Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/12"
Rui Martins (talk | contribs) |
|||
(9 intermediate revisions by 2 users not shown) | |||
Line 32: | Line 32: | ||
16. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011036.png ; $z = m l - b / 2$ ; confidence 0.995 | 16. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011036.png ; $z = m l - b / 2$ ; confidence 0.995 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003056.png ; $f ( t ) = O ( ( 1 + | t | ) ^ { - 1 - \epsilon } )$ ; confidence 0.995 | + | 17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003056.png ; $f ( t ) = O \left( ( 1 + | t | ) ^ { - 1 - \epsilon } \right)$ ; confidence 0.995 |
18. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018042.png ; $\| f - f g h \| \leq \| f - f g \| + \| f g - f g h \|$ ; confidence 0.995 | 18. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018042.png ; $\| f - f g h \| \leq \| f - f g \| + \| f g - f g h \|$ ; confidence 0.995 | ||
Line 180: | Line 180: | ||
90. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h1201207.png ; $\nabla : X \rightarrow Y$ ; confidence 0.995 | 90. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h1201207.png ; $\nabla : X \rightarrow Y$ ; confidence 0.995 | ||
− | 91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001053.png ; $E \times C$ ; confidence 0.995 | + | 91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001053.png ; $E \times \mathbf C$ ; confidence 0.995 |
92. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005090.png ; $e ( T , V )$ ; confidence 0.995 | 92. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005090.png ; $e ( T , V )$ ; confidence 0.995 | ||
Line 188: | Line 188: | ||
94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017023.png ; $d _ { i } = 1,0 , - 1$ ; confidence 0.995 | 94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017023.png ; $d _ { i } = 1,0 , - 1$ ; confidence 0.995 | ||
− | 95. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019045.png ; $M _ { 0 } ( z ) = f _ { 0 } ( z )$ ; confidence 0.995 | + | 95. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019045.png ; $\mathcal{M} _ { 0 } ( z ) = f _ { 0 } ( z )$ ; confidence 0.995 |
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026019.png ; $d [ f , M , N ]$ ; confidence 0.995 | 96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026019.png ; $d [ f , M , N ]$ ; confidence 0.995 | ||
Line 202: | Line 202: | ||
101. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221005.png ; $\Gamma ( \alpha )$ ; confidence 0.995 | 101. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221005.png ; $\Gamma ( \alpha )$ ; confidence 0.995 | ||
− | 102. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d1301808.png ; $g \in A ( X )$ ; confidence 0.995 | + | 102. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d1301808.png ; $g \in \mathcal{A} ( X )$ ; confidence 0.995 |
103. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009098.png ; $g \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.995 | 103. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009098.png ; $g \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.995 | ||
Line 218: | Line 218: | ||
109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202901.png ; $( G , \tau )$ ; confidence 0.995 | 109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202901.png ; $( G , \tau )$ ; confidence 0.995 | ||
− | 110. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000128.png ; $\sigma , \tau \in T$ ; confidence 0.995 | + | 110. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000128.png ; $\sigma , \tau \in \mathbf{T}$ ; confidence 0.995 |
111. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015017.png ; $\mu$ ; confidence 0.995 | 111. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015017.png ; $\mu$ ; confidence 0.995 | ||
Line 230: | Line 230: | ||
115. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005069.png ; $m ( n ; T , V )$ ; confidence 0.995 | 115. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005069.png ; $m ( n ; T , V )$ ; confidence 0.995 | ||
− | 116. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014070/a0140703.png ; $ | + | 116. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014070/a0140703.png ; $\cup$ ; confidence 0.995 |
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016022.png ; $\operatorname { Re } ( f | _ { K } ) = 0$ ; confidence 0.995 | 117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016022.png ; $\operatorname { Re } ( f | _ { K } ) = 0$ ; confidence 0.995 | ||
− | 118. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200209.png ; $\partial _ { t } L = \frac { 1 } { 2 } \nabla ^ { 2 } L$ ; confidence 0.995 | + | 118. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200209.png ; $\partial _ { t } L = \frac { 1 } { 2 } \nabla ^ { 2 } L.$ ; confidence 0.995 |
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022082.png ; $H ( f , \xi ) = f _ { 0 } \operatorname { ln } f _ { 0 }$ ; confidence 0.995 | 119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022082.png ; $H ( f , \xi ) = f _ { 0 } \operatorname { ln } f _ { 0 }$ ; confidence 0.995 | ||
Line 244: | Line 244: | ||
122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006063.png ; $J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.995 | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006063.png ; $J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.995 | ||
− | 123. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013077.png ; $\frac { d F } { d t } = - \varepsilon F ( 1 - \gamma F ^ { p } )$ ; confidence 0.995 | + | 123. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013077.png ; $\frac { d F } { d t } = - \varepsilon F ( 1 - \gamma F ^ { p } ),$ ; confidence 0.995 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070140.png ; $( f , g ) _ { H } = ( F , G ) _ { H }$ ; confidence 0.995 | + | 124. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070140.png ; $( f , g ) _ { H } = ( F , G ) _ { \mathcal{H} }$ ; confidence 0.995 |
125. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100140.png ; $K = \{ ( z , w ) : z \in T , w \in K _ { z } \}$ ; confidence 0.995 | 125. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100140.png ; $K = \{ ( z , w ) : z \in T , w \in K _ { z } \}$ ; confidence 0.995 | ||
Line 254: | Line 254: | ||
127. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019034.png ; $( N ^ { \prime } , L ^ { \prime } )$ ; confidence 0.995 | 127. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019034.png ; $( N ^ { \prime } , L ^ { \prime } )$ ; confidence 0.995 | ||
− | 128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016045.png ; $A ( t ) = [ f ( u ( t ) ) + \beta ( X ( t ) - X ( t - \tau ) ) ] [ N _ { 0 } - A ( t ) ]$ ; confidence 0.995 | + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016045.png ; $A ( t ) = [ f ( u ( t ) ) + \beta ( X ( t ) - X ( t - \tau ) ) ] [ N _ { 0 } - A ( t ) ],$ ; confidence 0.995 |
129. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733052.png ; $A ( D )$ ; confidence 0.995 | 129. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733052.png ; $A ( D )$ ; confidence 0.995 | ||
Line 268: | Line 268: | ||
134. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020034.png ; $\{ t \}$ ; confidence 0.995 | 134. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020034.png ; $\{ t \}$ ; confidence 0.995 | ||
− | 135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584083.png ; $L \subset K$ ; confidence 0.995 | + | 135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584083.png ; $\mathcal{L} \subset \mathcal{K}$ ; confidence 0.995 |
136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020078.png ; $c = c ( m )$ ; confidence 0.995 | 136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020078.png ; $c = c ( m )$ ; confidence 0.995 | ||
Line 288: | Line 288: | ||
144. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025029.png ; $\sqrt { 1 - x ^ { 2 } } h \in C [ - 1,1 ]$ ; confidence 0.995 | 144. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025029.png ; $\sqrt { 1 - x ^ { 2 } } h \in C [ - 1,1 ]$ ; confidence 0.995 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012035.png ; $( x )$ ; confidence 0.995 | + | 145. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012035.png ; $\operatorname{size}( x )$ ; confidence 0.995 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050074.png ; $K = Q$ ; confidence 0.995 | + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050074.png ; $K = \mathbf{Q}$ ; confidence 0.995 |
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300144.png ; $2 k$ ; confidence 0.995 | 147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300144.png ; $2 k$ ; confidence 0.995 | ||
− | 148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011027.png ; $T ( i , n ) = T ( i - 1 , T ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 2$ ; confidence 0.995 | + | 148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011027.png ; $T ( i , n ) = T ( i - 1 , T ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 2.$ ; confidence 0.995 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180389.png ; $M \times \{ 1 \} \times \{ 0 \} \subset M \times ( 0 , \infty ) \times ( - 1 + 1 )$ ; confidence 0.995 | + | 149. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180389.png ; $M \times \{ 1 \} \times \{ 0 \} \subset M \times ( 0 , \infty ) \times ( - 1 + 1 ).$ ; confidence 0.995 |
150. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202802.png ; $X = ( X , x _ { 0 } )$ ; confidence 0.995 | 150. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202802.png ; $X = ( X , x _ { 0 } )$ ; confidence 0.995 | ||
Line 304: | Line 304: | ||
152. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230106.png ; $\operatorname { dim } X = 3$ ; confidence 0.995 | 152. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230106.png ; $\operatorname { dim } X = 3$ ; confidence 0.995 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006017.png ; $( P )$ ; confidence 0.995 | + | 153. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006017.png ; $\dim ( P )$ ; confidence 0.995 |
154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110670/a11067024.png ; $L ^ { 1 } ( G )$ ; confidence 0.995 | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110670/a11067024.png ; $L ^ { 1 } ( G )$ ; confidence 0.995 | ||
Line 310: | Line 310: | ||
155. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030025.png ; $| B ( m , 2 ) |$ ; confidence 0.995 | 155. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030025.png ; $| B ( m , 2 ) |$ ; confidence 0.995 | ||
− | 156. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016040.png ; $( \lambda I - T )$ ; confidence 0.995 | + | 156. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016040.png ; $\dim \operatorname{ker}( \lambda I - T )$ ; confidence 0.995 |
157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019046.png ; $X _ { A } ( t , z )$ ; confidence 0.995 | 157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019046.png ; $X _ { A } ( t , z )$ ; confidence 0.995 | ||
Line 324: | Line 324: | ||
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016064.png ; $\lambda < 1$ ; confidence 0.995 | 162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016064.png ; $\lambda < 1$ ; confidence 0.995 | ||
− | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030087.png ; $T _ { 1 } ( H )$ ; confidence 0.995 | + | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030087.png ; $T _ { 1 } ( \mathcal{H} )$ ; confidence 0.995 |
164. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024790/c02479065.png ; $f ( \zeta )$ ; confidence 0.995 | 164. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024790/c02479065.png ; $f ( \zeta )$ ; confidence 0.995 | ||
Line 352: | Line 352: | ||
176. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040168.png ; $\| \nu \| ( A ) = \nu ( A \times G ( n , m ) )$ ; confidence 0.995 | 176. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040168.png ; $\| \nu \| ( A ) = \nu ( A \times G ( n , m ) )$ ; confidence 0.995 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019013.png ; $\frac { 1 } { 2 N } \operatorname { sin } N ( x - x _ { j } ) \operatorname { cot } \frac { ( x - x _ { j } ) } { 2 }$ ; confidence 0.995 | + | 177. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019013.png ; $\frac { 1 } { 2 N } \operatorname { sin } N ( x - x _ { j } ) \operatorname { cot } \frac { ( x - x _ { j } ) } { 2 }.$ ; confidence 0.995 |
178. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200105.png ; $T : X \supset D ( T ) \rightarrow 2 ^ { X }$ ; confidence 0.995 | 178. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200105.png ; $T : X \supset D ( T ) \rightarrow 2 ^ { X }$ ; confidence 0.995 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008037.png ; $\varphi ( g ) = ( \xi , \eta ) ( g ) : = ( \pi ( g ) \xi , \eta )$ ; confidence 0.995 | + | 179. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008037.png ; $\varphi ( g ) = ( \xi , \eta ) ( g ) : = ( \pi ( g ) \xi , \eta ).$ ; confidence 0.995 |
180. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010141.png ; $= R ( y , z ) _ { 23 } R ( x , z ) _ { 13 } R ( x , y ) _ { 12 }$ ; confidence 0.995 | 180. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010141.png ; $= R ( y , z ) _ { 23 } R ( x , z ) _ { 13 } R ( x , y ) _ { 12 }$ ; confidence 0.995 | ||
Line 370: | Line 370: | ||
185. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195052.png ; $( x _ { k } , y _ { k } )$ ; confidence 0.995 | 185. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195052.png ; $( x _ { k } , y _ { k } )$ ; confidence 0.995 | ||
− | 186. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520411.png ; $2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.995 | + | 186. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520411.png ; $\limsup 2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.995 |
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070125.png ; $( t , v )$ ; confidence 0.995 | 187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070125.png ; $( t , v )$ ; confidence 0.995 | ||
Line 376: | Line 376: | ||
188. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002014.png ; $c ( x , y ) = d ^ { p } ( x , y )$ ; confidence 0.995 | 188. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002014.png ; $c ( x , y ) = d ^ { p } ( x , y )$ ; confidence 0.995 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001023.png ; $\pi _ { 1 } ( X , * )$ ; confidence 0.995 | + | 189. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001023.png ; $\check{\pi} _ { 1 } ( X , * )$ ; confidence 0.995 |
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014048.png ; $b ( z ) = z ^ { 2 t }$ ; confidence 0.995 | 190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014048.png ; $b ( z ) = z ^ { 2 t }$ ; confidence 0.995 | ||
Line 384: | Line 384: | ||
192. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002057.png ; $H ^ { k } ( f ^ { - 1 } ( y ) , G ) \neq 0$ ; confidence 0.995 | 192. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002057.png ; $H ^ { k } ( f ^ { - 1 } ( y ) , G ) \neq 0$ ; confidence 0.995 | ||
− | 193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205004.png ; $Z _ { 0 } : = \{ t : W _ { t } = 0 \}$ ; confidence 0.995 | + | 193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205004.png ; $\mathcal{Z} _ { 0 } : = \{ t : W _ { t } = 0 \}$ ; confidence 0.995 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022092.png ; $Y = X \backslash X$ ; confidence 0.995 | + | 194. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022092.png ; $Y = \bar{X} \backslash X$ ; confidence 0.995 |
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020059.png ; $y ( n ) = c x ( n ) + d u ( n )$ ; confidence 0.995 | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020059.png ; $y ( n ) = c x ( n ) + d u ( n )$ ; confidence 0.995 | ||
− | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015025.png ; $\frac { 1 } { 1 + \sqrt { n } } ( x \sqrt { n } + \frac { 1 } { 2 } )$ ; confidence 0.995 | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015025.png ; $\frac { 1 } { 1 + \sqrt { n } } \left( \bar{x} \sqrt { n } + \frac { 1 } { 2 } \right)$ ; confidence 0.995 |
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051064.png ; $\nabla ^ { 2 } f ( x ^ { * } )$ ; confidence 0.995 | 197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051064.png ; $\nabla ^ { 2 } f ( x ^ { * } )$ ; confidence 0.995 | ||
Line 396: | Line 396: | ||
198. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005033.png ; $f _ { c } ( y )$ ; confidence 0.995 | 198. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005033.png ; $f _ { c } ( y )$ ; confidence 0.995 | ||
− | 199. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015041.png ; $f _ { X , Y } ( X , Y ) = f _ { X } ( X ) f _ { Y } ( Y )$ ; confidence 0.995 | + | 199. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015041.png ; $f _ { X , Y } ( X , Y ) = f _ { X } ( X ) f _ { Y } ( Y ),$ ; confidence 0.995 |
200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002012.png ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : g ( u _ { 1 } ) > - \infty \}$ ; confidence 0.995 | 200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002012.png ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : g ( u _ { 1 } ) > - \infty \}$ ; confidence 0.995 | ||
Line 402: | Line 402: | ||
201. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011020.png ; $u ( x , y , t )$ ; confidence 0.995 | 201. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011020.png ; $u ( x , y , t )$ ; confidence 0.995 | ||
− | 202. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024230/c024230146.png ; $P = N P$ ; confidence 0.995 | + | 202. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024230/c024230146.png ; $\mathcal{P} = \mathcal{N}\mathcal{P} $ ; confidence 0.995 |
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007050.png ; $f \in L ^ { \infty } ( 0 , T ; X )$ ; confidence 0.995 | 203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007050.png ; $f \in L ^ { \infty } ( 0 , T ; X )$ ; confidence 0.995 | ||
Line 416: | Line 416: | ||
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030019.png ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.995 | 208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030019.png ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.995 | ||
− | 209. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200709.png ; $X ^ { \prime \prime } ( t ) + R ( t ) \circ X ( t ) = 0$ ; confidence 0.995 | + | 209. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200709.png ; $X ^ { \prime \prime } ( t ) + \mathcal{R} ( t ) \circ X ( t ) = 0$ ; confidence 0.995 |
210. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625002.png ; $\mu ( A )$ ; confidence 0.995 | 210. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625002.png ; $\mu ( A )$ ; confidence 0.995 | ||
Line 428: | Line 428: | ||
