Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/33"
(→List) |
Rui Martins (talk | contribs) |
||
Line 18: | Line 18: | ||
9. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018058.png ; $A _ { \epsilon }$ ; confidence 0.905 | 9. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018058.png ; $A _ { \epsilon }$ ; confidence 0.905 | ||
− | 10. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005088.png ; $Y ( \omega , x ) = \sum _ { n \in Z } L ( n ) x ^ { - n - 2 }$ ; confidence 0.905 | + | 10. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005088.png ; $Y ( \omega , x ) = \sum _ { n \in \mathbf{Z} } L ( n ) x ^ { - n - 2 }$ ; confidence 0.905 |
11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027010.png ; $\gamma ( s )$ ; confidence 0.905 | 11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027010.png ; $\gamma ( s )$ ; confidence 0.905 | ||
Line 38: | Line 38: | ||
19. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600107.png ; $C _ { 1 } > 0$ ; confidence 0.905 | 19. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600107.png ; $C _ { 1 } > 0$ ; confidence 0.905 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001034.png ; $C [ F ]$ ; confidence 0.905 | + | 20. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001034.png ; $\mathbf{C} [ F ]$ ; confidence 0.905 |
21. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200108.png ; $\tau _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.905 | 21. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200108.png ; $\tau _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.905 | ||
Line 44: | Line 44: | ||
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031028.png ; $\hat { \mu } ( X _ { i } ) = \sum _ { X _ { j } \leq X _ { i } } \mu ( X _ { j } )$ ; confidence 0.905 | 22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031028.png ; $\hat { \mu } ( X _ { i } ) = \sum _ { X _ { j } \leq X _ { i } } \mu ( X _ { j } )$ ; confidence 0.905 | ||
− | 23. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840376.png ; $[ f , g ] = \int _ { | + | 23. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840376.png ; $[ f , g ] = \int _ { a } ^ { b } f \bar{g} r d x$ ; confidence 0.905 |
24. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002027.png ; $\varphi _ { 1 }$ ; confidence 0.905 | 24. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002027.png ; $\varphi _ { 1 }$ ; confidence 0.905 | ||
Line 50: | Line 50: | ||
25. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780539.png ; $\operatorname{mod} p$ ; confidence 0.905 | 25. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780539.png ; $\operatorname{mod} p$ ; confidence 0.905 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201104.png ; $\nabla \times E + \frac { 1 } { c } \frac { \partial B } { \partial t } = 0 | + | 26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201104.png ; $\nabla \times \mathbf{E} + \frac { 1 } { c } \frac { \partial \mathbf{B} } { \partial t } = 0;$ ; confidence 0.905 |
27. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201008.png ; $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.905 | 27. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201008.png ; $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.905 | ||
Line 56: | Line 56: | ||
28. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007030.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty , | \varphi _ { j } ( x ) | < c , \forall j , x.$ ; confidence 0.905 | 28. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007030.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty , | \varphi _ { j } ( x ) | < c , \forall j , x.$ ; confidence 0.905 | ||
− | 29. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015075.png ; $S = T ^ { 2 }$ ; confidence 0.905 | + | 29. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015075.png ; $S = \mathbf{T} ^ { 2 }$ ; confidence 0.905 |
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023084.png ; $D \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.905 | 30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023084.png ; $D \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.905 | ||
Line 78: | Line 78: | ||
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007024.png ; $z \mapsto z + k$ ; confidence 0.905 | 39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007024.png ; $z \mapsto z + k$ ; confidence 0.905 | ||
− | 40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070117.png ; $= \frac { 1 } { 2 } ( \frac { \Theta _ { \Delta } ( q ) } { \eta ( q ) ^ { 24 } } + \frac { \eta ( q ) ^ { 24 } } { \eta ( q ^ { 2 } ) ^ { 24 } } ) +$ ; confidence 0.904 | + | 40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070117.png ; $= \frac { 1 } { 2 } \left( \frac { \Theta _ { \Delta } ( q ) } { \eta ( q ) ^ { 24 } } + \frac { \eta ( q ) ^ { 24 } } { \eta ( q ^ { 2 } ) ^ { 24 } } \right) +$ ; confidence 0.904 |
41. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a01361026.png ; $x \rightarrow - \infty$ ; confidence 0.904 | 41. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a01361026.png ; $x \rightarrow - \infty$ ; confidence 0.904 | ||
Line 90: | Line 90: | ||
45. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329090.png ; $\Pi _ { 2 }$ ; confidence 0.904 | 45. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329090.png ; $\Pi _ { 2 }$ ; confidence 0.904 | ||
− | 46. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000115.png ; $F c _ { k }$ ; confidence 0.904 | + | 46. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000115.png ; $F \mathbf{c} _ { k }$ ; confidence 0.904 |
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012096.png ; $Q _ { r } ( R )$ ; confidence 0.904 | 47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012096.png ; $Q _ { r } ( R )$ ; confidence 0.904 | ||
Line 96: | Line 96: | ||
48. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014026.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { 2 } r ( n x ) = \delta ( x ).$ ; confidence 0.904 | 48. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014026.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { 2 } r ( n x ) = \delta ( x ).$ ; confidence 0.904 | ||
− | 49. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005065.png ; $= x _ { 2 } ^ { - 1 } \delta ( \frac { x _ { 1 } - x _ { 0 } } { x _ { 2 } } ) Y ( Y ( u , x _ { 0 } ) v , x _ { 2 } ),$ ; confidence 0.904 | + | 49. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005065.png ; $= x _ { 2 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 0 } } { x _ { 2 } } ) Y ( Y ( u , x _ { 0 } ) v , x _ { 2 } \right),$ ; confidence 0.904 |
50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051012.png ; $g ( F ( u ) ) = \{ g ( v ) : v \in F ( u ) \}$ ; confidence 0.904 | 50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051012.png ; $g ( F ( u ) ) = \{ g ( v ) : v \in F ( u ) \}$ ; confidence 0.904 | ||
Line 132: | Line 132: | ||
66. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023038.png ; $M = [ a , b ]$ ; confidence 0.904 | 66. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023038.png ; $M = [ a , b ]$ ; confidence 0.904 | ||
− | 67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240335.png ; $F = | + | 67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240335.png ; $\mathbf{F} = \mathbf{EX}_4$ ; confidence 0.904 |
68. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015052.png ; $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ ; confidence 0.904 | 68. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015052.png ; $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ ; confidence 0.904 | ||
Line 146: | Line 146: | ||
73. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024093.png ; $2 r > 2$ ; confidence 0.903 | 73. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024093.png ; $2 r > 2$ ; confidence 0.903 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014017.png ; $j _ { n } ( \zeta ) = \Gamma ( \frac { n } { 2 } ) ( \frac { 2 } { \zeta } ) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta ),$ ; confidence 0.903 | + | 74. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014017.png ; $j _ { n } ( \zeta ) = \Gamma \left( \frac { n } { 2 } \right) \left( \frac { 2 } { \zeta } \right) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta ),$ ; confidence 0.903 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160117.png ; $x _ { i j^ | + | 75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160117.png ; $x _ { i j^{\prime} }$ ; confidence 0.903 |
76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020018.png ; $\nu = n$ ; confidence 0.903 | 76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020018.png ; $\nu = n$ ; confidence 0.903 | ||
Line 172: | Line 172: | ||
86. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002090.png ; $\sum Y$ ; confidence 0.903 | 86. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002090.png ; $\sum Y$ ; confidence 0.903 | ||
− | 87. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001066.png ; $i _ { 1 } : H ^ { 1 } ( D ^ { \prime } | + | 87. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001066.png ; $i _ { 1 } : H ^ { 1 } ( D ^ { \prime R} ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.903 |
88. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162012.png ; $L _ { p }$ ; confidence 0.903 | 88. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162012.png ; $L _ { p }$ ; confidence 0.903 | ||
Line 192: | Line 192: | ||
96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004066.png ; $| \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.903 | 96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004066.png ; $| \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.903 | ||
− | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240223.png ; $\zeta _ { i } = \ | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240223.png ; $\zeta _ { i } = \mathsf{E} ( z _ { i } )$ ; confidence 0.903 |
98. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417037.png ; $M / \Gamma$ ; confidence 0.903 | 98. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417037.png ; $M / \Gamma$ ; confidence 0.903 | ||
Line 198: | Line 198: | ||
99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903 | 99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170129.png ; $L ^ { 2 } = pt$ ; confidence 0.902 | + | 100. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170129.png ; $L ^ { 2 } = \operatorname {pt}$ ; confidence 0.902 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002065.png ; $x = x ^ { + } x ^ { - } , \quad x ^ { + } \ | + | 101. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002065.png ; $x = x ^ { + } x ^ { - } , \quad x ^ { + } \bigwedge ( x ^ { - } ) ^ { - 1 } = e,$ ; confidence 0.902 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320108.png ; $\operatorname { lim } ( V _ { | + | 102. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320108.png ; $\operatorname { lim } ( V _ { \overline{1} } ) \neq 0$ ; confidence 0.902 |
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023061.png ; $H _ { n } = \operatorname { rist } _ { G } ( n )$ ; confidence 0.902 | 103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023061.png ; $H _ { n } = \operatorname { rist } _ { G } ( n )$ ; confidence 0.902 | ||
Line 226: | Line 226: | ||
113. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004011.png ; $x \neq 0 ( \operatorname { mod } 2 \pi )$ ; confidence 0.902 | 113. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004011.png ; $x \neq 0 ( \operatorname { mod } 2 \pi )$ ; confidence 0.902 | ||
− | 114. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011076.png ; $[ \underline { f } \square _ { \alpha } ( x ) , \overline { f } _ { \alpha } ( x ) ]$ ; confidence 0.902 | + | 114. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011076.png ; $\left[ \underline { f } \square _ { \alpha } ( x ) , \overline { f } _ { \alpha } ( x ) \right]$ ; confidence 0.902 |
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302201.png ; $P _ { K }$ ; confidence 0.902 | 115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302201.png ; $P _ { K }$ ; confidence 0.902 | ||
Line 236: | Line 236: | ||
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042022.png ; $\otimes$ ; confidence 0.902 | 118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042022.png ; $\otimes$ ; confidence 0.902 | ||
− | 119. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160190.png ; $\Sigma ^ { 1 | + | 119. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160190.png ; $\Sigma ^ { 1 _ { 1 }}$ ; confidence 0.902 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700095.png ; $\ | + | 120. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700095.png ; $\mathbf{false} \equiv \lambda x y . y$ ; confidence 0.902 |
121. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301408.png ; $\int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.902 | 121. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301408.png ; $\int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.902 | ||
Line 260: | Line 260: | ||
130. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200404.png ; $\Lambda _ { D } ( a , x )$ ; confidence 0.901 | 130. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200404.png ; $\Lambda _ { D } ( a , x )$ ; confidence 0.901 | ||
− | 131. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m064510131.png ; $A _ { | + | 131. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m064510131.png ; $A _ { g }$ ; confidence 0.901 |
132. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029015.png ; $T _ { m } ( a , b ) = ( a + b - 1 ) \vee 0$ ; confidence 0.901 | 132. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029015.png ; $T _ { m } ( a , b ) = ( a + b - 1 ) \vee 0$ ; confidence 0.901 | ||
− | 133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 },$ ; confidence 0.901 | + | 133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times \mathbf{Z} _ { 2 },$ ; confidence 0.901 |
134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120103.png ; $f ( \phi | \theta ^ { ( t ) } )$ ; confidence 0.901 | 134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120103.png ; $f ( \phi | \theta ^ { ( t ) } )$ ; confidence 0.901 | ||
Line 296: | Line 296: | ||
148. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009097.png ; $L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.901 | 148. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009097.png ; $L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.901 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018057.png ; $G ( A ) = \cap _ { \epsilon | + | 149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018057.png ; $G ( A ) = \cap _ { \epsilon > 0} H ( A _ { \epsilon } )$ ; confidence 0.901 |
150. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010112.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ ; confidence 0.901 | 150. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010112.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ ; confidence 0.901 | ||
Line 312: | Line 312: | ||
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180112.png ; $c _ { i } ^ { U }$ ; confidence 0.900 | 156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180112.png ; $c _ { i } ^ { U }$ ; confidence 0.900 | ||
− | 157. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032012.png ; $p ( x | + | 157. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032012.png ; $p ( x . y ) = p ( x ) + p ( y )$ ; confidence 0.900 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006035.png ; $\{ ( \tau _ { j } , l _ { j } ) \}$ ; confidence 0.900 | + | 158. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006035.png ; $\{ ( \tau _ { j } , \text{l} _ { j } ) \}$ ; confidence 0.900 |
159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002061.png ; $\pi _ { n } ( X , Y ) = [ \Sigma ^ { n } X , Y ] \cong [ X , \Omega ^ { n } Y ],$ ; confidence 0.900 | 159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002061.png ; $\pi _ { n } ( X , Y ) = [ \Sigma ^ { n } X , Y ] \cong [ X , \Omega ^ { n } Y ],$ ; confidence 0.900 | ||
Line 322: | Line 322: | ||
161. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017061.png ; $l + n > 2$ ; confidence 0.900 | 161. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017061.png ; $l + n > 2$ ; confidence 0.900 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040132.png ; $IPC$ ; confidence 0.900 | + | 162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040132.png ; $\text{IPC}$ ; confidence 0.900 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040581.png ; $S 5 ^ { W }$ ; confidence 0.900 | + | 163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040581.png ; $\text{S} 5 ^ { \text{W} }$ ; confidence 0.900 |
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190158.png ; $h _ { 1 } \cup h _ { 2 }$ ; confidence 0.900 | 164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190158.png ; $h _ { 1 } \cup h _ { 2 }$ ; confidence 0.900 | ||
Line 340: | Line 340: | ||
170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005015.png ; $0 \leq b _ { j } \leq 1$ ; confidence 0.900 | 170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005015.png ; $0 \leq b _ { j } \leq 1$ ; confidence 0.900 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002023.png ; $t \in I$ ; confidence 0.900 | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002023.png ; $t \in \mathbf{I}$ ; confidence 0.900 |
172. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102206.png ; $K _ { i } ( X )$ ; confidence 0.900 | 172. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102206.png ; $K _ { i } ( X )$ ; confidence 0.900 | ||
Line 372: | Line 372: | ||
186. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025340/c02534010.png ; $|$ ; confidence 0.899 | 186. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025340/c02534010.png ; $|$ ; confidence 0.899 | ||
− | 187. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003020.png ; $w \in \ | + | 187. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003020.png ; $w \in \mathcal{E} ^ { \prime } ( \Omega )$ ; confidence 0.899 |
188. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012014.png ; $d _ { 0 } : O G \rightarrow O G ^ { \prime } , \quad d _ { A } : A G \rightarrow A G ^ { \prime }$ ; confidence 0.899 | 188. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012014.png ; $d _ { 0 } : O G \rightarrow O G ^ { \prime } , \quad d _ { A } : A G \rightarrow A G ^ { \prime }$ ; confidence 0.899 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028010.png ; $\{ | + | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028010.png ; $\{ f_{m} \}$ ; confidence 0.899 |
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240496.png ; $s = 2$ ; confidence 0.899 | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240496.png ; $s = 2$ ; confidence 0.899 | ||
− | 191. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300407.png ; $[ x y z ] = - [ y x z ]$ ; confidence 0.899 | + | 191. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300407.png ; $[ x y z ] = - [ y x z ],$ ; confidence 0.899 |
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027086.png ; $W ( \overline { \rho } ) = \overline { W ( \rho ) }$ ; confidence 0.899 | 192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027086.png ; $W ( \overline { \rho } ) = \overline { W ( \rho ) }$ ; confidence 0.899 | ||
