f _ { x _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } },$ ; confidence 0.272

211. d13018018.png ; $I_E$ ; confidence 0.272

212. b12027069.png ; $a ( t ) = b ( t ) + \int _ { ( 0 , t ] } a ( t - u ) d F ( u ) \text { for } t \geq 0.$ ; confidence 0.272

213. m130140104.png ; $\mathcal{D} _ { 1 } \subset \mathbf{C} ^ { n }$ ; confidence 0.272

214. c12017064.png ; $\operatorname{supp} \mu \subseteq K$ ; confidence 0.271

215. s12002012.png ; $\partial _ { x ^ \alpha} L = L _ { x _ { 1 } ^ {\alpha _ { 1}} \ldots x _ { D } ^ { \alpha _ { D } } }$ ; confidence 0.271

216. b12055027.png ; $ b _ { \gamma }$ ; confidence 0.271

217. l12007045.png ; $v _ { i ,0} $ ; confidence 0.271

218. a1202207.png ; $\| e \| \leq 1$ ; confidence 0.271

219. a1302301.png ; $P _ { U \cap V }$ ; confidence 0.271

220. h12011019.png ; $a \in \mathbf{C}$ ; confidence 0.271

221. b13019062.png ; $\overline { a } / q$ ; confidence 0.271

222. v1300504.png ; $\sum _ { n \geq - 1 } ( \operatorname { dim } V _ { n } ^ { \natural } ) q ^ { n }$ ; confidence 0.271

223. w13009040.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes^\wedge \ldots \otimes^\wedge \sim h _ { n } )$ ; confidence 0.271

224. s12028035.png ; $\mathbf{E}_{*} ( | \overline { S } ( X ) | )$ ; confidence 0.270

225. j12002079.png ; $\sum _ { x \in \mathbf{N} } |c_n| \|X\|_1$ ; confidence 0.270

226. n067520380.png ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270

227. r13005031.png ; $\alpha \mapsto a ^ { g }$ ; confidence 0.270

228. a12010032.png ; $(.)$ ; confidence 0.270

229. s12032022.png ; $B _ {{ V } \bigotimes { W }} ( x \bigotimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \bigotimes x ).$ ; confidence 0.270

230. l120120161.png ; $\operatorname{p} \in S _ { M}$ ; confidence 0.270

231. e13006059.png ; $\operatorname{CTop}/B$ ; confidence 0.270

232. f12021071.png ; $l = 0 , \dots , n _ { 2 } - 1$ ; confidence 0.270

233. w120110252.png ; $\tilde { g } _ { X } = H ( X ) ^ { - 1 } \tilde { h } ( X ) G _ { X } ( T )$ ; confidence 0.270

234. j12001031.png ; $\mathbf{C} ( F ) \subset \mathbf{C} ( X )$ ; confidence 0.270

235. c12007019.png ; $C ^ { n } ( \mathcal{C} , M ) \rightarrow M( \operatorname{ codom } \alpha_n$ ; confidence 0.270

236. s13040037.png ; $X \times_ { G } E G = ( X \times E G ) / G$ ; confidence 0.270

237. s13041010.png ; $\| p \| _ { s } ^ { 2 } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \mathbf{R} } | p ^ { ( i ) } ( t ) | ^ { 2 } d \mu _ { i } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \| p ^ { ( i ) } ( t ) \| _ { \mu _ { i } } ^ { 2 }.$ ; confidence 0.270

238. d120280140.png ; $g _ { u } = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { \partial u } { \partial z _ { k } } d \bar{z} [ k ] \wedge d z,$ ; confidence 0.270

239. a120270111.png ; $\{ a _ { j } ^ { g } : j = 1 , \dots , [ K : Q ] , g \in G \}$ ; confidence 0.270

240. f1300509.png ; $\sum _ { i = 1 } ^ { m } \| p _ { i } - x \| = c ( a \text { constant } ),$ ; confidence 0.270

241. l12015010.png ; $\operatorname{ad} _ { a } = [ a ,. ]$ ; confidence 0.270

242. m13014036.png ; $r _ { 1 } / r _ { 2 } \notin H _ { n}$ ; confidence 0.269

243. c13019061.png ; $S ^ { l - 1 }$ ; confidence 0.269

244. a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty,$ ; confidence 0.269

245. t13013019.png ; $\Gamma ^ { \operatorname{op} }$ ; confidence 0.269

246. f12019010.png ; $N = \{ G \backslash ( \bigcup _ { x \in G } x ^ { - 1 } H x ) \} \bigcup \{ 1 \}$ ; confidence 0.269

247. s12027021.png ; $y _ { 1 , m} < \ldots < y _ { m , m }$ ; confidence 0.269

248. m06262078.png ; $l \times l$ ; confidence 0.269

249. c02211035.png ; $X ^ { 2 } ( \theta ) = \sum _ { i = 1 } ^ { k } \frac { [ \nu _ { i } - n p _ { i } ( \theta ) ] ^ { 2 } } { n p _ { i } ( \theta ) }$ ; confidence 0.269

250. e12010030.png ; $q_f$ ; confidence 0.268

251. c12017024.png ; $K _ { R } \equiv \{ x \in \mathbf{R} ^ { n } : r_j ( x ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.268