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180271.png ; $( - 1 ) ^ { p } \in \{ - 1 , + 1 \}$ ; confidence 0.995 | 214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180271.png ; $( - 1 ) ^ { p } \in \{ - 1 , + 1 \}$ ; confidence 0.995 | ||
− | 215. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018034.png ; $A ( \ | + | 215. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018034.png ; $A ( \widehat { G } ) \cong L ^ { 1 } ( G )$ ; confidence 0.995 |
216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016027.png ; $f : S ^ { 2 } \rightarrow G$ ; confidence 0.995 | 216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016027.png ; $f : S ^ { 2 } \rightarrow G$ ; confidence 0.995 | ||
Line 444: | Line 444: | ||
222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006061.png ; $L ( X )$ ; confidence 0.995 | 222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006061.png ; $L ( X )$ ; confidence 0.995 | ||
− | 223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201907.png ; $E ( f ) = \int _ { \Omega } | \nabla f | ^ { 2 } d x$ ; confidence 0.995 | + | 223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201907.png ; $E ( f ) = \int _ { \Omega } | \nabla f | ^ { 2 } d x.$ ; confidence 0.995 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001022.png ; $H ^ { 0 } ( E ) = Z , \quad H ^ { p } ( E ) = 0 , p > 0$ ; confidence 0.995 | + | 224. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001022.png ; $H ^ { 0 } ( E ) = \mathbf{Z} , \quad H ^ { p } ( E ) = 0 , p > 0.$ ; confidence 0.995 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020017.png ; $p ( t ) \in F [ t ]$ ; confidence 0.995 | + | 225. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020017.png ; $p ( t ) \in \mathbf{F} [ t ]$ ; confidence 0.995 |
226. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012054.png ; $y _ { j } ^ { j } > 0$ ; confidence 0.995 | 226. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012054.png ; $y _ { j } ^ { j } > 0$ ; confidence 0.995 | ||
Line 454: | Line 454: | ||
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005077.png ; $k \rightarrow \pm \infty$ ; confidence 0.995 | 227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005077.png ; $k \rightarrow \pm \infty$ ; confidence 0.995 | ||
− | 228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018097.png ; $A ( T ^ { 2 } )$ ; confidence 0.995 | + | 228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018097.png ; $A ( \mathbf{T} ^ { 2 } )$ ; confidence 0.995 |
229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014012.png ; $r ( \pm 1 ) = 1 / 2$ ; confidence 0.995 | 229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014012.png ; $r ( \pm 1 ) = 1 / 2$ ; confidence 0.995 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005018.png ; $r \leq \frac { s ^ { 2 } \mu - 1 } { \mu - 1 }$ ; confidence 0.995 | + | 230. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005018.png ; $r \leq \frac { s ^ { 2 } \mu - 1 } { \mu - 1 },$ ; confidence 0.995 |
231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032026.png ; $H _ { 0 } : \theta = p$ ; confidence 0.995 | 231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032026.png ; $H _ { 0 } : \theta = p$ ; confidence 0.995 | ||
Line 468: | Line 468: | ||
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010076.png ; $C V _ { p } ( G )$ ; confidence 0.995 | 234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010076.png ; $C V _ { p } ( G )$ ; confidence 0.995 | ||
− | 235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043088.png ; $E _ { 2 } ^ { 2 } E _ { 1 } + E _ { 1 } E _ { 2 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 2 } E _ { 1 } E _ { 2 } = 0$ ; confidence 0.995 | + | 235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043088.png ; $E _ { 2 } ^ { 2 } E _ { 1 } + E _ { 1 } E _ { 2 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 2 } E _ { 1 } E _ { 2 } = 0.$ ; confidence 0.995 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p1300901.png ; $f : D \rightarrow R$ ; confidence 0.995 | + | 236. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p1300901.png ; $f : D \rightarrow \mathbf{R}$ ; confidence 0.995 |
237. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010025.png ; $\tau _ { A } ^ { j }$ ; confidence 0.995 | 237. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010025.png ; $\tau _ { A } ^ { j }$ ; confidence 0.995 | ||
Line 480: | Line 480: | ||
240. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005027.png ; $f ( x , k )$ ; confidence 0.995 | 240. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005027.png ; $f ( x , k )$ ; confidence 0.995 | ||
− | 241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201104.png ; $f ( x ) - f ( y ) \leq f ( x + y ) \leq f ( x ) + f ( y ) , x , y \in S$ ; confidence 0.995 | + | 241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201104.png ; $f ( x ) - f ( y ) \leq f ( x + y ) \leq f ( x ) + f ( y ) , x , y \in \mathcal{S},$ ; confidence 0.995 |
242. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018011.png ; $m ( . )$ ; confidence 0.995 | 242. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018011.png ; $m ( . )$ ; confidence 0.995 | ||
Line 506: | Line 506: | ||
253. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080188.png ; $\omega ^ { 0 } = ( \delta v , \delta u )$ ; confidence 0.995 | 253. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080188.png ; $\omega ^ { 0 } = ( \delta v , \delta u )$ ; confidence 0.995 | ||
− | 254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050049.png ; $= \operatorname { exp } ( - x \sqrt { 2 u } )$ ; confidence 0.995 | + | 254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050049.png ; $= \operatorname { exp } ( - x \sqrt { 2 u } ).$ ; confidence 0.995 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150109.png ; $\delta \in N \cup \{ 0 \}$ ; confidence 0.995 | + | 255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150109.png ; $\delta \in \mathbf{N} \cup \{ 0 \}$ ; confidence 0.995 |
256. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001033.png ; $\sqrt { \kappa }$ ; confidence 0.995 | 256. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001033.png ; $\sqrt { \kappa }$ ; confidence 0.995 | ||
Line 520: | Line 520: | ||
260. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002013.png ; $H _ { q } ( M , G ) = 0$ ; confidence 0.995 | 260. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002013.png ; $H _ { q } ( M , G ) = 0$ ; confidence 0.995 | ||
− | 261. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003052.png ; $( Z , Y )$ ; confidence 0.995 | + | 261. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003052.png ; $\operatorname{Map}( Z , Y )$ ; confidence 0.995 |
262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016062.png ; $\Sigma = A A ^ { \prime }$ ; confidence 0.995 | 262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016062.png ; $\Sigma = A A ^ { \prime }$ ; confidence 0.995 | ||
Line 526: | Line 526: | ||
263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026030.png ; $D _ { t } : \Gamma ^ { + } \rightarrow ( L ^ { 2 } )$ ; confidence 0.995 | 263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026030.png ; $D _ { t } : \Gamma ^ { + } \rightarrow ( L ^ { 2 } )$ ; confidence 0.995 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011062.png ; $A = \frac { 1 } { 2 } \theta ( 2 \pi - \theta ) - \frac { \pi ^ { 2 } } { \operatorname { cosh } ^ { 2 } ( \pi b / l ) } = 0$ ; confidence 0.995 | + | 264. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011062.png ; $A = \frac { 1 } { 2 } \theta ( 2 \pi - \theta ) - \frac { \pi ^ { 2 } } { \operatorname { cosh } ^ { 2 } ( \pi b / l ) } = 0,$ ; confidence 0.995 |
265. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236040.png ; $p + q = n$ ; confidence 0.995 | 265. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236040.png ; $p + q = n$ ; confidence 0.995 | ||
Line 534: | Line 534: | ||
267. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009076.png ; $( \pi )$ ; confidence 0.995 | 267. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009076.png ; $( \pi )$ ; confidence 0.995 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015059.png ; $\{ \Delta ^ { \alpha } : \alpha \in C \}$ ; confidence 0.995 | + | 268. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015059.png ; $\{ \Delta ^ { \alpha } : \alpha \in \mathbf{C} \}$ ; confidence 0.995 |
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012018.png ; $d ( x , A _ { \lambda } ) \rightarrow d ( x , A )$ ; confidence 0.995 | 269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012018.png ; $d ( x , A _ { \lambda } ) \rightarrow d ( x , A )$ ; confidence 0.995 | ||
Line 546: | Line 546: | ||
273. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026043.png ; $\Omega _ { 2 } \subset \Omega$ ; confidence 0.995 | 273. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026043.png ; $\Omega _ { 2 } \subset \Omega$ ; confidence 0.995 | ||
− | 274. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003088.png ; $A \in F$ ; confidence 0.995 | + | 274. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003088.png ; $A \in \mathcal{F}$ ; confidence 0.995 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004045.png ; $\frac { \partial u } { \partial n } = 0$ ; confidence 0.995 | + | 275. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004045.png ; $\frac { \partial u } { \partial n } = 0 \text{ on the boundary of } \Omega.$ ; confidence 0.995 |
276. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001034.png ; $O ( \varepsilon )$ ; confidence 0.995 | 276. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001034.png ; $O ( \varepsilon )$ ; confidence 0.995 | ||
Line 560: | Line 560: | ||
280. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007082.png ; $E \subset \Omega$ ; confidence 0.995 | 280. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007082.png ; $E \subset \Omega$ ; confidence 0.995 | ||
− | 281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005049.png ; $\int _ { - \infty } ^ { \infty } | f ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { + } ) ^ { - 2 }$ ; confidence 0.995 | + | 281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005049.png ; $\int _ { - \infty } ^ { \infty } | f ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { + } ) ^ { - 2 },$ ; confidence 0.995 |
282. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005028.png ; $M = \lambda ( K ) : = [ \mu ^ { - 1 } ( \pi K / 2 ) ] ^ { - 2 } - 1$ ; confidence 0.995 | 282. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005028.png ; $M = \lambda ( K ) : = [ \mu ^ { - 1 } ( \pi K / 2 ) ] ^ { - 2 } - 1$ ; confidence 0.995 | ||
Line 578: | Line 578: | ||
289. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301407.png ; $r , s \geq 0$ ; confidence 0.995 | 289. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301407.png ; $r , s \geq 0$ ; confidence 0.995 | ||
− | 290. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014027.png ; $p = \alpha x$ ; confidence 0.995 | + | 290. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014027.png ; $p = \alpha . x$ ; confidence 0.995 |
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015076.png ; $\Delta ^ { i t }$ ; confidence 0.995 | 291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015076.png ; $\Delta ^ { i t }$ ; confidence 0.995 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170143.png ; $( p q ) ( Z , Z ) = 0$ ; confidence 0.995 | + | 292. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170143.png ; $( p q ) ( Z , \overline{Z} ) = 0$ ; confidence 0.995 |
293. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003022.png ; $A A ^ { \prime }$ ; confidence 0.995 | 293. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003022.png ; $A A ^ { \prime }$ ; confidence 0.995 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602031.png ; $Y _ { 1 } = X _ { 1 } + P Y _ { 2 } , \quad Y _ { 2 } = X _ { 2 } + C Y _ { 1 }$ ; confidence 0.995 | + | 294. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602031.png ; $Y _ { 1 } = X _ { 1 } + P Y _ { 2 } , \quad Y _ { 2 } = X _ { 2 } + C Y _ { 1 },$ ; confidence 0.995 |
295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018074.png ; $| t | = \sqrt { \sum _ { k = 1 } ^ { N } t _ { k } ^ { 2 } }$ ; confidence 0.995 | 295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018074.png ; $| t | = \sqrt { \sum _ { k = 1 } ^ { N } t _ { k } ^ { 2 } }$ ; confidence 0.995 | ||
− | 296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020058.png ; $x ( n + 1 ) = A x ( n ) + b u ( n )$ ; confidence 0.995 | + | 296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020058.png ; $x ( n + 1 ) = A x ( n ) + b u ( n ),$ ; confidence 0.995 |