Line 400: | Line 400: | ||
200. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010027.png ; $A _ { p } ( G )$ ; confidence 0.899 | 200. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010027.png ; $A _ { p } ( G )$ ; confidence 0.899 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002023.png ; $\nabla _ { A } | + | 201. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002023.png ; $\nabla _ { A } * F _ { A } = 0,$ ; confidence 0.899 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i12002010.png ; $\times \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) S _ { \mu , i \tau } ( x ) | \Gamma ( \frac { 1 - \mu + i \tau } { 2 } ) | ^ { 2 } g ( \tau ) d \tau.$ ; confidence 0.899 | + | 202. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i12002010.png ; $\times \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) S _ { \mu , i \tau } ( x ) \left| \Gamma ( \frac { 1 - \mu + i \tau } { 2 } ) \right| ^ { 2 } g ( \tau ) d \tau.$ ; confidence 0.899 |
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110193.png ; $\left\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + 1 } { \varepsilon } , | y | < \varepsilon \right\},$ ; confidence 0.899 | 203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110193.png ; $\left\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + 1 } { \varepsilon } , | y | < \varepsilon \right\},$ ; confidence 0.899 | ||
Line 410: | Line 410: | ||
205. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019026.png ; $\lambda ( L ) = \operatorname { sup } \{ E ( f ) : f \in L , \| f \| _ { L _ { 2 } ( \Omega ) } = 1 \}$ ; confidence 0.899 | 205. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019026.png ; $\lambda ( L ) = \operatorname { sup } \{ E ( f ) : f \in L , \| f \| _ { L _ { 2 } ( \Omega ) } = 1 \}$ ; confidence 0.899 | ||
− | 206. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027560/c0275606.png ; $k = Q$ ; confidence 0.899 | + | 206. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027560/c0275606.png ; $k = \mathbf{Q}$ ; confidence 0.899 |
207. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222044.png ; $h < n$ ; confidence 0.899 | 207. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222044.png ; $h < n$ ; confidence 0.899 | ||
Line 420: | Line 420: | ||
210. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120128.png ; $\hat { \tau } : C \rightarrow Y$ ; confidence 0.898 | 210. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120128.png ; $\hat { \tau } : C \rightarrow Y$ ; confidence 0.898 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014018.png ; $B = ( b _ { i | + | 211. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014018.png ; $B = ( b _ { i , j} )$ ; confidence 0.898 |
212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120114.png ; $T ( . )$ ; confidence 0.898 | 212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120114.png ; $T ( . )$ ; confidence 0.898 | ||
− | 213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302907.png ; $ | + | 213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302907.png ; $\top \otimes \top = \top $ ; confidence 0.898 |
214. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840379.png ; $L _ { 2 } = L _ { 2 } [ 0 , \infty )$ ; confidence 0.898 | 214. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840379.png ; $L _ { 2 } = L _ { 2 } [ 0 , \infty )$ ; confidence 0.898 | ||
Line 458: | Line 458: | ||
229. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010025.png ; $d s _ { M } ^ { 2 } = d t ^ { 2 } + f ( t ) d s _ { N } ^ { 2 },$ ; confidence 0.898 | 229. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010025.png ; $d s _ { M } ^ { 2 } = d t ^ { 2 } + f ( t ) d s _ { N } ^ { 2 },$ ; confidence 0.898 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006079.png ; $S \Rightarrow \rho \Rightarrow q$ ; confidence 0.898 | + | 230. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006079.png ; $\mathcal{S} \Rightarrow \rho \Rightarrow q$ ; confidence 0.898 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002046.png ; $GF ( q )$ ; confidence 0.897 | + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002046.png ; $\operatorname {GF} ( q )$ ; confidence 0.897 |
232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015057.png ; $r ^ { \prime } ( A ) = \operatorname { lim } _ { n \rightarrow \infty } \beta ( A ^ { n } ).$ ; confidence 0.897 | 232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015057.png ; $r ^ { \prime } ( A ) = \operatorname { lim } _ { n \rightarrow \infty } \beta ( A ^ { n } ).$ ; confidence 0.897 | ||
Line 466: | Line 466: | ||
