Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/9"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 9 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010144.png ; $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf } y \in S _ { 2 } | x - y |$ ; confidence 0.460
+
1. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027170/c02717096.png ; $\phi ( n )$ ; confidence 0.997
  
2. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001045.png ; $\| F f \| _ { L } 2 _ { \langle R ^ { 3 } \rangle } = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$ ; confidence 0.369
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440106.png ; $B = b ^ { G }$ ; confidence 0.997
  
3. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003037.png ; $e _ { j } ^ { * } e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }$ ; confidence 0.513
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294070.png ; $\theta = 0$ ; confidence 0.997
  
4. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007090.png ; $- 1 \leq \alpha _ { i } < \beta _ { i } \leq 1$ ; confidence 0.997
  
5. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060172.png ; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u$ ; confidence 0.971
+
5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017042.png ; $G / C _ { G } ( \omega ( G ) )$ ; confidence 0.997
  
6. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060126.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = ( f ( \lambda _ { 1 } , \lambda _ { 2 } ) ) ^ { r }$ ; confidence 0.582
+
6. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120101.png ; $B ( A )$ ; confidence 0.997
  
7. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060171.png ; $i \frac { \partial f } { \partial t _ { 1 } } + A _ { 1 } f = \Phi ^ { * } \sigma _ { 1 } u$ ; confidence 0.968
+
7. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010044.png ; $\varphi ( \xi _ { 1 } ) \varphi ( \xi _ { 2 } ) \leq \varphi ( \xi _ { 1 } + \xi _ { 2 } )$ ; confidence 0.997
  
8. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009013.png ; $P ( x , \xi ) = \frac { r ^ { 2 } - | x - x _ { 0 } | ^ { 2 } } { \omega _ { n } r | x - \xi | ^ { n } }$ ; confidence 0.464
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104014.png ; $p = 3$ ; confidence 0.997
  
9. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745208.png ; $\alpha R \dot { b } \subseteq P \Rightarrow \alpha \in P \text { or } b \in P$ ; confidence 0.334
+
9. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009010.png ; $\alpha ( x ) \beta ( x ) = - 1$ ; confidence 0.997
  
10. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004028.png ; $K ( f ) = \operatorname { max } \{ K _ { \circlearrowleft } ( f ) , K _ { l } ( f ) \}$ ; confidence 0.296
+
10. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530308.png ; $f ( t , X _ { t } )$ ; confidence 0.997
  
11. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130030/r1300306.png ; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n } - 1 + \ldots + \frac { 1 } { i k _ { 1 } } }$ ; confidence 0.177
+
11. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014058.png ; $t = t$ ; confidence 0.997
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005075.png ; $V = \left( \begin{array} { l l } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.577
+
12. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012038.png ; $M ( x , z )$ ; confidence 0.997
  
13. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040049.png ; $H ^ { j } ( X \times _ { G } E G , Z / p ) \rightarrow H ^ { j } ( X ^ { G } \times B G , Z / p )$ ; confidence 0.849
+
13. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230142.png ; $A : T M \rightarrow T M$ ; confidence 0.997
  
14. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230141.png ; $( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 )$ ; confidence 0.259
+
14. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140100.png ; $( \varphi \rightarrow ( \neg \varphi \rightarrow \psi ) ) = 1$ ; confidence 0.997
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027019.png ; $\{ x _ { 1 } , x , \dots , x _ { 8 } , x \} \subseteq \{ y _ { 1 } , m , \dots , y _ { m } , m \}$ ; confidence 0.074
+
15. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006033.png ; $[ 0,1 ) ^ { k }$ ; confidence 0.997
  
16. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032081.png ; $T = \left( \begin{array} { c c } { P } & { Q } \\ { R } & { S } \end{array} \right)$ ; confidence 0.533
+
16. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300507.png ; $\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } + \frac { \partial ^ { 3 } u } { \partial x ^ { 3 } } = 0.$ ; confidence 0.997
  
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340109.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } w ( s , t ) = x _ { \pm } ( t )$ ; confidence 0.908
+
17. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l1200805.png ; $L = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } - 2 i ( x + i y ) \frac { \partial } { \partial t }.$ ; confidence 0.997
  
18. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
+
18. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200203.png ; $L = K - P$ ; confidence 0.997
  
19. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013014.png ; $\frac { \partial L _ { i } } { \partial y _ { N } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ]$ ; confidence 0.429
+
19. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110106.png ; $\mathcal{H} ( u , v )$ ; confidence 0.997
  
20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013013.png ; $\frac { \partial L _ { i } } { \partial x _ { N } } = [ ( L _ { 1 } ^ { N } ) _ { + } , L _ { i } ]$ ; confidence 0.220
+
20. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006034.png ; $A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * }$ ; confidence 0.997
  
21. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007055.png ; $= ( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i ( p D + q X ) } \hat { \sigma } ( p , q ) d p d q$ ; confidence 0.420
+
21. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030164.png ; $\phi \in H ^ { * } ( \Gamma ) = H ^ { * } ( B \Gamma )$ ; confidence 0.997
  
22. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090160.png ; $\langle g x , y \rangle = \langle x , g ^ { T } y \rangle , \quad \forall g \in G$ ; confidence 0.652
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025012.png ; $H _ { 1 } ( U ^ { \prime } ) \subseteq U ^ { \prime \prime }$ ; confidence 0.997
  
23. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080190.png ; $\Theta = ( u , \delta v ) - ( 1 / \kappa ) \sum H _ { \alpha } \delta t _ { \alpha }$ ; confidence 0.733
+
23. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007071.png ; $[ N , N + M ]$ ; confidence 0.997
  
24. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008062.png ; $Z ( t , \phi ) = \int _ { \phi _ { 0 } } D \phi \operatorname { exp } [ S ( t , \phi ) ]$ ; confidence 0.986
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028025.png ; $G ( 8 )$ ; confidence 0.997
  
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019034.png ; $\operatorname { Tr } A B = \int _ { R ^ { 3 N } \times R ^ { 3 N } } A _ { w } B _ { w } d x d p$ ; confidence 0.174
+
25. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004088.png ; $\rho _ { L } = 1.0$ ; confidence 0.997
  
26. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { \dagger } [ G _ { \text { inn } } ]$ ; confidence 0.185
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106308.png ; $Y = 0$ ; confidence 0.997
  
27. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011096.png ; $- \frac { 1 } { k + d n _ { k } } \cdot [ ( i + d ) \mu ( i , m ) - ( i + d + 1 ) \mu ( i + 1 , m ) ] = 0$ ; confidence 0.756
+
27. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024034.png ; $( - \infty , t ]$ ; confidence 0.997
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040638.png ; $\langle N e _ { S _ { P } } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } \rangle$ ; confidence 0.335
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036031.png ; $w ( i , j , k , l )$ ; confidence 0.997
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007031.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad 0 \leq s \leq t \leq T$ ; confidence 0.997
+
29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019042.png ; $\Omega f = F$ ; confidence 0.997
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940
+
30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030046.png ; $( X ( t ) , t \in [ 0 , T ] )$ ; confidence 0.997
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710
+
31. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064060.png ; $L ^ { 2 } [ 0 , \tau ]$ ; confidence 0.997
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015022.png ; $ad : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182
+
32. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007019.png ; $B ( m , D , n ) < m D + B ( m D + m D ^ { 2 } , D , n - 1 ),$ ; confidence 0.997
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025053.png ; $\{ ( 1 , t , t ^ { 2 } , \dots , t ^ { n } ) : t \in GF ( q ) \} \cup \{ ( 0 , \dots , 0,1 ) \}$ ; confidence 0.378
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005016.png ; $\frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \operatorname { cosh } ( \pi \tau ) | F ( \tau ) | ^ { 2 } d \tau = \int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } d x,$ ; confidence 0.997
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302803.png ; $a _ { n } + 1 = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n } + 1 = \sqrt { a _ { n } b _ { n } }$ ; confidence 0.299
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030023.png ; $D ( - \Delta ) = H ^ { 2 } ( \mathbf{R} ^ { N } )$ ; confidence 0.997
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018083.png ; $t = 1$ ; confidence 0.997
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002047.png ; $\| \beta _ { n , F } - \beta _ { n } \| = o ( \frac { 1 } { n ^ { 1 / 2 - \varepsilon } } )$ ; confidence 0.248
+
36. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002024.png ; $\rho \rightarrow \infty$ ; confidence 0.997
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b1301104.png ; $f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence 0.692
+
37. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047980/h04798014.png ; $f : X \times Y \rightarrow Z$ ; confidence 0.997
  
38. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020077.png ; $[ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }$ ; confidence 0.938
+
38. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013037.png ; $H ( r , \theta ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , \theta )$ ; confidence 0.997
  
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010174.png ; $f \mapsto \sum _ { k = 1 } ^ { n } a _ { k } \frac { \partial f } { \partial z _ { k } }$ ; confidence 0.541
+
39. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009069.png ; $P ( T ) \in \mathcal{O} [ T ]$ ; confidence 0.997
  
40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301009.png ; $( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \cap F _ { \alpha } ) d \alpha$ ; confidence 0.862
+
40. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011032.png ; $g ( y ) = e ^ { 2 \pi i y }$ ; confidence 0.997
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015039.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 } \subset C ^ { \infty } ( \Omega )$ ; confidence 0.987
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200808.png ; $c ( x ) > 0$ ; confidence 0.997
  
42. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016051.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { t ( n ) } { s ( n ) } = 0$ ; confidence 0.810
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050150.png ; $= \prod _ { p \in P } ( 1 - | p | ^ { - z } ) ^ { - 1 } =$ ; confidence 0.997
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021081.png ; $L [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ^ { \prime } ] \Rightarrow L ^ { \prime }$ ; confidence 0.963
+
43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045041.png ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) > 0$ ; confidence 0.997
  
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021088.png ; $L ( \Lambda _ { n } | P _ { n } ) \Rightarrow N ( - \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.991
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021170/c02117036.png ; $\Omega ( A )$ ; confidence 0.997
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031040.png ; $e _ { N } ( H _ { i j } ^ { k } ) \leq c _ { k , d } , \delta , n ^ { - k + \delta } , \forall n$ ; confidence 0.112
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a1302203.png ; $Z ( R )$ ; confidence 0.997
  
46. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002045.png ; $= \operatorname { min } _ { x \in X } c ^ { T } x + u _ { 1 } ^ { T } ( A _ { 1 } x - b _ { 1 } ) =$ ; confidence 0.685
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000105.png ; $A ( E )$ ; confidence 0.997
  
47. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012049.png ; $\alpha ^ { \prime } = ( \alpha ^ { \prime } 1 , \ldots , \alpha ^ { \prime m } )$ ; confidence 0.334
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009024.png ; $u _ { t } - \Delta u _ { t } + \operatorname { div } \varphi ( u ) = 0,$ ; confidence 0.997
  
48. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010015.png ; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640
+
48. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007077.png ; $\phi \in H ^ { * }$ ; confidence 0.997
  
49. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010017.png ; $c ^ { em } = f ^ { em } \times x + ( P \times E ^ { \prime } + M ^ { \prime } \times B )$ ; confidence 0.835
+
49. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005017.png ; $r = m / 2 - 1$ ; confidence 0.997
  
50. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010036.png ; $t ^ { em \cdot f } = E \otimes E + B \otimes B - \frac { 1 } { 2 } ( E ^ { 2 } + B ^ { 2 } ) 1$ ; confidence 0.422
+
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202005.png ; $\operatorname { det } ( \lambda I - A )$ ; confidence 0.997
  
51. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e1201808.png ; $\eta ( s ) = \sum _ { a _ { n } \neq 0 } \frac { a _ { n } } { | a _ { n } | } | a _ { n } | ^ { - s }$ ; confidence 0.420
+
51. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015076.png ; $A \in \Phi _ { + } ( X , Y ) \backslash \Phi ( X , Y )$ ; confidence 0.997
  
52. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w \prime } ) } , \quad z \in C$ ; confidence 0.699
+
52. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003068.png ; $\varepsilon \rightarrow 0 \}$ ; confidence 0.997
  
53. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010017.png ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } ) \in A _ { p } ( G )$ ; confidence 0.937
+
53. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130180/b13018019.png ; $0 < \epsilon < 1$ ; confidence 0.997
  
54. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200103.png ; $\hat { f } ( \omega ) = \int _ { - \infty } ^ { \infty } e ^ { - i \omega t } f ( t ) d t$ ; confidence 0.801
+
54. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032089.png ; $t ^ { * } : N ^ { * } \rightarrow M ^ { * }$ ; confidence 0.997
  
55. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040202.png ; $\operatorname { dist } ( T _ { x } , T _ { y } ) \leq C ( r | x - y | ) ^ { 1 - \epsilon }$ ; confidence 0.761
+
55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150192.png ; $A \in \Phi ( D ( A ) , Y )$ ; confidence 0.997
  
56. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602020.png ; $\| G \| _ { \infty } = \operatorname { sup } _ { | x \| _ { 2 } \leq 1 } \| y \| _ { 2 }$ ; confidence 0.122
+
56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005042.png ; $K [ f ] \leq K ( M )$ ; confidence 0.997
  
57. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002045.png ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915
+
57. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050720/i0507208.png ; $f ^ { * } ( x )$ ; confidence 0.997
  
58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003076.png ; $\pi * : H _ { c } ^ { * } ( T _ { \text { yert } } ^ { * } Y ) \rightarrow H ^ { * } - 2 n ( B )$ ; confidence 0.299
+
58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070122.png ; $h ( t , x ) \in \mathcal{H}$ ; confidence 0.997
  
59. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981
+
59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023013.png ; $\pi ( x , y ) = x$ ; confidence 0.997
  
60. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005088.png ; $\{ r _ { - } ( k ) , i k _ { j } , ( m _ { j } ^ { - } ) ^ { 2 } : 1 \leq j \leq J , \forall k > 0 \}$ ; confidence 0.965
+
60. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007063.png ; $\operatorname { ln } ( 1 - \lambda ) = \frac { 1 } { \pi } \int _ { 0 } ^ { 1 } \frac { \theta ( s ^ { \prime } ) } { s ^ { \prime } } d s ^ { \prime }.$ ; confidence 0.997
  
61. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007065.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ ; confidence 0.963
+
61. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008034.png ; $\int h ( s ) d s = 1$ ; confidence 0.997
  
62. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840309.png ; $\Theta ( z ) = U _ { 22 } + z U _ { 21 } ( I - z U _ { 11 } ) ^ { - 1 } U _ { 12 } \quad ( z \in D )$ ; confidence 0.928
+
62. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v1300703.png ; $\nabla P = - 12 \mu \frac { \overset{\rightharpoonup} { V } } { b ^ { 2 } }.$ ; confidence 0.997
  
63. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006023.png ; $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.935
+
63. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300305.png ; $u ( x , t ) = v ( x ) w ( t )$ ; confidence 0.997
  
64. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007046.png ; $\| \mathfrak { u } \| _ { 2 } = [ \int _ { - L / 2 } ^ { L / 2 } u ^ { 2 } ( x , t ) d x ] ^ { 1 / 2 }$ ; confidence 0.597
+
64. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004052.png ; $m = 1 - \operatorname { com } ( L )$ ; confidence 0.997
  
65. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010066.png ; $\operatorname { app } a _ { e } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220226.png ; $\mathcal{M} _ { k }$ ; confidence 0.997
  
66. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011015.png ; $\frac { D f } { D t } = ( \frac { \partial f ( x ^ { 0 } , t ) } { \partial t } ) | _ { x 0 }$ ; confidence 0.729
+
66. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002045.png ; $A ( ( X ) )$ ; confidence 0.997
  
67. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140157.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z ; \frac { \partial f ( z ) } { \partial z _ { j } }$ ; confidence 0.739
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062097.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.997
  
68. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140160.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z , \frac { \partial f ( z ) } { \partial z _ { j } }$ ; confidence 0.469
+
68. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900131.png ; $P _ { 1 } \leq P$ ; confidence 0.997
  
69. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025026.png ; $M ( \Omega ) \subset D ^ { \prime } ( \Omega ) \times D ^ { \prime } ( \Omega )$ ; confidence 0.938
+
69. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016046.png ; $\pi_{\text{l}} ( S )$ ; Not sure about the index.
  
70. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025020.png ; $H ^ { s } ( \Omega ) \times H ^ { - s } ( \Omega ) \rightarrow H ^ { - s } ( \Omega )$ ; confidence 0.986
+
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051037.png ; $\nabla ^ { 2 } f$ ; confidence 0.997
  
71. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260127.png ; $0 \rightarrow A \rightarrow X \stackrel { \pi } { \pi } , B \rightarrow 0$ ; confidence 0.263
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010066.png ; $- \Delta$ ; confidence 0.997
  
72. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002018.png ; $\theta \mapsto k ^ { \prime } \mu ( \theta ) , \Theta ( \mu ) \rightarrow E$ ; confidence 0.866
+
72. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320124.png ; $\varphi : \mathcal{U} \rightarrow \mathcal{V}$ ; confidence 0.997
  
73. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520361.png ; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.300
+
73. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007056.png ; $u = A ^ { 1 / 2 } v$ ; confidence 0.997
  
74. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520363.png ; $\dot { y } _ { i } = \psi _ { i } ( x _ { 1 } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.377
+
74. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110143.png ; $\sum _ { k = - \infty } ^ { \infty } \delta ( x - k )$ ; confidence 0.997
  
75. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010149.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.985
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260104.png ; $B ( 1 )$ ; confidence 0.997
  
76. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005033.png ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946
+
76. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004033.png ; $11_{255}$ ; confidence 0.997
  
77. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006016.png ; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \tilde { \gamma } \Phi$ ; confidence 0.444
+
77. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019019.png ; $1 / 2 < \nu < 1$ ; confidence 0.997
  
78. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006015.png ; $\sigma _ { 1 } \Phi A _ { 2 } ^ { * } - \sigma _ { 2 } \Phi A _ { 1 } ^ { * } = \gamma \Phi$ ; confidence 0.732
+
78. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001050.png ; $\Omega ( \operatorname { log } q )$ ; confidence 0.997
  
79. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006074.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma }$ ; confidence 0.438
+
79. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011061.png ; $F ^ { 2 } \subset M$ ; confidence 0.997
  
80. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007063.png ; $L _ { E } ( z ) = \operatorname { sup } \{ v ( z ) : v \in L , v \leq 0 \text { on } E \}$ ; confidence 0.747
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025066.png ; $n = q - 2$ ; confidence 0.997
  
81. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007064.png ; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970
+
81. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004018.png ; $\{ V _ { \xi } : \xi < \lambda \}$ ; confidence 0.997
  
82. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009019.png ; $f ( x ) = \int _ { \partial \xi ( x _ { 0 } , r ) } P ( x , \xi ) f ( \xi ) d \sigma ( \xi )$ ; confidence 0.344
+
82. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130390/s1303907.png ; $\eta ( n ) \leq n$ ; confidence 0.997
  
83. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015064.png ; $\nu _ { 1 } * \chi _ { X _ { 1 } } + \ldots + \nu _ { 1 } ^ { * } \chi _ { K _ { 1 } } = \delta$ ; confidence 0.432
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090153.png ; $\Lambda ^ { + } ( n )$ ; confidence 0.997
  
84. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014035.png ; $| f ^ { C \rho } ( x ) - f ( x ) | = O ( \rho ) \text { as } \rho \rightarrow 0 , x \in U$ ; confidence 0.535
+
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200183.png ; $[ m + 1 , m + K ( 3 + \pi / \kappa ) ]$ ; confidence 0.997
  
85. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008018.png ; $FS = \frac { 1 } { 2 ( 1 - \rho ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) }$ ; confidence 0.842
+
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032060.png ; $F ( r , F ( s , t ) ) = F ( F ( r , s ) , t )$ ; confidence 0.997
  
86. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007069.png ; $= \sum _ { j , m \atop j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }$ ; confidence 0.200
+
86. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120039.png ; $\delta : A \rightarrow A$ ; confidence 0.997
  
87. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300902.png ; $f ( x _ { 1 } , \dots , x _ { n } ) = g ( a _ { 1 } x _ { 1 } + \ldots + a _ { n } x _ { n } ) = g ( a x )$ ; confidence 0.137
+
87. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570006.png ; $M , N \in \Lambda$ ; confidence 0.997
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005031.png ; $( \frac { 1 - z _ { j } z _ { k } } { 1 - w _ { j } \overline { w } _ { k } } ) _ { j , k = 1 } ^ { n }$ ; confidence 0.527
+
88. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070121.png ; $C ( z , w )$ ; confidence 0.997
  
89. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230102.png ; $\Lambda = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { p } )$ ; confidence 0.593
+
89. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010032.png ; $m = 6$ ; confidence 0.997
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034088.png ; $S _ { H } ( x ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t$ ; confidence 0.775
+
90. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005011.png ; $\xi \in \Lambda$ ; confidence 0.997
  
91. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005064.png ; $( X \otimes \mathfrak { e } _ { 0 } ) \oplus ( X \otimes \mathfrak { e } _ { 1 } )$ ; confidence 0.075
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007069.png ; $t \mapsto A ( t ) ^ { - 1 }$ ; confidence 0.997
  
92. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005041.png ; $\overline { \Sigma } \square ^ { i } ( f ) = \cup _ { h \geq i } \Sigma ^ { i } ( f )$ ; confidence 0.746
+
92. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l1100307.png ; $\frac { d P } { d \mu } \in L _ { 1 } ( \mu )$ ; confidence 0.997
  
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050131.png ; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026059.png ; $f = g$ ; confidence 0.997
  
94. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014050.png ; $\mathscr { Q } ( \underline { \operatorname { dim } } X ) = \chi _ { Q } ( [ X ] )$ ; confidence 0.149
+
94. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002074.png ; $\nu + 1 < q < N$ ; confidence 0.997
  
95. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014072.png ; $q ( v ) = \operatorname { dim } G _ { Q } ( v ) - \operatorname { dim } A _ { Q } ( v )$ ; confidence 0.221
+
95. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002064.png ; $F = F ( \mu )$ ; confidence 0.997
  
96. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014091.png ; $\frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \tilde { \eta } + c )$ ; confidence 0.812
+
96. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h1201508.png ; $\operatorname { log } | A ^ { - 1 } |$ ; confidence 0.997
  
97. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020212.png ; $\{ \operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta ) \}$ ; confidence 0.978
+
97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015069.png ; $\alpha \in \mathbf{C} \rightarrow ( \Delta ^ { \alpha } \xi | \eta )$ ; confidence 0.997
  
98. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011037.png ; $U = \frac { \Gamma } { 2 l } \operatorname { coth } \frac { \pi \dot { b } } { l }$ ; confidence 0.950
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065033.png ; $R ( t , z ) = ( t + z ) / ( t - z )$ ; confidence 0.997
  
99. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011052.png ; $\lambda = \frac { \Gamma } { 2 \pi l ^ { 2 } } ( B ^ { 2 } - \sqrt { A ^ { 2 } - C ^ { 2 } } )$ ; confidence 0.869
+
99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001021.png ; $\sigma( X ) = 0$ ; confidence 0.997
  
100. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011038.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi \dot { b } } { l }$ ; confidence 0.735
+
100. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186097.png ; $F \rightarrow G$ ; confidence 0.997
  
101. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007054.png ; $( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } \rho ( p , q , 0 ) \hat { \sigma } ( p , q ) d p d q =$ ; confidence 0.871
+
101. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r1300704.png ; $\| f \| = ( f , f ) ^ { 1 / 2 }$ ; confidence 0.997
  
102. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017020.png ; $E \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631
+
102. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070145.png ; $= \int _ { T } d m ( t ) F ( t ) G ( t ),$ ; confidence 0.997
  
103. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003031.png ; $K ( \Omega ) = \int _ { \lambda \cap \Omega \neq \phi } d \omega ( \lambda )$ ; confidence 0.514
+
103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011053.png ; $\mathbf{E} = - \nabla \phi$ ; confidence 0.997
  
104. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001077.png ; $z ( z - \operatorname { cosh } w ) / ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.998
+
104. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010066.png ; $y \cup \{ y \}$ ; confidence 0.997
  
105. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001092.png ; $c = \operatorname { ad } e _ { - 1 } ^ { p ^ { m } - 1 } ( e _ { p ^ { m } - 2 } ^ { ( p + 1 ) / 2 } )$ ; confidence 0.237
+
105. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012054.png ; $r > 4$ ; confidence 0.997
  