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040762.png ; $\Sigma ( P , R ^ { \prime } )$ ; confidence 0.995 | 297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040762.png ; $\Sigma ( P , R ^ { \prime } )$ ; confidence 0.995 | ||
Line 596: | Line 596: | ||
298. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356035.png ; $\mathfrak { M } _ { f } \cap A ^ { + }$ ; confidence 0.995 | 298. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356035.png ; $\mathfrak { M } _ { f } \cap A ^ { + }$ ; confidence 0.995 | ||
− | 299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180220.png ; $\theta \in E$ ; confidence 0.995 | + | 299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180220.png ; $\theta \in \mathcal{E}$ ; confidence 0.995 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030057.png ; $A ( \eta )$ ; confidence 0.995 | + | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030057.png ; $\mathcal{A} ( \eta )$ ; confidence 0.995 |
Latest revision as of 13:19, 17 May 2020
List
1. ; $L ( u ) = 0$ ; confidence 0.995
2. ; $l ( w _ { 1 } ) = l ( w _ { 2 } ) + 1$ ; confidence 0.995
3. ; $\forall x:$ ; confidence 0.995
4. ; $y \wedge x = 0$ ; confidence 0.995
5. ; $\sum _ { j = 1 } ^ { 3 } \omega _ { j } ^ { 2 } = 0$ ; confidence 0.995
6. ; $\{ T _ { t } \}$ ; confidence 0.995
7. ; $\xi _ { 1 } \lambda _ { 1 } + \xi _ { 2 } \lambda _ { 2 }$ ; confidence 0.995
8. ; $D ( A ) \times V$ ; confidence 0.995
9. ; $O ( T / M )$ ; confidence 0.995
10. ; $f ( x ) = \int _ { 0 } ^ { \infty } e ^ { x t } d \mu ( t ),$ ; confidence 0.995
11. ; $\gamma \geq 1 / 2$ ; confidence 0.995
12. ; $i = 0,1,2$ ; confidence 0.995
13. ; $t \in ( 0 , T )$ ; confidence 0.995
14. ; $( Z f ) ( t , w ) = ( Z f ) ( - t , - w ),$ ; confidence 0.995
15. ; $B \in B ( Y , Z )$ ; confidence 0.995
16. ; $z = m l - b / 2$ ; confidence 0.995
17. ; $f ( t ) = O \left( ( 1 + | t | ) ^ { - 1 - \epsilon } \right)$ ; confidence 0.995
18. ; $\| f - f g h \| \leq \| f - f g \| + \| f g - f g h \|$ ; confidence 0.995
19. ; $f ( x ) \preceq g ( x )$ ; confidence 0.995
20. ; $V _ { - 1 } = \rho _ { 1 }$ ; confidence 0.995
21. ; $s , t \geq 0$ ; confidence 0.995
22. ; $u \mapsto ( u , \psi ) \varphi$ ; confidence 0.995
23. ; $\mathcal{A} \otimes \mathcal{O}_\infty$ ; confidence 0.995
24. ; $B = 0$ ; confidence 0.995
25. ; $W ( \rho ) = \prod W _ { P } ( \rho )$ ; confidence 0.995
26. ; $f : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.995
27. ; $d ( \gamma ( t ) , \gamma ( 0 ) ) = t$ ; confidence 0.995
28. ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } - \sum \delta ( P ),$ ; confidence 0.995
29. ; $F ( \tau ) = \int _ { 0 } ^ { \infty } K _ { i \tau } ( x ) f ( x ) d x,$ ; confidence 0.995
30. ; $\beta \alpha = q ^ { 2 } \alpha \beta,$ ; confidence 0.995
31. ; $( 1 - P C ) ^ { - 1 }$ ; confidence 0.995
32. ; $\tau = \sigma ( A ) \backslash \sigma$ ; confidence 0.995
33. ; $h = 1 / J$ ; confidence 0.995
34. ; $\zeta \mapsto \| T ( \zeta ) \|$ ; confidence 0.995
35. ; $s : C \rightarrow B$ ; confidence 0.995
36. ; $x y x ^ { - 1 } y ^ { - 1 }$ ; confidence 0.995
37. ; $( t )$ ; confidence 0.995
38. ; $\deg_B [ f , \Omega , y ] \neq 0$ ; confidence 0.995
39. ; $\int ( F _ { A } , F _ { A } ) + ( D _ { A } \phi , D _ { A } \phi ) - \lambda ( 1 - \| \phi \| ^ { 2 } ) ^ { 2 }.$ ; confidence 0.995
40. ; $x ( t + \theta ) : = \phi ( t + \theta )$ ; confidence 0.995
41. ; $\{ t > 0 , \square - \infty < x < \infty \}$ ; confidence 0.995
42. ; $\pi : S ^ { 3 } \rightarrow S ^ { 2 }$ ; confidence 0.995
43. ; $T ( x ) = g$ ; confidence 0.995
44. ; $C _ { \Omega } ( f )$ ; confidence 0.995
45. ; $\partial ( A ) = \operatorname { log } _ { p } \operatorname { card } ( A ).$ ; confidence 0.995
46. ; $( X , Y )$ ; confidence 0.995
47. ; $( X , \mathcal{A} , m )$ ; confidence 0.995
48. ; $f ( d ) < 0$ ; confidence 0.995
49. ; $f \in C ^ { \infty } [ N , N + M ]$ ; confidence 0.995
50. ; $F ( A , d ) \subseteq A$ ; confidence 0.995
51. ; $x ^ { ( k ) }$ ; confidence 0.995
52. ; $1 < p < \infty$ ; confidence 0.995
53. ; $f \in H ^ { \infty } ( \Delta )$ ; confidence 0.995
54. ; $Z ( p \times n )$ ; confidence 0.995
55. ; $s = \operatorname { dim } _ { A } M$ ; confidence 0.995
56. ; $( T M , T ^ { * } M )$ ; confidence 0.995
57. ; $d v$ ; confidence 0.995
58. ; $\gamma ( u ) = \infty$ ; confidence 0.995
59. ; $\phi \circ f = \phi$ ; confidence 0.995
60. ; $g ( \partial B [ R ] ) \subset B[R]$ ; confidence 0.995
61. ; $0 \leq n x \leq y$ ; confidence 0.995
62. ; $( f ^ { * } g ) ( x ) =$ ; confidence 0.995
63. ; $\sigma ( z ) S ( z ) \equiv \omega ( z ) ( \operatorname { mod } z ^ { 2 t } )$ ; confidence 0.995
64. ; $\lambda \rightarrow 0$ ; confidence 0.995
65. ; $h ( z , w ) - \operatorname { log } \| z - w \| \leq$ ; confidence 0.995
66. ; $n = \operatorname { dim } ( X )$ ; confidence 0.995
67. ; $\mathcal{X} = \{ X \}$ ; confidence 0.995
68. ; $L ( \alpha , \beta )$ ; confidence 0.995
69. ; $G F ( q )$ ; confidence 0.995
70. ; $\operatorname{sinc}( 0 ) = 1$ ; confidence 0.995
71. ; $u ( x , 0 ) = g ( x )$ ; confidence 0.995
72. ; $\operatorname { deg } f \geq 4$ ; confidence 0.995
73. ; $( t , u ) \in [ 0 , T ] \times W$ ; confidence 0.995
74. ; $| u ( e ^ { i t } ) | = 1$ ; confidence 0.995
75. ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } ( z - z _ { j } ).$ ; confidence 0.995
76. ; $D ( \varphi \wedge \psi ) = D ( \varphi ) \wedge \psi + ( - 1 ) ^ { k l } \varphi \wedge D ( \psi )$ ; confidence 0.995
77. ; $W _ { 1 } ( m )$ ; confidence 0.995
78. ; $J ( \tau )$ ; confidence 0.995
79. ; $\{ \chi _ { k } ( z ) \}$ ; confidence 0.995
80. ; $u ( x , y ) =$ ; confidence 0.995
81. ; $A \in \mathcal{B} ( H ( G ) )$ ; confidence 0.995
82. ; $( X , L , \tau )$ ; confidence 0.995
83. ; $f [ U ]$ ; confidence 0.995
84. ; $L ( p ) > 0$ ; confidence 0.995
85. ; $D _ { A } \phi = 0,$ ; confidence 0.995
86. ; $1 \leq i \leq d$ ; confidence 0.995
87. ; $\varphi _ { + } ( k ) = f ( k )$ ; confidence 0.995
88. ; $u ( x , t ) = \phi ( x - v t - c )$ ; confidence 0.995
89. ; $f \in \mathcal{A} ^ { * }$ ; confidence 0.995
90. ; $\nabla : X \rightarrow Y$ ; confidence 0.995
91. ; $E \times \mathbf C$ ; confidence 0.995
92. ; $e ( T , V )$ ; confidence 0.995
93. ; $c ( A ) \subset \{ 0 \}$ ; confidence 0.995
94. ; $d _ { i } = 1,0 , - 1$ ; confidence 0.995