252. k05584054.png ; $( \mathcal{H} , ( .,. ) )$ ; confidence 0.268

253. w120110177.png ; $b = b _ { m } + b _ { m - 1} + \ldots$ ; confidence 0.268

254. m13014018.png ; $J _ { k }$ ; confidence 0.268

255. b0154509.png ; $\{ x_k \}$ ; confidence 0.268

256. h13013012.png ; $\mathbf{T} ^ { n }$ ; confidence 0.268

257. t13014046.png ; $q_Q$ ; confidence 0.268

258. o11001035.png ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268

259. l12012079.png ; $K _ { \operatorname{tot} S } = \bigcap _ { \operatorname{p} \in S } \bigcap _ { \sigma \in G ( K ) } K _ { \operatorname{p} } ^ { \sigma }$ ; confidence 0.268

260. b120430146.png ; $B \in \square _ { H } ^ { H } \mathcal{M}$ ; confidence 0.268

261. b110220158.png ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) )$ ; confidence 0.268

262. a01245047.png ; $b_{1}$ ; confidence 0.267

263. m13007037.png ; $A ^ { \text { in/out } } ( f )$ ; confidence 0.267

264. w12005033.png ; $N / N ^ { 2 }$ ; confidence 0.267

265. s1306508.png ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267

266. n12012015.png ; $x \in \Sigma ^ { n }$ ; confidence 0.267

267. m1202108.png ; $\mathcal{K} ^ { n }$ ; confidence 0.267

268. l11002015.png ; $x ( y \bigwedge z ) t = x y t \bigwedge x z t.$ ; confidence 0.267

269. b13029047.png ; $\mathfrak { p } \in \operatorname { Spec } R$ ; confidence 0.267

270. s085400209.png ; $x \in K _ { n }$ ; confidence 0.267

271. z130110138.png ; $i = 1 , \dots , 2 ^ { q }$ ; confidence 0.267

272. m12027035.png ; $z _ { 1 } , \dots , z _ { n } , 1 / z _ { 1 } , \dots , 1 / z _ { n }$ ; confidence 0.267

273. c02583038.png ; $C_{00}$ ; confidence 0.267

274. s13040028.png ; $\sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X , \mathbf{Z} / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , \mathbf{Z} / p ).$ ; confidence 0.266

275. l12012042.png ; $\hat { K } _ { \operatorname{p} } = \mathbf{C}$ ; confidence 0.266

276. b11066083.png ; $g_ 1 , \ldots , g_ { n }$ ; confidence 0.266

277. l12010075.png ; $K _ { n } : = n ( 2 / L _ { 1 , n } ) ^ { 2 / n } ( n + 2 ) ^ { - 1 - 2 / n }$ ; confidence 0.266

278. b130200121.png ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ {i j }$ ; confidence 0.266

279. a130040573.png ; $\mathsf{DL}$ ; confidence 0.266

280. e12026021.png ; $\mathsf{P} ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x ),$ ; confidence 0.266

281. a12026082.png ; $( a _ { i } ) _ { i \in \mathbf{N} }$ ; confidence 0.266

282. j1300205.png ; $ i \in \Gamma$ ; confidence 0.266

283. a130040583.png ; $\Lambda$ ; confidence 0.266

284. a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266

285. b1201206.png ; $\alpha ( n ) = \text { Vol } ( S ^ { n } )$ ; confidence 0.266

286. d03027019.png ; $O ( E _{[ ( 1 - c ) n ] }( f ) )$ ; confidence 0.266

287. a12023033.png ; $p _ { 1 } , \dots , p _ { n }$ ; confidence 0.265

288. c120210100.png ; $X _ { 0 } , \dots , X _ { n }$ ; confidence 0.265

289. t1200105.png ; $( C ( \mathcal{S} ) , \overline { g } ) = ( \mathbf{R} _ { + } \times \mathcal{S} , d r ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265

290. b13006089.png ; $\Rightarrow ( \mu I - A ) ^ { - 1 } . E x = x \Rightarrow \Rightarrow \| ( \mu I - A ) ^ { - 1 } . E \| . \| x \| \geq \| x \|.$ ; confidence 0.265

291. c120170169.png ; $f , g \in P _ { n-k } $ ; confidence 0.265

292. b110220187.png ; $X / \mathbf{Q}$ ; confidence 0.265

293. i130030178.png ; $\operatorname{Ch} ( [ a ] )$ ; confidence 0.265

294. z13004026.png ; $c = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { cr } ( K _ { n , n } ) \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) ^ { - 2 }$ ; confidence 0.265

295. a0106705.png ; $\mathcal{Y}$ ; confidence 0.265

296. a130040635.png ; $F _ { \mathcal{S} _ { P } } \mathfrak { M }$ ; confidence 0.264

297. f1202407.png ; $s , y$ ; confidence 0.264

298. c130070208.png ; $\sum \text { ord }_{ T } ( u d v )$ ; confidence 0.264

299. d03029015.png ; $P _ { n } ( x ) = \sum _ { k = 0 } ^ { n } c _ { k } s _ { k } ( x ),$ ; confidence 0.264

300. b12051084.png ; $H _ { n}^{ - 1} d$ ; confidence 0.264

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/69. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/69&oldid=45801