106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011065.png ; $\frac { \mu _ { \aleph } ( x ) } { \mu _ { N } } \approx \frac { 1 } { ( a + b x ) ^ { 2 } }$ ; confidence 0.437
+
106. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000194.png ; $\rho : V \rightarrow D _ { A }$ ; confidence 0.997
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040154.png ; $\varphi \equiv \psi ( \operatorname { mod } \tilde { \Omega } _ { S 5 } T )$ ; confidence 0.768
+
107. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160119.png ; $A \in \mathcal{C}$ ; confidence 0.997
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040365.png ; $\tilde { \Omega } _ { D } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { D } A \}$ ; confidence 0.356
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240344.png ; $1 \times p$ ; confidence 0.997
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \text { as } n \rightarrow \infty$ ; confidence 0.559
+
109. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007016.png ; $h ( n ) \overline { h ( n ) } \equiv 1 ( \operatorname { mod } q )$ ; confidence 0.997
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201304.png ; $E _ { \theta } [ H ( \theta , X ) ] = 0 , \quad \text { if } \theta = \theta ^ { * }$ ; confidence 0.398
+
110. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120143.png ; $\pi : \overline { B } ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.997
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023089.png ; $| y | \rightarrow \infty ^ { k _ { q } | d _ { q } ( \Omega ) } \sqrt { | q | } \leq 1$ ; confidence 0.127
+
111. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013023.png ; $2 ^ { i + 1 } ( n + 1 ) - 3$ ; confidence 0.997
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024048.png ; $( Z , g ) = ( \operatorname { div } ( s ) , - \operatorname { log } ( h ( s , s ) ) )$ ; confidence 0.983
+
112. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004026.png ; $K_{\text{BM}} (\zeta , z )$ ; confidence 0.997
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001083.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.908
+
113. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006056.png ; $[ \Gamma , \Gamma ]$ ; confidence 0.997
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009043.png ; $\xi = e ^ { i \alpha \operatorname { ln } \tau } f ( z , \tau ) | _ { \tau = 1 } = z$ ; confidence 0.607
+
114. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020109.png ; $X \in \mathcal{M} ^ { 1 }$ ; confidence 0.997
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220124.png ; $r _ { D } : H _ { M } ^ { i } ( M _ { Z } , Q ( j ) ) \rightarrow H _ { D } ^ { i } ( M / R , R ( j ) )$ ; confidence 0.085
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025066.png ; $8 \omega ^ { 3 } \leq \alpha \, \beta \, \gamma ,$ ; confidence 0.997
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163603.png ; $\left| \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right|$ ; confidence 0.683
+
116. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340164.png ; $\varphi _ { 1 } , \varphi _ { 2 } : ( - \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.997
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024024.png ; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { R } } )$ ; confidence 0.448
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030042.png ; $3 m - 2$ ; confidence 0.997
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027095.png ; $\eta _ { i + 1 } \equiv \{ Z ( u ) : T _ { i } \leq u < T _ { i + 1 } , T _ { i + 1 } - T _ { i } \}$ ; confidence 0.974
+
118. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010046.png ; $\tau ( n )$ ; confidence 0.997
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043088.png ; $E _ { 2 } ^ { 2 } E _ { 1 } + E _ { 1 } E _ { 2 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 2 } E _ { 1 } E _ { 2 } = 0$ ; confidence 0.995
+
119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200224.png ; $\frac { 1 } { 4 } \left( \frac { K - 1 } { 8 e ( m + K ) } \right) ^ { K }.$ ; confidence 0.997
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043087.png ; $E _ { 1 } ^ { 2 } E _ { 2 } + E _ { 2 } E _ { 1 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 1 } E _ { 2 } E _ { 1 } = 0$ ; confidence 0.994
+
120. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070158.png ; $r ( X , Y )$ ; confidence 0.997
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982
+
121. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004033.png ; $\Delta ( G )$ ; confidence 0.997
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260105.png ; $d [ f , S ^ { n } , S ^ { n } ] = \operatorname { deg } _ { B } [ \tilde { f } , B ( 1 ) , 0 ]$ ; confidence 0.536
+
122. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001056.png ; $n ^ { 2 } \operatorname { log } q$ ; confidence 0.997
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051029.png ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$ ; confidence 0.985
+
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021035.png ; $q \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.997
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002044.png ; $\overline { ( I ^ { \alpha } f ) } ( \xi ) = | \xi | ^ { - \alpha } \hat { f } ( \xi )$ ; confidence 0.396
+
124. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001049.png ; $d , n \geq 1$ ; confidence 0.997
  
125. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211021.png ; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset R ^ { m }$ ; confidence 0.456
+
125. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007094.png ; $A _ { \delta } ( \alpha ^ { \prime } , \alpha )$ ; confidence 0.997
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014060.png ; $\left( \begin{array} { l l } { 3 } & { 2 } \\ { 2 } & { 3 } \end{array} \right)$ ; confidence 0.998
+
126. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023070.png ; $p = 1 = q$ ; confidence 0.997
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030057.png ; $0 \rightarrow K \rightarrow T _ { n } \rightarrow O _ { n } \rightarrow 0$ ; confidence 0.692
+
127. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013047.png ; $\Delta H + 2 H ( H ^ { 2 } - K + 1 ) = 0$ ; confidence 0.997
  
128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in R$ ; confidence 0.712
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004010.png ; $x ( t ) \in D ( A )$ ; confidence 0.997
  
129. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301101.png ; $H ^ { 2 } = ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }$ ; confidence 0.664
+
129. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016021.png ; $A ( q \times p )$ ; confidence 0.997
  
130. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020027.png ; $\frac { 1 } { T } \text { meas } \{ \tau \in [ 0 , T ] : p _ { N } ( s + i \tau ) \in A \}$ ; confidence 0.599
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747072.png ; $B ( n )$ ; confidence 0.997
  
131. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200903.png ; $\nabla \times E = - \frac { 1 } { c ^ { 2 } } \frac { \partial H } { \partial t }$ ; confidence 0.481
+
131. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005038.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + \lambda \rho ( x , t ) \psi = 0 , - \infty < x < \infty ,$ ; confidence 0.997
  
132. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300309.png ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917
+
132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021026.png ; $\lambda _ { 0 } = - 1$ ; confidence 0.997
  
133. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003079.png ; $A ( \Gamma \backslash G ( R ) ) \subset C _ { 0 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.818
+
133. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130132.png ; $N _ { 0 } = \lambda / ( 2 \alpha )$ ; confidence 0.997
  
134. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e0350007.png ; $H _ { \epsilon } ( C , X ) = \operatorname { log } _ { 2 } N _ { \epsilon } ( C , X )$ ; confidence 0.979
+
134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015047.png ; $\varepsilon ^ { i } = 0$ ; confidence 0.997
  
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021041.png ; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in C$ ; confidence 0.629
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202206.png ; $( X , * )$ ; confidence 0.997
  
136. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005059.png ; $u ( t ) \in D ( A ( t ) )$ ; confidence 0.997
  
137. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010018.png ; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8$ ; confidence 0.309
+
137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014099.png ; $[ ( \varphi \rightarrow \psi ) \rightarrow ( ( \psi \rightarrow \chi ) \rightarrow ( \varphi \rightarrow \chi ) ) ] = 1$ ; confidence 0.997
  
138. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160121.png ; $\psi _ { \mathfrak { A } } ^ { \mathfrak { d } } \overline { \mathfrak { a } }$ ; confidence 0.160
+
138. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017020.png ; $G = \omega _ { \alpha } ( G )$ ; confidence 0.997
  
139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015056.png ; $r ( A ) = \operatorname { lim } _ { x \rightarrow \infty } \alpha ( A ^ { x } )$ ; confidence 0.600
+
139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001016.png ; $G : X ^ { \prime } \rightarrow X$ ; confidence 0.997
  
140. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004014.png ; $G _ { 0 } ^ { s } ( \Omega ) = G ^ { s } ( \Omega ) \cap C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.819
+
140. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001032.png ; $J ^ { 2 } X = - X + \alpha ( X ) Z$ ; confidence 0.997
  
141. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043380/g0433808.png ; $f ( x _ { 0 } + h ) = f ( x _ { 0 } ) + ( f _ { G } ^ { \prime } ( x _ { 0 } ) , h ) + \epsilon ( h )$ ; confidence 0.955
+
141. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005041.png ; $x y z \neq 0$ ; confidence 0.997
  
142. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050120.png ; $t \mapsto A ( t )$ ; confidence 0.997
  
143. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002078.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma ^ { \phi } , \dots , \alpha _ { q } )$ ; confidence 0.258
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009026.png ; $p ( f , \tau ) = 1 + \alpha _ { 1 } ( \tau ) f + \alpha _ { 2 } ( \tau ) f ^ { 2 } +\dots $ ; confidence 0.997
  
144. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627
+
144. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015049.png ; $> 13$ ; confidence 0.997
  
145. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002025.png ; $S _ { k } = E [ \left( \begin{array} { l } { X } \\ { k } \end{array} \right) ]$ ; confidence 0.489
+
145. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005056.png ; $f \in R ( f )$ ; confidence 0.997
  
146. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300403.png ; $\frac { a 0 } { 2 } + \sum _ { k = 1 } ^ { \infty } a _ { k } \operatorname { cos } k x$ ; confidence 0.955
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066088.png ; $B ( H )$ ; confidence 0.997
  
147. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492
+
147. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009049.png ; $f : \partial \Omega \rightarrow \mathbf{R}$ ; confidence 0.997
  
148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080109.png ; $\chi ( \chi \propto ( T / T _ { c } - 1 ) ^ { - \gamma } \text { with } \gamma = 1 )$ ; confidence 0.927
+
148. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008037.png ; $d\mu ( q , p )$ ; confidence 0.997
  
149. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090221.png ; $x \in \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } )$ ; confidence 0.599
+
149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019038.png ; $\Omega f$ ; confidence 0.997
  
150. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002018.png ; $P ( X = 0 ) \leq \operatorname { exp } ( - \frac { \lambda ^ { 2 } } { \Delta } )$ ; confidence 0.724
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240489.png ; $s = k + 1$ ; confidence 0.997
  
151. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007049.png ; $\frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty$ ; confidence 0.611
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017035.png ; $V _ { T } = \operatorname { max } ( S _ { T } - K , 0 )$ ; confidence 0.997
  
152. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201108.png ; $L = \partial + u _ { - 1 } ( x ) \partial ^ { - 1 } + u _ { - 2 } ( x ) \partial ^ { - 2 } +$ ; confidence 0.979
+
152. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302405.png ; $\frac { 1 } { 2 } \{ f ( x _ { 0 } + t ) + f ( x _ { 0 } - t ) \} =$ ; confidence 0.997
  
153. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006029.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$ ; confidence 0.580
+
153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201509.png ; $\mathcal{A} ^ { 2 } \equiv \{ \xi \eta : \xi , \eta \in \mathcal{A} \}$ ; confidence 0.997
  
154. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006013.png ; $\left( \begin{array} { c } { \alpha _ { k } } \\ { k } \end{array} \right)$ ; confidence 0.619
+
154. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040131.png ; $( v , z ) = ( \pm i , \pm i \sqrt { 2 } )$ ; confidence 0.997
  
155. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702051.png ; $H ^ { i } ( X , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( X , F _ { n } )$ ; confidence 0.768
+
155. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260116.png ; $M ( A ) = B ( \mathcal{H} )$ ; confidence 0.997
  
156. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001080.png ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759
+
156. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011088.png ; $( i + c ) \mu ( i )$ ; confidence 0.997
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008018.png ; $M = \frac { \partial } { \partial x } + i x \frac { \partial } { \partial y }$ ; confidence 0.992
+
157. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190201.png ; $d ( x , y ) = \| x - y \|$ ; confidence 0.997
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015051.png ; $d \alpha ( x _ { 0 } , \ldots , x _ { n } ) = \sum _ { 0 \leq i < j \leq n } ( - 1 ) ^ { j } x$ ; confidence 0.599
+
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003039.png ; $[ \omega _ { 0 } , \mu ]$ ; confidence 0.997
  
159. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017040.png ; $\langle \alpha , b | \alpha b \alpha = b a b , \alpha ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a0136102.png ; $( x , f ( x ) )$ ; confidence 0.997
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017038.png ; $a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026054.png ; $L ^ { 2 } ( [ 0,1 ] ; ( L ^ { 2 } ) )$ ; confidence 0.997
  
161. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025063.png ; $\rho _ { \varepsilon } ( x ) = \varepsilon ^ { - n } \rho ( x / \varepsilon )$ ; confidence 0.725
+
161. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080136.png ; $H _ { 0 } = L ^ { 2 } ( D )$ ; confidence 0.997
  
162. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663075.png ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) \leq M \delta ^ { r - s } , \quad \delta > 0$ ; confidence 0.659
+
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031074.png ; $\delta > | ( 1 / n p ) - ( 1 / 2 n ) | - 1 / 2$ ; confidence 0.997
  
163. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520344.png ; $\phi ( x _ { 1 } , \dots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \dots , x _ { n } , z ) = 0 ) )$ ; confidence 0.400
+
163. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023018.png ; $( x , y , y ^ { \prime } )$ ; confidence 0.997
  
164. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752073.png ; $d _ { i } = e _ { 1 } ^ { n _ { i 1 } } \ldots e _ { s } ^ { n _ { i s } } , \quad i = 1 , \dots , r$ ; confidence 0.476
+
164. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005065.png ; $x > - \infty$ ; confidence 0.997
  
165. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$ ; confidence 0.998
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302407.png ; $( m \times 1 )$ ; confidence 0.997
  
166. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001029.png ; $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ ; confidence 0.817
+
166. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016019.png ; $O ( t ( n ) )$ ; confidence 0.997
  
167. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006067.png ; $H = \sqrt { k _ { 1 } } , k _ { 2 } = 0 A _ { 1 } ^ { k _ { 1 } } A _ { 2 } ^ { k _ { 2 } } \Phi ^ { * } E$ ; confidence 0.232
+
167. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020161.png ; $F : X \rightarrow K ( Y )$ ; confidence 0.997
  
168. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005020.png ; $\| f \| = \operatorname { inf } \{ \epsilon > 0 : I ( f / \epsilon ) \leq 1 \}$ ; confidence 0.929
+
168. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012064.png ; $d ^ { \prime } = d + t$ ; confidence 0.997
  
169. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006043.png ; $\tilde { \Phi } ( s ) = \operatorname { sup } \{ | s | t - \Phi ( t ) : t \geq 0 \}$ ; confidence 0.419
+
169. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030035.png ; $Z ( 0 ) = 0$ ; confidence 0.997
  
170. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006013.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Phi ( t ) / t = + \infty$ ; confidence 0.996
+
170. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120060/m1200602.png ; $\operatorname { div } \overset{\rightharpoonup} { B } = 0$ ; confidence 0.997
  
171. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070123.png ; $\operatorname { log } \operatorname { tanh } C ( z , w ) \leq W ( z , w ) \leq$ ; confidence 0.999
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037055.png ; $k \geq 1$ ; confidence 0.997
  
172. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003050.png ; $H ( \rho ) = \operatorname { Tr } \rho \operatorname { log } _ { 2 } ( \rho )$ ; confidence 0.991
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160104.png ; $f ( w )$ ; confidence 0.997
  
173. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
+
173. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302505.png ; $| y ^ { ( s ) } | < + \infty$ ; confidence 0.997
  
174. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034031.png ; $S _ { 4 } ( M ) = R L / ( b _ { 0 } L _ { 0 } + b _ { 1 } L _ { 1 } + b _ { 2 } L _ { 2 } + b _ { 3 } L _ { 3 } )$ ; confidence 0.858
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297033.png ; $1 \leq p \leq \infty$ ; confidence 0.997
  
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051072.png ; $V = \{ ( u _ { 1 } , \dots , u _ { m } ) : u _ { i } \in V _ { i } , i \in \{ 1 , \dots , m \} \}$ ; confidence 0.390
+
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007049.png ; $g \in \mathcal{M}$ ; confidence 0.997
  
176. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024022.png ; $( X _ { 1 } \vee \ldots \vee X _ { k } ) = C _ { l = 1 } ^ { \infty } ( X _ { i } , x _ { i 0 } )$ ; confidence 0.098
+
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c0259702.png ; $r \geq 1$ ; confidence 0.997
  
177. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067070.png ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in GL ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }$ ; confidence 0.941
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015740/b01574013.png ; $f \in L [ 0,2 \pi ]$ ; confidence 0.997
  
178. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066011.png ; $\phi _ { N } ^ { * } ( z ) = z ^ { \sqrt { \gamma } } \overline { \phi _ { N } ( 1 / z ) }$ ; confidence 0.124
+
178. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040100.png ; $( x , \xi ) \in \Sigma _ { p }$ ; confidence 0.997
  
179. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004039.png ; $T _ { n } ^ { * } ( x ) : = \sigma ^ { n } + c _ { 1 } ^ { n } x + \ldots + c _ { n } ^ { n } x ^ { n }$ ; confidence 0.412
+
179. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028025.png ; $\operatorname{CRS}( B , C )$ ; confidence 0.997
  
180. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009016.png ; $( \pi _ { X } , \rho _ { X } ) : T _ { X } \cap Y \rightarrow X \times 10 , \infty I$ ; confidence 0.656
+
180. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007015.png ; $\Gamma ( \omega , \alpha ) = \{ z \in \Delta : | z - \omega | < \alpha ( 1 - | z | ) \}.$ ; confidence 0.997
  
181. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301008.png ; $0 \rightarrow H \rightarrow T _ { 1 } \rightarrow T _ { 2 } \rightarrow 0$ ; confidence 0.990
+
181. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023095.png ; $\phi ^ { + } : X ^ { + } \rightarrow Y$ ; confidence 0.997
  
182. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140147.png ; $0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0$ ; confidence 0.747
+
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015020.png ; $P G ( d , q )$ ; confidence 0.997
  
183. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356014.png ; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820106.png ; $A \leq B$ ; confidence 0.997
  
184. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021084.png ; $t ( G ; x , y ) = \sum S \subseteq E ( x - 1 ) ^ { N ( G ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( S ) }$ ; confidence 0.080
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029035.png ; $Y = Y _ { 0 } \cup _ { \Sigma } Y _ { 1 }$ ; confidence 0.997
  
185. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007024.png ; $\phi _ { int } = \phi _ { 0 } + \frac { \gamma \dot { b } ^ { 2 } \kappa } { 12 \mu }$ ; confidence 0.346
+
185. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009020.png ; $\mu : A \rightarrow B$ ; confidence 0.997
  
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi } a ( ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi$ ; confidence 0.470
+
186. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008018.png ; $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$ ; confidence 0.997
  
187. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090101.png ; $\| I _ { n } ( g ) \| _ { L } 2 _ { ( \mu ) } = \sqrt { n ! } | g | _ { L } 2 _ { ( [ 0,1 ] } ^ { n } )$ ; confidence 0.058
+
187. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006066.png ; $p ( A _ { 1 } , A _ { 2 } ) = 0$ ; confidence 0.997
  
188. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188
+
188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002069.png ; $( A , 2 )$ ; confidence 0.997
  
189. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010135.png ; $R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 }$ ; confidence 0.936
+
189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023092.png ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.997
  
190. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001058.png ; $x ( n ) = ( \frac { 3 } { 4 } n ^ { 2 } - \frac { 11 } { 4 } n - 4 ) ( - 2 ) ^ { n } + 4 ( - 3 ) ^ { n }$ ; confidence 0.999
+
190. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200404.png ; $A : F \rightarrow G$ ; confidence 0.997
  
191. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003044.png ; $Z [ e ^ { 2 \pi i m t } f ( t + n ) ] ( t , w ) = e ^ { 2 \pi i m t } e ^ { 2 \pi i n w } ( Z f ) ( t , w )$ ; confidence 0.622
+
191. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013037.png ; $V = H ^ { 1 } ( W ; \mathbf{F} _ { 2 } )$ ; confidence 0.997
  
192. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008012.png ; $\langle f , g \rangle = \int \int _ { D } f ( x , y ) \overline { g ( x , y ) } d x d y$ ; confidence 0.620
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007031.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad 0 \leq s \leq t \leq T;$ ; confidence 0.997
  
193. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110122.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { d } { \rightarrow } U ( 1 - U ) ^ { x - 1 }$ ; confidence 0.374
+
193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190193.png ; $h _ { 3 } \subset W ^ { + } \cup \{ p \}$ ; confidence 0.997
  
194. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029016.png ; $( M , \omega )$ ; confidence 0.997
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040657.png ; $h ( F _ { S _ { P } } \mathfrak { M } ^ { * } L ) = F _ { S _ { P } } \mathfrak { N } ^ { * } L$ ; confidence 0.580
+
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070160.png ; $s ( 0,0 ) \neq 0$ ; confidence 0.997
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040276.png ; $\Delta ( x , y ) = \{ \delta _ { 0 } ( x , y ) , \ldots , \delta _ { m - 1 } ( x , y ) \}$ ; confidence 0.653
+
196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301004.png ; $\mathcal{A} _ { p } ( G )$ ; confidence 0.997
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050191.png ; $\partial ( A ) = \operatorname { log } _ { p } \operatorname { card } ( A )$ ; confidence 0.995
+
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006026.png ; $( 1 \pm z \bar{z} ) ^ { 2 } w _ { z \bar{z} } + \lambda w = 0$ ; confidence 0.997
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty$ ; confidence 0.269
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615017.png ; $n = 4$ ; confidence 0.997
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890
+
199. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006052.png ; $\eta : T _ { A } \rightarrow T _ { B }$ ; confidence 0.997
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007098.png ; $n ^ { 0 }$ ; confidence 0.997
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023027.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } = 1$ ; confidence 0.485
+
201. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691031.png ; $\mu ( x ) = \infty$ ; confidence 0.997
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023048.png ; $\langle \alpha , b \rangle = \alpha _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.095
+
202. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507031.png ; $( \sqrt { - 2 } , \sqrt { - 3 } )$ ; confidence 0.997
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029026.png ; $\operatorname { lim } _ { t \rightarrow \pm \infty } u ( s , t ) = x ^ { \pm }$ ; confidence 0.991
+
203. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620189.png ; $q ( x ) = g \operatorname { cos } \sqrt { x }$ ; confidence 0.997
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009012.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) p ( z , t )$ ; confidence 0.999
+
204. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020123.png ; $H ^ { 1 } ( Y ^ { 1 } ; \mathbf{Z} ) = 0$ ; confidence 0.997
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301202.png ; $\hat { f } ( m ) = ( 2 \pi ) ^ { - 1 } \int _ { - \infty } ^ { \pi } f ( u ) e ^ { - i m x } d u$ ; confidence 0.096
+
205. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007024.png ; $m \equiv 3,5,6,7$ ; confidence 0.997
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042027.png ; $\bigotimes n _ { W } = \Phi _ { V , 1 , W } \circ ( l _ { V } \otimes \text { id } )$ ; confidence 0.111
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150212.png ; $\| B \| _ { A } < \delta$ ; confidence 0.997
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049051.png ; $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m _ { 0 } ( E )$ ; confidence 0.893
+
207. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004094.png ; $P _ { K } ( v , z ) - 1$ ; confidence 0.997
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051094.png ; $d = d + ( \alpha - ( y _ { n } ^ { T } - 1 ) ^ { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200
+
208. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l1201901.png ; $A ^ { * } X + X A + C = 0,$ ; confidence 0.997
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } }$ ; confidence 0.569
+
209. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700075.png ; $M ^ { k + 1 } N \equiv M ( M ^ { k } N )$ ; confidence 0.997
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052077.png ; $B _ { N } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }$ ; confidence 0.670
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070127.png ; $2 < \frac { \sigma ( n ) } { n } < 2 + \frac { 2 } { 10 ^ { 10 } }.$ ; confidence 0.997
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004023.png ; $= \frac { 1 } { 16 } [ \zeta ( 2 , \frac { 1 } { 4 } ) - \zeta ( 2 , \frac { 3 } { 4 } ) ]$ ; confidence 0.999
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030044.png ; $\phi : ( T V , d ) \rightarrow ( T W , d )$ ; confidence 0.997
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004017.png ; $= \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } }$ ; confidence 0.993
+
212. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290140.png ; $( f , \phi ) : ( X , L ) \rightarrow ( Y , M )$ ; confidence 0.997
  
213. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \otimes \Lambda - A \otimes M ] =$ ; confidence 0.504
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012018.png ; $r \leq ( s ^ { 2 } \mu - 1 ) / ( \mu - 1 )$ ; confidence 0.997
  
214. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070213.png ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x )$ ; confidence 0.770
+
214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028096.png ; $\phi \in A ( \overline { D } )$ ; confidence 0.997
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070172.png ; $\mathfrak { C } ( P ) = I _ { 0 } \subset \ldots \subset I _ { \delta } = R ( P )$ ; confidence 0.846
+
215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003058.png ; $\| \varphi \| < \infty$ ; confidence 0.997
  
216. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009031.png ; $( \alpha ^ { k } C _ { j } / d x ^ { k } ) ( x _ { i } ) = [ ( d C _ { j } / d x ) ( x _ { i } ) ] ^ { k }$ ; confidence 0.407
+
216. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009020.png ; $\psi ( t , \mathbf{x} )$ ; confidence 0.997
  
217. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031033.png ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 } L _ { 2 }$ ; confidence 0.754
+
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d12025011.png ; $( S )$ ; confidence 0.997
  
218. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003014.png ; $\exists \lambda > 0 \forall N \in N , N > 2 : \psi _ { N } \in C ^ { \lambda N }$ ; confidence 0.950
+
218. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013010.png ; $0 \leq \theta \leq \pi$ ; confidence 0.997
  
219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011014.png ; $\alpha _ { x } ^ { 2 } = \alpha _ { y } ^ { 2 } = \alpha _ { z } ^ { 2 } = \beta ^ { 2 } = 1$ ; confidence 0.606
+
219. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025073.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 }$ ; confidence 0.997
  
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023074.png ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \overline { H } \square ^ { * } J \overline { H }$ ; confidence 0.523
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036023.png ; $p _ { z } + d p _ { z }$ ; confidence 0.997
  
221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012012.png ; $Q ( \theta ^ { ( t + 1 ) } | \theta ^ { ( t ) } ) \geq Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.959
+
221. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003046.png ; $A w = \lambda B w$ ; confidence 0.997
  
222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200902.png ; $\nabla \times H = \frac { 1 } { c } ( \frac { \partial E } { \partial t } + J )$ ; confidence 0.575
+
222. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025014.png ; $\angle \Omega ^ { \prime } B A = \angle \Omega ^ { \prime } C B = \angle \Omega ^ { \prime } A C$ ; confidence 0.997
  
223. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230176.png ; $E ( L ) = E ^ { \mathscr { L } } ( L ) \omega ^ { \mathscr { K } } \otimes \Delta$ ; confidence 0.060
+
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048014.png ; $D = D _ { 0 }$ ; confidence 0.997
  
224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004029.png ; $f ^ { \Delta \langle \varphi \rangle } : W \rightarrow \overline { R }$ ; confidence 0.612
+
224. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006042.png ; $E _ { 0 } > 0$ ; confidence 0.997
  
225. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019024.png ; $( \frac { d } { d x } ) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }$ ; confidence 0.491
+
225. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004031.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ) = 0$ ; confidence 0.997
  
226. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160129.png ; $\& \{ \exists x _ { n } + 1 \psi _ { n } ^ { l } \overline { a } \alpha : a \in A \}$ ; confidence 0.055
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012030.png ; $\varphi ( t )$ ; confidence 0.997
  
227. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568
+
227. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001033.png ; $d \alpha ( X , Y ) = g ( X , J Y )$ ; confidence 0.997
  
228. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029054.png ; $\bigotimes _ { j \in J } T ( u _ { j } ) \leq T ( \bigotimes _ { j \in J } u _ { j } )$ ; confidence 0.894
+
228. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021028.png ; $u ( z , \lambda ) = z ^ { \lambda } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { k },$ ; confidence 0.997
  
229. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003096.png ; $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in N _ { 0 } \}$ ; confidence 0.427
+
229. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290153.png ; $( f , \phi ) : ( X , L , \tau ) \rightarrow ( Y , M , \sigma )$ ; confidence 0.997
  
230. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006091.png ; $| \lambda - \alpha _ { i } , i | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n$ ; confidence 0.448
+
230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002053.png ; $A D _ { + } < A D ^ { - }$ ; confidence 0.997
  
231. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004010.png ; $\alpha \in Z _ { + } ^ { n } , | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.896
+
231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png ; $m = 4 n + 3$ ; confidence 0.997
  
232. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200502.png ; $\psi ( x , y , t ) : R ^ { n } \times \Omega \times R ^ { + } \rightarrow R ^ { N }$ ; confidence 0.992
+
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200106.png ; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997
  
233. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001010.png ; $\sum _ { n < x } f ( n ) = c x ^ { 1 + i x } \cdot L ( \operatorname { log } x ) + o ( x )$ ; confidence 0.360
+
233. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010110.png ; $k \geq 7$ ; confidence 0.997
  
234. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012078.png ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007083.png ; $H ( x ) > ( 1 - \varepsilon ) ( \operatorname { log } x ) ^ { 2 }$ ; confidence 0.997
  
235. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807042.png ; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - X ) ( X _ { i } - X ) ^ { \prime }$ ; confidence 0.642
+
235. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002017.png ; $0 \leq k < 1$ ; confidence 0.997
  
236. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751
+
236. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997
  
237. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060167.png ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma ( \frac { x + y } { 2 } )$ ; confidence 0.509
+
237. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023093.png ; $| f _ { i } | < 1$ ; confidence 0.997
  
238. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008071.png ; $= \sum _ { S _ { 1 } = \pm 1 } \cdots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N }$ ; confidence 0.359
+
238. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004035.png ; $( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$ ; confidence 0.997
  
239. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i1200805.png ; $H = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.707
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015043.png ; $\beta ( A ) < \infty$ ; confidence 0.997
  
240. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009062.png ; $\Gamma ^ { p m } \mapsto \gamma \operatorname { mod } \Gamma ^ { p ^ { n } }$ ; confidence 0.519
+
240. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120117.png ; $T ( H ( A ) )$ ; confidence 0.997
  
241. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007081.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916
+
241. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090126.png ; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997
  
242. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001015.png ; $\langle D \rangle = \sum _ { S } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | S D | - 1 }$ ; confidence 0.165
+
242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005074.png ; $m \geq m _ { 0 }$ ; confidence 0.997
  
243. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005048.png ; $\lambda = \operatorname { sup } \{ t \in Q : H + t ( K _ { X } + B ) \text { is } f$ ; confidence 0.511
+
243. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004038.png ; $K \geq 1$ ; confidence 0.997
  
244. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006017.png ; $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ ; confidence 0.434
+
244. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r1301406.png ; $\sigma ( R ) \backslash \lambda$ ; confidence 0.997
  
245. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002015.png ; $L ( x ) = - \int _ { 0 } ^ { x } \operatorname { ln } \operatorname { cos } t d t$ ; confidence 0.969
+
245. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510126.png ; $\gamma ( u ) < \infty$ ; confidence 0.997
  
246. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012079.png ; $K _ { tot S } = \cap _ { p \in S } \prod _ { \sigma \in G ( K ) } K _ { p } ^ { \sigma }$ ; confidence 0.268
+
246. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v0960408.png ; $s ( r )$ ; confidence 0.997
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017063.png ; $P = \langle \alpha _ { 1 } , \dots , a _ { g } | R _ { 1 } , \dots , R _ { N } \rangle$ ; confidence 0.152
+
247. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v1200207.png ; $f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$ ; confidence 0.997
  
248. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003092.png ; $\sum _ { i = 1 } ^ { n } \eta ( \vec { x } _ { i } , r _ { i } ) \vec { x } _ { i } = \vec { 0 }$ ; confidence 0.523
+
248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017064.png ; $l \equiv 2 ( \operatorname { mod } 3 )$ ; confidence 0.997
  
249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002014.png ; $\| \phi \| = 1 - \frac { m } { r } + O ( r ^ { - 2 } ) , \| D _ { A } \phi \| = O ( r ^ { - 2 } )$ ; confidence 0.991
+
249. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018046.png ; $t _ { 1 } \in D ^ { - }$ ; confidence 0.997
  
250. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012067.png ; $Q _ { s } ( R ) = \{ q \in Q ( R ) : q B \subseteq \text { Rfor some0 } \neq B < R \}$ ; confidence 0.106
+
250. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005046.png ; $I = ( f )$ ; confidence 0.997
  
251. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130109.png ; $\frac { d L } { d t } = \gamma L ( F - \xi ) , \quad \xi = \frac { \nu } { \gamma }$ ; confidence 0.983
+
251. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002043.png ; $1.609$ ; confidence 0.997
  
252. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301408.png ; $\int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in R ^ { n } , r \in R ^ { + }$ ; confidence 0.902
+
252. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040171.png ; $s > d / ( d - 1 )$ ; confidence 0.997
  
253. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002019.png ; $A _ { \varepsilon } = \{ x : \{ x \} \times Y \subset O _ { \varepsilon } \}$ ; confidence 0.744
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015120/b01512012.png ; $n > 3$ ; confidence 0.997
  
254. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120080/n1200804.png ; $\operatorname { lim } _ { x \rightarrow \infty } \mu _ { N } ( E ) = \mu ( E )$ ; confidence 0.546
+
254. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007087.png ; $N ^ { 20 }$ ; confidence 0.997
  
255. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663093.png ; $f \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } , \ldots , M _ { n } ; R ^ { n } )$ ; confidence 0.127
+
255. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005011.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + [ \lambda - u ( x , t ) ] \psi = 0 , - \infty < x < \infty,$ ; confidence 0.997
  
256. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011052.png ; $B _ { \alpha } ( x ^ { * } ) = \{ x \in R ^ { n } : \xi _ { x ^ { * } } ( x ) \geq \alpha \}$ ; confidence 0.332
+
256. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002063.png ; $A \cup B \in \mathcal{S}$ ; confidence 0.997
  
257. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520388.png ; $\operatorname { det } \| \partial \xi _ { i } / \partial y _ { j } \| \neq 0$ ; confidence 0.969
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016033.png ; $H ( q , d )$ ; confidence 0.997
  
258. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001066.png ; $i _ { 1 } : H ^ { 1 } ( D ^ { \prime } R ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.903
+
258. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752018.png ; $F [ \lambda ]$ ; confidence 0.997
  
259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300809.png ; $x \in R _ { + } , \varphi _ { m } ( 0 , k ) = 0 , \varphi _ { m } ^ { \prime } ( 0 , k ) = 1$ ; confidence 0.488
+
259. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900152.png ; $H ( \zeta ) = H _ { p }$ ; confidence 0.997
  
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008013.png ; $\int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.989
+
260. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120141.png ; $X = H ( Y )$ ; confidence 0.997
  
261. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754808.png ; $( p \supset r ) \supset ( ( q \supset r ) \supset ( ( p \vee q ) \supset r ) )$ ; confidence 0.854
+
261. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681705.png ; $Z ( 1 ) = 0$ ; confidence 0.997
  
262. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004042.png ; $0 = \mu _ { 1 } ( \Omega ) < \mu _ { 2 } ( \Omega ) \leq \mu _ { 3 } ( \Omega ) \leq$ ; confidence 0.993
+
262. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062690/m0626904.png ; $n = 1,2,3$ ; confidence 0.997
  
263. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014022.png ; $\operatorname { lim } _ { x \rightarrow \infty } \| T ^ { x } \| ^ { 1 / x } = 0$ ; confidence 0.569
+
263. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027048.png ; $( A , B , C ) \in \textbf{R} ^ { 3 }$ ; confidence 0.997
  
264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036023.png ; $Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \wedge 0$ ; confidence 0.817
+
264. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300807.png ; $L _ { 1 } = A _ { 1 } P _ { 1 }$ ; confidence 0.997
  
265. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { ap\square regular partition of } n$ ; confidence 0.500
+
265. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010092.png ; $\gamma + n$ ; confidence 0.997
  
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050010.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n + 1 ) / 2 } \end{array} \right)$ ; confidence 0.581
+
266. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l1200803.png ; $( x , y , t )$ ; confidence 0.997
  
267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305009.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n - 1 ) / 2 } \end{array} \right)$ ; confidence 0.724
+
267. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006048.png ; $A ( x , y ) + F ( x , y ) + \int _ { x } ^ { \infty } A ( x , s ) F ( s + y ) d s = 0,$ ; confidence 0.997
  
268. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023045.png ; $\operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } T T ^ { \prime } \}$ ; confidence 0.969
+
268. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020196.png ; $H ^ { n } ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.997
  
269. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024018.png ; $H * ( X , x _ { 0 } ; G ) \approx \prod _ { 1 } ^ { \infty } H * ( X _ { i } , x _ { i 0 } ; G )$ ; confidence 0.124
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220134.png ; $m < i / 2$ ; confidence 0.997
  
270. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032090.png ; $\langle t ^ { * } ( n ^ { * } ) , m \} = ( - 1 ) ^ { p ( t ) p ( n ^ { * } ) } | n ^ { * } , t ( m ) \}$ ; confidence 0.283
+
270. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012089.png ; $E _ { 0 } ( A )$ ; confidence 0.997
  
271. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050107.png ; $A _ { k } \equiv ( a _ { i , j } ^ { ( k ) } ) _ { i , j = 1 } ^ { \operatorname { dim } X }$ ; confidence 0.075
+
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023032.png ; $\mathcal{A} : \Gamma ( E ) \rightarrow \mathbf{R}$ ; confidence 0.997
  
272. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003013.png ; $\mu ( z ) = k \frac { \overline { \varphi } ( z ) } { | \varphi ( z ) | } , 0 < k < 1$ ; confidence 0.933
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007050.png ; $m ( P ) > 0$ ; confidence 0.997
  
273. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006095.png ; $E _ { atom } ^ { TF } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { atom } ^ { TF } ( \lambda , 1 )$ ; confidence 0.406
+
273. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047860/h047860165.png ; $( X ; A , B )$ ; confidence 0.997
  
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013019.png ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942
+
274. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201103.png ; $p : T ( h ) \rightarrow S ^ { 1 } = [ 0,1 ] / \{ 0 \sim 1 \},$ ; confidence 0.997
  
275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013062.png ; $y _ { 1 } , \dots , y _ { p } , \dots ; x _ { p } - y _ { p } , x _ { 2 } p - y _ { 2 } p , \dots )$ ; confidence 0.067
+
275. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020107.png ; $V _ { F } = P R + Q \sqrt { R }$ ; confidence 0.997
  
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014074.png ; $\operatorname { dist } _ { L } \infty ( \overline { u } , H ^ { \infty } ) < 1$ ; confidence 0.787
+
276. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008035.png ; $K f = f$ ; confidence 0.997
  
277. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020191.png ; $\operatorname { deg } ( F , \overline { D } \square ^ { n + 1 } , \theta ) = k$ ; confidence 0.871
+
277. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011049.png ; $\mathcal{L} ( L ^ { 2 } )$ ; confidence 0.997
  
278. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011023.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } ( z - z _ { j } )$ ; confidence 0.995
+
278. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037029.png ; $\mathcal{D} [ 0,1 ] ^ { k }$ ; confidence 0.997
  
279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787
+
279. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010031.png ; $\chi = \{ Y : T \otimes _ { B } Y = 0 \}$ ; confidence 0.997
  
280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011028.png ; $( \alpha ^ { w } u , v ) = \int \int \alpha ( x , \xi ) H ( u , v ) ( x , \xi ) d x d \xi$ ; confidence 0.396
+
280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520408.png ; $\sum _ { k = 1 } ^ { \infty } 2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.997
  
281. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080202.png ; $\kappa \partial _ { S } F + H _ { S } ( \frac { \delta F } { \delta u } , u , t ) = 0$ ; confidence 0.614
+
281. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l1201903.png ; $X A + B X + C = 0.$ ; confidence 0.997
  
282. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080105.png ; $\partial _ { n } F = ( 1 / 2 \pi i n ) \operatorname { Res } _ { 0 } \xi ^ { - n } d S$ ; confidence 0.423
+
282. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001013.png ; $k p > n$ ; confidence 0.997
  
283. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011035.png ; $\frac { 1 } { N } \sum _ { x = 1 } ^ { N } \prod _ { i = 1 } ^ { H } f _ { i } \circ T ^ { i n }$ ; confidence 0.326
+
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300309.png ; $\{ x y z \}$ ; confidence 0.997
  
284. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100608.png ; $E ( B ( t ) ) \equiv 0 , \quad E ( B ( t ) . B ( s ) ) = \operatorname { min } ( t , s )$ ; confidence 0.489
+
284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620138.png ; $m _ { + } ( \lambda ) = \infty$ ; confidence 0.997
  
285. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010106.png ; $\Phi _ { \sigma } = \{ q \in Q : q x ^ { \sigma } = x q \text { for all } x \in R \}$ ; confidence 0.424
+
285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012010.png ; $\phi g$ ; confidence 0.997
  
286. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003011.png ; $X f ( 1 ) = X f ( \theta , p ) = \int _ { - \infty } ^ { \infty } f ( x + t \theta ) d t$ ; confidence 0.912
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022028.png ; $T ( t , x )$ ; confidence 0.997
  
287. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001071.png ; $z ( z - \operatorname { cos } w ) / ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.999
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200403.png ; $D ( A )$ ; confidence 0.997
  
288. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300106.png ; $R = \operatorname { limsup } _ { N \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 0.692
+
288. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201109.png ; $| C ( 20 ) | = 510489$ ; confidence 0.997
  
289. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301302.png ; $x _ { 1 } = r \operatorname { sin } \theta \operatorname { cos } \varphi$ ; confidence 0.964
+
289. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840115.png ; $\mathcal{L}_-$ ; confidence 0.997
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240315.png ; $SS _ { e } = y ^ { \prime } ( I _ { n } - X ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } ) y$ ; confidence 0.596
+
290. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010129.png ; $A _ { 1 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.997
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013051.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , Y _ { n } )$ ; confidence 0.990
+
291. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070111.png ; $D ( L ) = \mathcal{H}$ ; confidence 0.997
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013010.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , X _ { n } )$ ; confidence 0.964
+
292. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045035.png ; $( x _ { 1 } , y _ { 1 } )$ ; confidence 0.997
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160161.png ; $y _ { i t } = \alpha y _ { i , t - 1 } + \sum _ { j = 1 } ^ { N } k _ { j t } t _ { i j } x _ { i t }$ ; confidence 0.108
+
293. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230160.png ; $\sigma ( M )$ ; confidence 0.997
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020071.png ; $T x _ { j } = t _ { j } x _ { j } \text { for } x ; \in X _ { j } \quad ( j = 1 , \dots , n )$ ; confidence 0.101
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a1301203.png ; $t - ( v , k , \lambda )$ ; confidence 0.997
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200203.png ; $\Gamma _ { N } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004016.png ; $\Gamma \backslash H ^ { * }$ ; confidence 0.997
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200205.png ; $\alpha _ { N } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { N } ( t ) - t ) , \quad 0 \leq t \leq 1$ ; confidence 0.409
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010032.png ; $d A$ ; confidence 0.997
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300305.png ; $\{ u x \{ v y w \} \} - \{ v y \{ u x w \} \} = \{ \{ u x v \} y w \} - \{ v \{ x u y \} w \}$ ; confidence 0.909
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071032.png ; $1 \leq i \leq n$ ; confidence 0.997
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007032.png ; $BS ( 1 , n ) = \langle \alpha , b | \alpha ^ { - 1 } b \alpha = b ^ { n } \rangle$ ; confidence 0.435
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a1303003.png ; $\theta : A \rightarrow B$ ; confidence 0.997
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009032.png ; $\frac { d f } { f } = \frac { d \xi } { \xi } - i \alpha \frac { d \tau } { \tau }$ ; confidence 0.855
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340175.png ; $s \in ( \pm \infty , \pm 1 )$ ; confidence 0.997
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220213.png ; $\operatorname { Ext } _ { M H _ { P } ^ { + } } ( R ( 0 ) , H _ { B } ^ { i } ( X ) , R ( j ) )$ ; confidence 0.068
+
300. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026037.png ; $\| \lambda \| = \| \rho \|$ ; confidence 0.997

Latest revision as of 13:03, 17 May 2020

List

1. c02717096.png ; $\phi ( n )$ ; confidence 0.997

2. b120440106.png ; $B = b ^ { G }$ ; confidence 0.997

3. a01294070.png ; $\theta = 0$ ; confidence 0.997

4. a12007090.png ; $- 1 \leq \alpha _ { i } < \beta _ { i } \leq 1$ ; confidence 0.997

5. w12017042.png ; $G / C _ { G } ( \omega ( G ) )$ ; confidence 0.997

6. h120120101.png ; $B ( A )$ ; confidence 0.997

7. n12010044.png ; $\varphi ( \xi _ { 1 } ) \varphi ( \xi _ { 2 } ) \leq \varphi ( \xi _ { 1 } + \xi _ { 2 } )$ ; confidence 0.997

8. b11104014.png ; $p = 3$ ; confidence 0.997

9. f13009010.png ; $\alpha ( x ) \beta ( x ) = - 1$ ; confidence 0.997

10. i0530308.png ; $f ( t , X _ { t } )$ ; confidence 0.997

11. e12014058.png ; $t = t$ ; confidence 0.997

12. n12012038.png ; $M ( x , z )$ ; confidence 0.997

13. f120230142.png ; $A : T M \rightarrow T M$ ; confidence 0.997

14. e120140100.png ; $( \varphi \rightarrow ( \neg \varphi \rightarrow \psi ) ) = 1$ ; confidence 0.997

15. l13006033.png ; $[ 0,1 ) ^ { k }$ ; confidence 0.997

16. h1300507.png ; $\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } + \frac { \partial ^ { 3 } u } { \partial x ^ { 3 } } = 0.$ ; confidence 0.997

17. l1200805.png ; $L = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } - 2 i ( x + i y ) \frac { \partial } { \partial t }.$ ; confidence 0.997

18. r1200203.png ; $L = K - P$ ; confidence 0.997

19. w120110106.png ; $\mathcal{H} ( u , v )$ ; confidence 0.997

20. o13006034.png ; $A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * }$ ; confidence 0.997

21. i130030164.png ; $\phi \in H ^ { * } ( \Gamma ) = H ^ { * } ( B \Gamma )$ ; confidence 0.997

22. m12025012.png ; $H _ { 1 } ( U ^ { \prime } ) \subseteq U ^ { \prime \prime }$ ; confidence 0.997

23. e13007071.png ; $[ N , N + M ]$ ; confidence 0.997

24. b13028025.png ; $G ( 8 )$ ; confidence 0.997

25. l12004088.png ; $\rho _ { L } = 1.0$ ; confidence 0.997

26. b1106308.png ; $Y = 0$ ; confidence 0.997

27. f12024034.png ; $( - \infty , t ]$ ; confidence 0.997

28. b12036031.png ; $w ( i , j , k , l )$ ; confidence 0.997

29. w12019042.png ; $\Omega f = F$ ; confidence 0.997

30. d12030046.png ; $( X ( t ) , t \in [ 0 , T ] )$ ; confidence 0.997

31. s13064060.png ; $L ^ { 2 } [ 0 , \tau ]$ ; confidence 0.997

32. h13007019.png ; $B ( m , D , n ) < m D + B ( m D + m D ^ { 2 } , D , n - 1 ),$ ; confidence 0.997

33. l12005016.png ; $\frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \operatorname { cosh } ( \pi \tau ) | F ( \tau ) | ^ { 2 } d \tau = \int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } d x,$ ; confidence 0.997

34. b12030023.png ; $D ( - \Delta ) = H ^ { 2 } ( \mathbf{R} ^ { N } )$ ; confidence 0.997

35. a12018083.png ; $t = 1$ ; confidence 0.997

36. c12002024.png ; $\rho \rightarrow \infty$ ; confidence 0.997

37. h04798014.png ; $f : X \times Y \rightarrow Z$ ; confidence 0.997

38. z13013037.png ; $H ( r , \theta ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , \theta )$ ; confidence 0.997

39. i13009069.png ; $P ( T ) \in \mathcal{O} [ T ]$ ; confidence 0.997

40. w13011032.png ; $g ( y ) = e ^ { 2 \pi i y }$ ; confidence 0.997

41. a1200808.png ; $c ( x ) > 0$ ; confidence 0.997

42. a130050150.png ; $= \prod _ { p \in P } ( 1 - | p | ^ { - z } ) ^ { - 1 } =$ ; confidence 0.997

43. s13045041.png ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) > 0$ ; confidence 0.997