95. ; $\mathcal{M} _ { 0 } ( z ) = f _ { 0 } ( z )$ ; confidence 0.995
96. ; $d [ f , M , N ]$ ; confidence 0.995
97. ; $\theta > 2$ ; confidence 0.995
98. ; $n \geq 2 ^ { 48 }$ ; confidence 0.995
99. ; $( V _ { 1 } , E _ { 1 } , F _ { 1 } )$ ; confidence 0.995
100. ; $\Omega , \mathcal{A} , \mathcal{P}$ ; confidence 0.995
101. ; $\Gamma ( \alpha )$ ; confidence 0.995
102. ; $g \in \mathcal{A} ( X )$ ; confidence 0.995
103. ; $g \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.995
104. ; $\gamma _ { l } = m$ ; confidence 0.995
105. ; $W = S \otimes E$ ; confidence 0.995
106. ; $( r , r )$ ; confidence 0.995
107. ; $q \leq 2 d r$ ; confidence 0.995
108. ; $f : F \rightarrow F$ ; confidence 0.995
109. ; $( G , \tau )$ ; confidence 0.995
110. ; $\sigma , \tau \in \mathbf{T}$ ; confidence 0.995
111. ; $\mu$ ; confidence 0.995
112. ; $m ^ { 2 }$ ; confidence 0.995
113. ; $f ^ { * } ( z )$ ; confidence 0.995
114. ; $\gamma > 1 / 2$ ; confidence 0.995
115. ; $m ( n ; T , V )$ ; confidence 0.995
116. ; $\cup$ ; confidence 0.995
117. ; $\operatorname { Re } ( f | _ { K } ) = 0$ ; confidence 0.995
118. ; $\partial _ { t } L = \frac { 1 } { 2 } \nabla ^ { 2 } L.$ ; confidence 0.995
119. ; $H ( f , \xi ) = f _ { 0 } \operatorname { ln } f _ { 0 }$ ; confidence 0.995
120. ; $\chi ( B _ { i } ) = 0$ ; confidence 0.995
121. ; $J _ { \lambda } = ( I + \lambda A ) ^ { - 1 }$ ; confidence 0.995
122. ; $J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.995
123. ; $\frac { d F } { d t } = - \varepsilon F ( 1 - \gamma F ^ { p } ),$ ; confidence 0.995
124. ; $( f , g ) _ { H } = ( F , G ) _ { \mathcal{H} }$ ; confidence 0.995
125. ; $K = \{ ( z , w ) : z \in T , w \in K _ { z } \}$ ; confidence 0.995
126. ; $\lambda \in P ^ { + }$ ; confidence 0.995
127. ; $( N ^ { \prime } , L ^ { \prime } )$ ; confidence 0.995
128. ; $A ( t ) = [ f ( u ( t ) ) + \beta ( X ( t ) - X ( t - \tau ) ) ] [ N _ { 0 } - A ( t ) ],$ ; confidence 0.995
129. ; $A ( D )$ ; confidence 0.995
130. ; $H ^ { i } ( G / B , \xi )$ ; confidence 0.995
131. ; $U = Y$ ; confidence 0.995
132. ; $\delta ( x )$ ; confidence 0.995
133. ; $F _ { \sigma } ( x ) = \Phi ( x / \sigma )$ ; confidence 0.995
134. ; $\{ t \}$ ; confidence 0.995
135. ; $\mathcal{L} \subset \mathcal{K}$ ; confidence 0.995
136. ; $c = c ( m )$ ; confidence 0.995
137. ; $\operatorname { dim } ( K - L ) \leq 2$ ; confidence 0.995
138. ; $\alpha = 0$ ; confidence 0.995
139. ; $1 < s < m / ( m - 1 )$ ; confidence 0.995
140. ; $\phi _ { n } : B _ { n } \rightarrow B O _ { n }$ ; confidence 0.995
141. ; $( B u , u ) < 0$ ; confidence 0.995
142. ; $\pi : X \rightarrow B$ ; confidence 0.995
143. ; $f , g : X \rightarrow Y$ ; confidence 0.995
144. ; $\sqrt { 1 - x ^ { 2 } } h \in C [ - 1,1 ]$ ; confidence 0.995
145. ; $\operatorname{size}( x )$ ; confidence 0.995
146. ; $K = \mathbf{Q}$ ; confidence 0.995
147. ; $2 k$ ; confidence 0.995
148. ; $T ( i , n ) = T ( i - 1 , T ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 2.$ ; confidence 0.995
149. ; $M \times \{ 1 \} \times \{ 0 \} \subset M \times ( 0 , \infty ) \times ( - 1 + 1 ).$ ; confidence 0.995
150. ; $X = ( X , x _ { 0 } )$ ; confidence 0.995
151. ; $( h , m , n ) ^ { k }$ ; confidence 0.995
152. ; $\operatorname { dim } X = 3$ ; confidence 0.995
153. ; $\dim ( P )$ ; confidence 0.995
154. ; $L ^ { 1 } ( G )$ ; confidence 0.995
155. ; $| B ( m , 2 ) |$ ; confidence 0.995
156. ; $\dim \operatorname{ker}( \lambda I - T )$ ; confidence 0.995
157. ; $X _ { A } ( t , z )$ ; confidence 0.995
158. ; $( w _ { 1 } , w _ { 2 } )$ ; confidence 0.995
159. ; $b _ { 2 } \neq b _ { 4 }$ ; confidence 0.995
160. ; $m \times 1$ ; confidence 0.995
161. ; $h ^ { - 1 } ( F _ { 0 } )$ ; confidence 0.995
162. ; $\lambda < 1$ ; confidence 0.995
163. ; $T _ { 1 } ( \mathcal{H} )$ ; confidence 0.995
164. ; $f ( \zeta )$ ; confidence 0.995
165. ; $\operatorname { cr } ( K )$ ; confidence 0.995
166. ; $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ ; confidence 0.995
167. ; $L ( H )$ ; confidence 0.995
168. ; $\beta ( M )$ ; confidence 0.995
169. ; $D \phi / D t$ ; confidence 0.995
170. ; $[ u , v ] \equiv \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } \frac { \partial ^ { 2 } v } { \partial y ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } \frac { \partial ^ { 2 } v } { \partial x ^ { 2 } } - 2 \frac { \partial ^ { 2 } u } { \partial x \partial y } \frac { \partial ^ { 2 } v } { \partial x \partial y }$ ; confidence 0.995
171. ; $1 / p \leq ( n - 1 - 2 \delta ) / 2 n$ ; confidence 0.995
172. ; $\mu \in \Omega ^ { - 1,1 } ( \Sigma _ { g } )$ ; confidence 0.995
173. ; $( ( v - v ^ { 3 } ) / z + v z ) ^ { 3 }$ ; confidence 0.995
174. ; $a , b , c , d$ ; confidence 0.995
175. ; $\gamma \rho$ ; confidence 0.995
176. ; $\| \nu \| ( A ) = \nu ( A \times G ( n , m ) )$ ; confidence 0.995
177. ; $\frac { 1 } { 2 N } \operatorname { sin } N ( x - x _ { j } ) \operatorname { cot } \frac { ( x - x _ { j } ) } { 2 }.$ ; confidence 0.995
178. ; $T : X \supset D ( T ) \rightarrow 2 ^ { X }$ ; confidence 0.995
179. ; $\varphi ( g ) = ( \xi , \eta ) ( g ) : = ( \pi ( g ) \xi , \eta ).$ ; confidence 0.995
180. ; $= R ( y , z ) _ { 23 } R ( x , z ) _ { 13 } R ( x , y ) _ { 12 }$ ; confidence 0.995
181. ; $F = \operatorname { diag } \{ f _ { i } \}$ ; confidence 0.995
182. ; $V ( t , x ) = x ^ { * } P ( t ) x$ ; confidence 0.995
183. ; $G \times M \rightarrow M$ ; confidence 0.995
184. ; $H _ { 0 } : \theta = 0$ ; confidence 0.995
185. ; $( x _ { k } , y _ { k } )$ ; confidence 0.995
186. ; $\limsup 2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.995
187. ; $( t , v )$ ; confidence 0.995
188. ; $c ( x , y ) = d ^ { p } ( x , y )$ ; confidence 0.995
189. ; $\check{\pi} _ { 1 } ( X , * )$ ; confidence 0.995
190. ; $b ( z ) = z ^ { 2 t }$ ; confidence 0.995
191. ; $r ( P ) : = \operatorname { max } \{ r ( p ) : p \in P \}$ ; confidence 0.995
192. ; $H ^ { k } ( f ^ { - 1 } ( y ) , G ) \neq 0$ ; confidence 0.995
193. ; $\mathcal{Z} _ { 0 } : = \{ t : W _ { t } = 0 \}$ ; confidence 0.995
194. ; $Y = \bar{X} \backslash X$ ; confidence 0.995
195. ; $y ( n ) = c x ( n ) + d u ( n )$ ; confidence 0.995
196. ; $\frac { 1 } { 1 + \sqrt { n } } \left( \bar{x} \sqrt { n } + \frac { 1 } { 2 } \right)$ ; confidence 0.995
197. ; $\nabla ^ { 2 } f ( x ^ { * } )$ ; confidence 0.995
198. ; $f _ { c } ( y )$ ; confidence 0.995