44. c02117036.png ; $\Omega ( A )$ ; confidence 0.997

45. a1302203.png ; $Z ( R )$ ; confidence 0.997

46. a013000105.png ; $A ( E )$ ; confidence 0.997

47. b13009024.png ; $u _ { t } - \Delta u _ { t } + \operatorname { div } \varphi ( u ) = 0,$ ; confidence 0.997

48. q12007077.png ; $\phi \in H ^ { * }$ ; confidence 0.997

49. d13005017.png ; $r = m / 2 - 1$ ; confidence 0.997

50. f1202005.png ; $\operatorname { det } ( \lambda I - A )$ ; confidence 0.997

51. f12015076.png ; $A \in \Phi _ { + } ( X , Y ) \backslash \Phi ( X , Y )$ ; confidence 0.997

52. g13003068.png ; $\varepsilon \rightarrow 0 \}$ ; confidence 0.997

53. b13018019.png ; $0 < \epsilon < 1$ ; confidence 0.997

54. s12032089.png ; $t ^ { * } : N ^ { * } \rightarrow M ^ { * }$ ; confidence 0.997

55. f120150192.png ; $A \in \Phi ( D ( A ) , Y )$ ; confidence 0.997

56. q13005042.png ; $K [ f ] \leq K ( M )$ ; confidence 0.997

57. i0507208.png ; $f ^ { * } ( x )$ ; confidence 0.997

58. r130070122.png ; $h ( t , x ) \in \mathcal{H}$ ; confidence 0.997

59. e12023013.png ; $\pi ( x , y ) = x$ ; confidence 0.997

60. v13007063.png ; $\operatorname { ln } ( 1 - \lambda ) = \frac { 1 } { \pi } \int _ { 0 } ^ { 1 } \frac { \theta ( s ^ { \prime } ) } { s ^ { \prime } } d s ^ { \prime }.$ ; confidence 0.997

61. m13008034.png ; $\int h ( s ) d s = 1$ ; confidence 0.997

62. v1300703.png ; $\nabla P = - 12 \mu \frac { \overset{\rightharpoonup} { V } } { b ^ { 2 } }.$ ; confidence 0.997

63. n1300305.png ; $u ( x , t ) = v ( x ) w ( t )$ ; confidence 0.997

64. j13004052.png ; $m = 1 - \operatorname { com } ( L )$ ; confidence 0.997

65. b110220226.png ; $\mathcal{M} _ { k }$ ; confidence 0.997

66. f12002045.png ; $A ( ( X ) )$ ; confidence 0.997

67. s13062097.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.997

68. v096900131.png ; $P _ { 1 } \leq P$ ; confidence 0.997

69. d12016046.png ; $\pi_{\text{l}} ( S )$ ; Not sure about the index.

70. b12051037.png ; $\nabla ^ { 2 } f$ ; confidence 0.997

71. a12010066.png ; $- \Delta$ ; confidence 0.997

72. s120320124.png ; $\varphi : \mathcal{U} \rightarrow \mathcal{V}$ ; confidence 0.997

73. r13007056.png ; $u = A ^ { 1 / 2 } v$ ; confidence 0.997

74. f120110143.png ; $\sum _ { k = - \infty } ^ { \infty } \delta ( x - k )$ ; confidence 0.997

75. b130260104.png ; $B ( 1 )$ ; confidence 0.997

76. k12004033.png ; $11_{255}$ ; confidence 0.997

77. m12019019.png ; $1 / 2 < \nu < 1$ ; confidence 0.997

78. f13001050.png ; $\Omega ( \operatorname { log } q )$ ; confidence 0.997

79. m12011061.png ; $F ^ { 2 } \subset M$ ; confidence 0.997

80. a12025066.png ; $n = q - 2$ ; confidence 0.997

81. h12004018.png ; $\{ V _ { \xi } : \xi < \lambda \}$ ; confidence 0.997

82. s1303907.png ; $\eta ( n ) \leq n$ ; confidence 0.997

83. w120090153.png ; $\Lambda ^ { + } ( n )$ ; confidence 0.997

84. t120200183.png ; $[ m + 1 , m + K ( 3 + \pi / \kappa ) ]$ ; confidence 0.997

85. b12032060.png ; $F ( r , F ( s , t ) ) = F ( F ( r , s ) , t )$ ; confidence 0.997

86. s09120039.png ; $\delta : A \rightarrow A$ ; confidence 0.997

87. l0570006.png ; $M , N \in \Lambda$ ; confidence 0.997

88. p130070121.png ; $C ( z , w )$ ; confidence 0.997

89. i12010032.png ; $m = 6$ ; confidence 0.997

90. t13005011.png ; $\xi \in \Lambda$ ; confidence 0.997

91. a12007069.png ; $t \mapsto A ( t ) ^ { - 1 }$ ; confidence 0.997

92. l1100307.png ; $\frac { d P } { d \mu } \in L _ { 1 } ( \mu )$ ; confidence 0.997

93. b13026059.png ; $f = g$ ; confidence 0.997

94. v12002074.png ; $\nu + 1 < q < N$ ; confidence 0.997

95. n12002064.png ; $F = F ( \mu )$ ; confidence 0.997

96. h1201508.png ; $\operatorname { log } | A ^ { - 1 } |$ ; confidence 0.997

97. t12015069.png ; $\alpha \in \mathbf{C} \rightarrow ( \Delta ^ { \alpha } \xi | \eta )$ ; confidence 0.997

98. s13065033.png ; $R ( t , z ) = ( t + z ) / ( t - z )$ ; confidence 0.997

99. f12001021.png ; $\sigma( X ) = 0$ ; confidence 0.997

100. d03186097.png ; $F \rightarrow G$ ; confidence 0.997

101. r1300704.png ; $\| f \| = ( f , f ) ^ { 1 / 2 }$ ; confidence 0.997

102. r130070145.png ; $= \int _ { T } d m ( t ) F ( t ) G ( t ),$ ; confidence 0.997

103. e12011053.png ; $\mathbf{E} = - \nabla \phi$ ; confidence 0.997

104. z13010066.png ; $y \cup \{ y \}$ ; confidence 0.997

105. k12012054.png ; $r > 4$ ; confidence 0.997

106. l057000194.png ; $\rho : V \rightarrow D _ { A }$ ; confidence 0.997

107. c130160119.png ; $A \in \mathcal{C}$ ; confidence 0.997

108. a130240344.png ; $1 \times p$ ; confidence 0.997

109. e13007016.png ; $h ( n ) \overline { h ( n ) } \equiv 1 ( \operatorname { mod } q )$ ; confidence 0.997

110. h120120143.png ; $\pi : \overline { B } ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.997

111. k12013023.png ; $2 ^ { i + 1 } ( n + 1 ) - 3$ ; confidence 0.997

112. i12004026.png ; $K_{\text{BM}} (\zeta , z )$ ; confidence 0.997

113. e12006056.png ; $[ \Gamma , \Gamma ]$ ; confidence 0.997

114. j120020109.png ; $X \in \mathcal{M} ^ { 1 }$ ; confidence 0.997

115. b13025066.png ; $8 \omega ^ { 3 } \leq \alpha \, \beta \, \gamma ,$ ; confidence 0.997

116. s120340164.png ; $\varphi _ { 1 } , \varphi _ { 2 } : ( - \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.997

117. b13030042.png ; $3 m - 2$ ; confidence 0.997

118. f12010046.png ; $\tau ( n )$ ; confidence 0.997

119. t120200224.png ; $\frac { 1 } { 4 } \left( \frac { K - 1 } { 8 e ( m + K ) } \right) ^ { K }.$ ; confidence 0.997

120. c130070158.png ; $r ( X , Y )$ ; confidence 0.997

121. v12004033.png ; $\Delta ( G )$ ; confidence 0.997

122. f13001056.png ; $n ^ { 2 } \operatorname { log } q$ ; confidence 0.997

123. w12021035.png ; $q \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.997

124. j12001049.png ; $d , n \geq 1$ ; confidence 0.997

125. i13007094.png ; $A _ { \delta } ( \alpha ^ { \prime } , \alpha )$ ; confidence 0.997

126. d12023070.png ; $p = 1 = q$ ; confidence 0.997

127. w13013047.png ; $\Delta H + 2 H ( H ^ { 2 } - K + 1 ) = 0$ ; confidence 0.997

128. a12004010.png ; $x ( t ) \in D ( A )$ ; confidence 0.997

129. m12016021.png ; $A ( q \times p )$ ; confidence 0.997

130. b01747072.png ; $B ( n )$ ; confidence 0.997

131. h13005038.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + \lambda \rho ( x , t ) \psi = 0 , - \infty < x < \infty ,$ ; confidence 0.997

132. e12021026.png ; $\lambda _ { 0 } = - 1$ ; confidence 0.997

133. m120130132.png ; $N _ { 0 } = \lambda / ( 2 \alpha )$ ; confidence 0.997

134. e12015047.png ; $\varepsilon ^ { i } = 0$ ; confidence 0.997

135. c1202206.png ; $( X , * )$ ; confidence 0.997

136. a12005059.png ; $u ( t ) \in D ( A ( t ) )$ ; confidence 0.997

137. e12014099.png ; $[ ( \varphi \rightarrow \psi ) \rightarrow ( ( \psi \rightarrow \chi ) \rightarrow ( \varphi \rightarrow \chi ) ) ] = 1$ ; confidence 0.997

138. w12017020.png ; $G = \omega _ { \alpha } ( G )$ ; confidence 0.997

139. f12001016.png ; $G : X ^ { \prime } \rightarrow X$ ; confidence 0.997

140. k11001032.png ; $J ^ { 2 } X = - X + \alpha ( X ) Z$ ; confidence 0.997

141. f12005041.png ; $x y z \neq 0$ ; confidence 0.997

142. a120050120.png ; $t \mapsto A ( t )$ ; confidence 0.997

143. b12009026.png ; $p ( f , \tau ) = 1 + \alpha _ { 1 } ( \tau ) f + \alpha _ { 2 } ( \tau ) f ^ { 2 } +\dots $ ; confidence 0.997

144. d12015049.png ; $> 13$ ; confidence 0.997

145. d12005056.png ; $f \in R ( f )$ ; confidence 0.997

146. a11066088.png ; $B ( H )$ ; confidence 0.997

147. p13009049.png ; $f : \partial \Omega \rightarrow \mathbf{R}$ ; confidence 0.997

148. w12008037.png ; $d\mu ( q , p )$ ; confidence 0.997

149. w12019038.png ; $\Omega f$ ; confidence 0.997

150. a130240489.png ; $s = k + 1$ ; confidence 0.997

151. b13017035.png ; $V _ { T } = \operatorname { max } ( S _ { T } - K , 0 )$ ; confidence 0.997

152. d0302405.png ; $\frac { 1 } { 2 } \{ f ( x _ { 0 } + t ) + f ( x _ { 0 } - t ) \} =$ ; confidence 0.997

153. t1201509.png ; $\mathcal{A} ^ { 2 } \equiv \{ \xi \eta : \xi , \eta \in \mathcal{A} \}$ ; confidence 0.997

154. j130040131.png ; $( v , z ) = ( \pm i , \pm i \sqrt { 2 } )$ ; confidence 0.997

155. m130260116.png ; $M ( A ) = B ( \mathcal{H} )$ ; confidence 0.997

156. z13011088.png ; $( i + c ) \mu ( i )$ ; confidence 0.997

157. e120190201.png ; $d ( x , y ) = \| x - y \|$ ; confidence 0.997

158. w12003039.png ; $[ \omega _ { 0 } , \mu ]$ ; confidence 0.997

159. a0136102.png ; $( x , f ( x ) )$ ; confidence 0.997

160. s12026054.png ; $L ^ { 2 } ( [ 0,1 ] ; ( L ^ { 2 } ) )$ ; confidence 0.997

161. r130080136.png ; $H _ { 0 } = L ^ { 2 } ( D )$ ; confidence 0.997

162. b12031074.png ; $\delta > | ( 1 / n p ) - ( 1 / 2 n ) | - 1 / 2$ ; confidence 0.997

163. e12023018.png ; $( x , y , y ^ { \prime } )$ ; confidence 0.997

164. i13005065.png ; $x > - \infty$ ; confidence 0.997

165. a1302407.png ; $( m \times 1 )$ ; confidence 0.997

166. c13016019.png ; $O ( t ( n ) )$ ; confidence 0.997

167. v120020161.png ; $F : X \rightarrow K ( Y )$ ; confidence 0.997

168. h12012064.png ; $d ^ { \prime } = d + t$ ; confidence 0.997

169. d12030035.png ; $Z ( 0 ) = 0$ ; confidence 0.997

170. m1200602.png ; $\operatorname { div } \overset{\rightharpoonup} { B } = 0$ ; confidence 0.997

171. a11037055.png ; $k \geq 1$ ; confidence 0.997

172. c130160104.png ; $f ( w )$ ; confidence 0.997

173. d0302505.png ; $| y ^ { ( s ) } | < + \infty$ ; confidence 0.997

174. a01297033.png ; $1 \leq p \leq \infty$ ; confidence 0.997

175. t12007049.png ; $g \in \mathcal{M}$ ; confidence 0.997

176. c0259702.png ; $r \geq 1$ ; confidence 0.997

177. b01574013.png ; $f \in L [ 0,2 \pi ]$ ; confidence 0.997

178. g120040100.png ; $( x , \xi ) \in \Sigma _ { p }$ ; confidence 0.997

179. c12028025.png ; $\operatorname{CRS}( B , C )$ ; confidence 0.997

180. j13007015.png ; $\Gamma ( \omega , \alpha ) = \{ z \in \Delta : | z - \omega | < \alpha ( 1 - | z | ) \}.$ ; confidence 0.997

181. m13023095.png ; $\phi ^ { + } : X ^ { + } \rightarrow Y$ ; confidence 0.997

182. d12015020.png ; $P G ( d , q )$ ; confidence 0.997

183. a011820106.png ; $A \leq B$ ; confidence 0.997

184. a13029035.png ; $Y = Y _ { 0 } \cup _ { \Sigma } Y _ { 1 }$ ; confidence 0.997

185. h13009020.png ; $\mu : A \rightarrow B$ ; confidence 0.997

186. i13008018.png ; $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$ ; confidence 0.997

187. o13006066.png ; $p ( A _ { 1 } , A _ { 2 } ) = 0$ ; confidence 0.997

188. e12002069.png ; $( A , 2 )$ ; confidence 0.997

189. e12023092.png ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.997

190. n1200404.png ; $A : F \rightarrow G$ ; confidence 0.997

191. d12013037.png ; $V = H ^ { 1 } ( W ; \mathbf{F} _ { 2 } )$ ; confidence 0.997

192. a12007031.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad 0 \leq s \leq t \leq T;$ ; confidence 0.997

193. e120190193.png ; $h _ { 3 } \subset W ^ { + } \cup \{ p \}$ ; confidence 0.997

194. a13029016.png ; $( M , \omega )$ ; confidence 0.997

195. c130070160.png ; $s ( 0,0 ) \neq 0$ ; confidence 0.997

196. f1301004.png ; $\mathcal{A} _ { p } ( G )$ ; confidence 0.997

197. b12006026.png ; $( 1 \pm z \bar{z} ) ^ { 2 } w _ { z \bar{z} } + \lambda w = 0$ ; confidence 0.997

198. b01615017.png ; $n = 4$ ; confidence 0.997

199. w12006052.png ; $\eta : T _ { A } \rightarrow T _ { B }$ ; confidence 0.997

200. a13007098.png ; $n ^ { 0 }$ ; confidence 0.997

201. v09691031.png ; $\mu ( x ) = \infty$ ; confidence 0.997

202. k05507031.png ; $( \sqrt { - 2 } , \sqrt { - 3 } )$ ; confidence 0.997

203. s130620189.png ; $q ( x ) = g \operatorname { cos } \sqrt { x }$ ; confidence 0.997

204. e120020123.png ; $H ^ { 1 } ( Y ^ { 1 } ; \mathbf{Z} ) = 0$ ; confidence 0.997

205. g12007024.png ; $m \equiv 3,5,6,7$ ; confidence 0.997

206. f120150212.png ; $\| B \| _ { A } < \delta$ ; confidence 0.997

207. j13004094.png ; $P _ { K } ( v , z ) - 1$ ; confidence 0.997

208. l1201901.png ; $A ^ { * } X + X A + C = 0,$ ; confidence 0.997

209. l05700075.png ; $M ^ { k + 1 } N \equiv M ( M ^ { k } N )$ ; confidence 0.997

210. a130070127.png ; $2 < \frac { \sigma ( n ) } { n } < 2 + \frac { 2 } { 10 ^ { 10 } }.$ ; confidence 0.997

211. a11030044.png ; $\phi : ( T V , d ) \rightarrow ( T W , d )$ ; confidence 0.997

212. f130290140.png ; $( f , \phi ) : ( X , L ) \rightarrow ( Y , M )$ ; confidence 0.997

213. a13012018.png ; $r \leq ( s ^ { 2 } \mu - 1 ) / ( \mu - 1 )$ ; confidence 0.997

214. d12028096.png ; $\phi \in A ( \overline { D } )$ ; confidence 0.997

215. t12003058.png ; $\| \varphi \| < \infty$ ; confidence 0.997

216. m13009020.png ; $\psi ( t , \mathbf{x} )$ ; confidence 0.997

217. d12025011.png ; $( S )$ ; confidence 0.997

218. d13013010.png ; $0 \leq \theta \leq \pi$ ; confidence 0.997

219. m13025073.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 }$ ; confidence 0.997

220. b12036023.png ; $p _ { z } + d p _ { z }$ ; confidence 0.997

221. n13003046.png ; $A w = \lambda B w$ ; confidence 0.997

222. b13025014.png ; $\angle \Omega ^ { \prime } B A = \angle \Omega ^ { \prime } C B = \angle \Omega ^ { \prime } A C$ ; confidence 0.997

223. s13048014.png ; $D = D _ { 0 }$ ; confidence 0.997

224. l12006042.png ; $E _ { 0 } > 0$ ; confidence 0.997

225. i13004031.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ) = 0$ ; confidence 0.997

226. b13012030.png ; $\varphi ( t )$ ; confidence 0.997

227. k11001033.png ; $d \alpha ( X , Y ) = g ( X , J Y )$ ; confidence 0.997

228. f12021028.png ; $u ( z , \lambda ) = z ^ { \lambda } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { k },$ ; confidence 0.997

229. f130290153.png ; $( f , \phi ) : ( X , L , \tau ) \rightarrow ( Y , M , \sigma )$ ; confidence 0.997

230. z13002053.png ; $A D _ { + } < A D ^ { - }$ ; confidence 0.997

231. t12001021.png ; $m = 4 n + 3$ ; confidence 0.997

232. t1200106.png ; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997

233. t120010110.png ; $k \geq 7$ ; confidence 0.997

234. a13007083.png ; $H ( x ) > ( 1 - \varepsilon ) ( \operatorname { log } x ) ^ { 2 }$ ; confidence 0.997

235. d13002017.png ; $0 \leq k < 1$ ; confidence 0.997

236. d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997

237. d12023093.png ; $| f _ { i } | < 1$ ; confidence 0.997

238. e13004035.png ; $( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$ ; confidence 0.997

239. f12015043.png ; $\beta ( A ) < \infty$ ; confidence 0.997

240. h120120117.png ; $T ( H ( A ) )$ ; confidence 0.997

241. i130090126.png ; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997

242. k12005074.png ; $m \geq m _ { 0 }$ ; confidence 0.997

243. q13004038.png ; $K \geq 1$ ; confidence 0.997

244. r1301406.png ; $\sigma ( R ) \backslash \lambda$ ; confidence 0.997

245. s130510126.png ; $\gamma ( u ) < \infty$ ; confidence 0.997

246. v0960408.png ; $s ( r )$ ; confidence 0.997

247. v1200207.png ; $f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$ ; confidence 0.997

248. w12017064.png ; $l \equiv 2 ( \operatorname { mod } 3 )$ ; confidence 0.997

249. w12018046.png ; $t _ { 1 } \in D ^ { - }$ ; confidence 0.997

250. z13005046.png ; $I = ( f )$ ; confidence 0.997

251. z12002043.png ; $1.609$ ; confidence 0.997

252. g120040171.png ; $s > d / ( d - 1 )$ ; confidence 0.997

253. b01512012.png ; $n > 3$ ; confidence 0.997

254. e13007087.png ; $N ^ { 20 }$ ; confidence 0.997

255. h13005011.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + [ \lambda - u ( x , t ) ] \psi = 0 , - \infty < x < \infty,$ ; confidence 0.997

256. i13002063.png ; $A \cup B \in \mathcal{S}$ ; confidence 0.997

257. s12016033.png ; $H ( q , d )$ ; confidence 0.997

258. n06752018.png ; $F [ \lambda ]$ ; confidence 0.997

259. v096900152.png ; $H ( \zeta ) = H _ { p }$ ; confidence 0.997

260. h120120141.png ; $X = H ( Y )$ ; confidence 0.997

261. o0681705.png ; $Z ( 1 ) = 0$ ; confidence 0.997

262. m0626904.png ; $n = 1,2,3$ ; confidence 0.997

263. m12027048.png ; $( A , B , C ) \in \textbf{R} ^ { 3 }$ ; confidence 0.997

264. i1300807.png ; $L _ { 1 } = A _ { 1 } P _ { 1 }$ ; confidence 0.997

265. l12010092.png ; $\gamma + n$ ; confidence 0.997

266. l1200803.png ; $( x , y , t )$ ; confidence 0.997

267. i13006048.png ; $A ( x , y ) + F ( x , y ) + \int _ { x } ^ { \infty } A ( x , s ) F ( s + y ) d s = 0,$ ; confidence 0.997

268. v120020196.png ; $H ^ { n } ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.997

269. b110220134.png ; $m < i / 2$ ; confidence 0.997

270. h12012089.png ; $E _ { 0 } ( A )$ ; confidence 0.997

271. e12023032.png ; $\mathcal{A} : \Gamma ( E ) \rightarrow \mathbf{R}$ ; confidence 0.997

272. m12007050.png ; $m ( P ) > 0$ ; confidence 0.997

273. h047860165.png ; $( X ; A , B )$ ; confidence 0.997

274. m1201103.png ; $p : T ( h ) \rightarrow S ^ { 1 } = [ 0,1 ] / \{ 0 \sim 1 \},$ ; confidence 0.997

275. n120020107.png ; $V _ { F } = P R + Q \sqrt { R }$ ; confidence 0.997

276. r13008035.png ; $K f = f$ ; confidence 0.997

277. w12011049.png ; $\mathcal{L} ( L ^ { 2 } )$ ; confidence 0.997

278. s13037029.png ; $\mathcal{D} [ 0,1 ] ^ { k }$ ; confidence 0.997

279. t13010031.png ; $\chi = \{ Y : T \otimes _ { B } Y = 0 \}$ ; confidence 0.997

280. n067520408.png ; $\sum _ { k = 1 } ^ { \infty } 2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.997

281. l1201903.png ; $X A + B X + C = 0.$ ; confidence 0.997

282. i12001013.png ; $k p > n$ ; confidence 0.997

283. b1300309.png ; $\{ x y z \}$ ; confidence 0.997

284. s130620138.png ; $m _ { + } ( \lambda ) = \infty$ ; confidence 0.997

285. w12012010.png ; $\phi g$ ; confidence 0.997

286. b12022028.png ; $T ( t , x )$ ; confidence 0.997

287. a1200403.png ; $D ( A )$ ; confidence 0.997

288. p1201109.png ; $| C ( 20 ) | = 510489$ ; confidence 0.997

289. k055840115.png ; $\mathcal{L}_-$ ; confidence 0.997

290. o130010129.png ; $A _ { 1 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.997

291. r130070111.png ; $D ( L ) = \mathcal{H}$ ; confidence 0.997

292. s13045035.png ; $( x _ { 1 } , y _ { 1 } )$ ; confidence 0.997

293. e120230160.png ; $\sigma ( M )$ ; confidence 0.997

294. a1301203.png ; $t - ( v , k , \lambda )$ ; confidence 0.997

295. s13004016.png ; $\Gamma \backslash H ^ { * }$ ; confidence 0.997

296. b13010032.png ; $d A$ ; confidence 0.997

297. a01071032.png ; $1 \leq i \leq n$ ; confidence 0.997

298. a1303003.png ; $\theta : A \rightarrow B$ ; confidence 0.997

299. s120340175.png ; $s \in ( \pm \infty , \pm 1 )$ ; confidence 0.997

300. m13026037.png ; $\| \lambda \| = \| \rho \|$ ; confidence 0.997

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/9&oldid=44419