199. ; $f _ { X , Y } ( X , Y ) = f _ { X } ( X ) f _ { Y } ( Y ),$ ; confidence 0.995
200. ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : g ( u _ { 1 } ) > - \infty \}$ ; confidence 0.995
201. ; $u ( x , y , t )$ ; confidence 0.995
202. ; $\mathcal{P} = \mathcal{N}\mathcal{P} $ ; confidence 0.995
203. ; $f \in L ^ { \infty } ( 0 , T ; X )$ ; confidence 0.995
204. ; $J ^ { 1 } \Gamma ( \Gamma ( Y ) )$ ; confidence 0.995
205. ; $\Psi : U ^ { \prime } \rightarrow V ^ { \prime }$ ; confidence 0.995
206. ; $( b , \beta ) \in B$ ; confidence 0.995
207. ; $\mu : M \rightarrow P$ ; confidence 0.995
208. ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.995
209. ; $X ^ { \prime \prime } ( t ) + \mathcal{R} ( t ) \circ X ( t ) = 0$ ; confidence 0.995
210. ; $\mu ( A )$ ; confidence 0.995
211. ; $( u , v ) \in \Omega ^ { * } \times \Omega ^ { * }$ ; confidence 0.995
212. ; $M _ { 1 } ( k ) = 1$ ; confidence 0.995
213. ; $B ^ { G } = T _ { H } ^ { G } ( B ^ { H } )$ ; confidence 0.995
214. ; $( - 1 ) ^ { p } \in \{ - 1 , + 1 \}$ ; confidence 0.995
215. ; $A ( \widehat { G } ) \cong L ^ { 1 } ( G )$ ; confidence 0.995
216. ; $f : S ^ { 2 } \rightarrow G$ ; confidence 0.995
217. ; $F \rightarrow M$ ; confidence 0.995
218. ; $A \circ B = ( A B + B A ) / 2$ ; confidence 0.995
219. ; $\nu = 1$ ; confidence 0.995
220. ; $( i , \alpha ) ^ { \prime }$ ; confidence 0.995
221. ; $W _ { N }$ ; confidence 0.995
222. ; $L ( X )$ ; confidence 0.995
223. ; $E ( f ) = \int _ { \Omega } | \nabla f | ^ { 2 } d x.$ ; confidence 0.995
224. ; $H ^ { 0 } ( E ) = \mathbf{Z} , \quad H ^ { p } ( E ) = 0 , p > 0.$ ; confidence 0.995
225. ; $p ( t ) \in \mathbf{F} [ t ]$ ; confidence 0.995
226. ; $y _ { j } ^ { j } > 0$ ; confidence 0.995
227. ; $k \rightarrow \pm \infty$ ; confidence 0.995
228. ; $A ( \mathbf{T} ^ { 2 } )$ ; confidence 0.995
229. ; $r ( \pm 1 ) = 1 / 2$ ; confidence 0.995
230. ; $r \leq \frac { s ^ { 2 } \mu - 1 } { \mu - 1 },$ ; confidence 0.995
231. ; $H _ { 0 } : \theta = p$ ; confidence 0.995
232. ; $\sigma ( T ) \cap G$ ; confidence 0.995
233. ; $b ^ { 2 } = b$ ; confidence 0.995
234. ; $C V _ { p } ( G )$ ; confidence 0.995
235. ; $E _ { 2 } ^ { 2 } E _ { 1 } + E _ { 1 } E _ { 2 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 2 } E _ { 1 } E _ { 2 } = 0.$ ; confidence 0.995
236. ; $f : D \rightarrow \mathbf{R}$ ; confidence 0.995
237. ; $\tau _ { A } ^ { j }$ ; confidence 0.995
238. ; $\alpha \mapsto f ( x ^ { k } + \alpha d ^ { k } )$ ; confidence 0.995
239. ; $n \neq 2$ ; confidence 0.995
240. ; $f ( x , k )$ ; confidence 0.995
241. ; $f ( x ) - f ( y ) \leq f ( x + y ) \leq f ( x ) + f ( y ) , x , y \in \mathcal{S},$ ; confidence 0.995
242. ; $m ( . )$ ; confidence 0.995
243. ; $[ Q , \Gamma ]$ ; confidence 0.995
244. ; $M ( P ) \leq L ( P ) \leq 2 ^ { d } M ( P )$ ; confidence 0.995
245. ; $B _ { 2 n } = N _ { 2 n } / D _ { 2 n }$ ; confidence 0.995
246. ; $k / ( 1 + k )$ ; confidence 0.995
247. ; $\operatorname { dim } X < + \infty$ ; confidence 0.995
248. ; $\xi _ { i } ( 0 ) = 0$ ; confidence 0.995
249. ; $\theta _ { i } ( v )$ ; confidence 0.995
250. ; $v ( \alpha , \theta )$ ; confidence 0.995
251. ; $\mathfrak { M } _ { f }$ ; confidence 0.995
252. ; $( x ^ { k + 1 } / ( k + 1 ) + i y )$ ; confidence 0.995
253. ; $\omega ^ { 0 } = ( \delta v , \delta u )$ ; confidence 0.995
254. ; $= \operatorname { exp } ( - x \sqrt { 2 u } ).$ ; confidence 0.995
255. ; $\delta \in \mathbf{N} \cup \{ 0 \}$ ; confidence 0.995
256. ; $\sqrt { \kappa }$ ; confidence 0.995
257. ; $A ( f )$ ; confidence 0.995
258. ; $\{ b ( t ) : n h \leq t < ( n + 1 ) h \}$ ; confidence 0.995
259. ; $m : f [ A ] \rightarrow B$ ; confidence 0.995
260. ; $H _ { q } ( M , G ) = 0$ ; confidence 0.995
261. ; $\operatorname{Map}( Z , Y )$ ; confidence 0.995
262. ; $\Sigma = A A ^ { \prime }$ ; confidence 0.995
263. ; $D _ { t } : \Gamma ^ { + } \rightarrow ( L ^ { 2 } )$ ; confidence 0.995
264. ; $A = \frac { 1 } { 2 } \theta ( 2 \pi - \theta ) - \frac { \pi ^ { 2 } } { \operatorname { cosh } ^ { 2 } ( \pi b / l ) } = 0,$ ; confidence 0.995
265. ; $p + q = n$ ; confidence 0.995
266. ; $\lambda _ { 0 } = 1$ ; confidence 0.995
267. ; $( \pi )$ ; confidence 0.995
268. ; $\{ \Delta ^ { \alpha } : \alpha \in \mathbf{C} \}$ ; confidence 0.995
269. ; $d ( x , A _ { \lambda } ) \rightarrow d ( x , A )$ ; confidence 0.995
270. ; $\kappa = 2 J + 1$ ; confidence 0.995
271. ; $( \overline { \partial } + \overline { A } ) \psi = 0$ ; confidence 0.995
272. ; $m \in M _ { F }$ ; confidence 0.995
273. ; $\Omega _ { 2 } \subset \Omega$ ; confidence 0.995
274. ; $A \in \mathcal{F}$ ; confidence 0.995
275. ; $\frac { \partial u } { \partial n } = 0 \text{ on the boundary of } \Omega.$ ; confidence 0.995
276. ; $O ( \varepsilon )$ ; confidence 0.995
277. ; $\phi ( \lambda , \mu ; \alpha , \beta ; x , y ) =$ ; confidence 0.995
278. ; $\chi ( \Sigma )$ ; confidence 0.995
279. ; $( n \times 1 )$ ; confidence 0.995
280. ; $E \subset \Omega$ ; confidence 0.995
281. ; $\int _ { - \infty } ^ { \infty } | f ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { + } ) ^ { - 2 },$ ; confidence 0.995
282. ; $M = \lambda ( K ) : = [ \mu ^ { - 1 } ( \pi K / 2 ) ] ^ { - 2 } - 1$ ; confidence 0.995
283. ; $G = V _ { 4 } = \{ ( 1 ) , ( 12 ) ( 34 ) , ( 13 ) ( 24 ) , ( 14 ) ( 23 ) \}$ ; confidence 0.995
284. ; $t ( M ; 1,1 )$ ; confidence 0.995
285. ; $1 \leq p \leq P - 1$ ; confidence 0.995
286. ; $p ^ { m - 1 }$ ; confidence 0.995
287. ; $f \in C ( B ( 0 , r ) )$ ; confidence 0.995
288. ; $p > N$ ; confidence 0.995
289. ; $r , s \geq 0$ ; confidence 0.995
290. ; $p = \alpha . x$ ; confidence 0.995
291. ; $\Delta ^ { i t }$ ; confidence 0.995
292. ; $( p q ) ( Z , \overline{Z} ) = 0$ ; confidence 0.995
293. ; $A A ^ { \prime }$ ; confidence 0.995
294. ; $Y _ { 1 } = X _ { 1 } + P Y _ { 2 } , \quad Y _ { 2 } = X _ { 2 } + C Y _ { 1 },$ ; confidence 0.995
295. ; $| t | = \sqrt { \sum _ { k = 1 } ^ { N } t _ { k } ^ { 2 } }$ ; confidence 0.995
296. ; $x ( n + 1 ) = A x ( n ) + b u ( n ),$ ; confidence 0.995
297. ; $\Sigma ( P , R ^ { \prime } )$ ; confidence 0.995
298. ; $\mathfrak { M } _ { f } \cap A ^ { + }$ ; confidence 0.995
299. ; $\theta \in \mathcal{E}$ ; confidence 0.995
300. ; $\mathcal{A} ( \eta )$ ; confidence 0.995
Maximilian Janisch/latexlist/latex/NoNroff/12. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/12&oldid=45169