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202302.png ; $\Omega ^ { k } ( M ; T M ) = \Gamma ( \wedge ^ { k } T ^ { * } M \otimes T M )$ ; confidence 0.897 | 233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202302.png ; $\Omega ^ { k } ( M ; T M ) = \Gamma ( \wedge ^ { k } T ^ { * } M \otimes T M )$ ; confidence 0.897 | ||
− | 234. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003068.png ; $P \ | + | 234. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003068.png ; $P \tilde{T}$ ; I'm not sure. |
235. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300603.png ; $C ^ { 2 } ( - \infty , + \infty )$ ; confidence 0.897 | 235. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300603.png ; $C ^ { 2 } ( - \infty , + \infty )$ ; confidence 0.897 | ||
Line 472: | Line 472: | ||
236. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004010.png ; $x , y , z , u , v , w \in U$ ; confidence 0.897 | 236. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004010.png ; $x , y , z , u , v , w \in U$ ; confidence 0.897 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897 | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq \text{Fm}$ ; confidence 0.897 |
238. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735084.png ; $L u = f$ ; confidence 0.897 | 238. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735084.png ; $L u = f$ ; confidence 0.897 | ||
Line 502: | Line 502: | ||
251. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897 | 251. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897 | ||
− | 252. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897 | + | 252. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi ,$ ; confidence 0.897 |
253. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040108.png ; $G \in \mathcal{R}$ ; confidence 0.897 | 253. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040108.png ; $G \in \mathcal{R}$ ; confidence 0.897 | ||
Line 508: | Line 508: | ||
254. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615048.png ; $\gamma _ { k }$ ; confidence 0.897 | 254. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615048.png ; $\gamma _ { k }$ ; confidence 0.897 | ||
− | 255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201105.png ; $\nabla .D = q_ f;$ ; confidence 0.897 | + | 255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201105.png ; $\nabla . \mathbf{D} = q_ f;$ ; confidence 0.897 |
256. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090203.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 ) / ( u ^ { s } - u )$ ; confidence 0.897 | 256. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090203.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 ) / ( u ^ { s } - u )$ ; confidence 0.897 | ||
Line 516: | Line 516: | ||
258. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306609.png ; $Q _ { n } ( z , \tau ) = \phi _ { n } ( z ) + \tau \phi _ { n } ^ { * } ( z )$ ; confidence 0.897 | 258. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306609.png ; $Q _ { n } ( z , \tau ) = \phi _ { n } ( z ) + \tau \phi _ { n } ^ { * } ( z )$ ; confidence 0.897 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007087.png ; $H ^ { 1 } = H ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.897 | + | 259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007087.png ; $H ^ { 1 } = H ^ { 1 } ( \Gamma , k , \mathbf{v} ; P ( k ) )$ ; confidence 0.897 |
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034059.png ; $f = \sum f _ { n } \varphi _ { n }$ ; confidence 0.897 | 260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034059.png ; $f = \sum f _ { n } \varphi _ { n }$ ; confidence 0.897 | ||
Line 526: | Line 526: | ||
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896 | 263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200508.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } \operatorname { Im } K _ { 1 / 2 | + | 264. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200508.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } \operatorname { Im } K _ { 1 / 2 + i \tau} ( x ) f ( x ) d x,$ ; confidence 0.896 |
265. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734028.png ; $\partial S$ ; confidence 0.896 | 265. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734028.png ; $\partial S$ ; confidence 0.896 | ||
− | 266. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001059.png ; $t \mapsto \sqrt { - | + | 266. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001059.png ; $t \mapsto \sqrt { - 1 }t$ ; confidence 0.896 |
267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002010.png ; $g \neq 1$ ; confidence 0.896 | 267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002010.png ; $g \neq 1$ ; confidence 0.896 | ||
Line 568: | Line 568: | ||
284. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004010.png ; $\alpha \in \mathbf{Z} _ { + } ^ { n } , | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }.$ ; confidence 0.896 | 284. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004010.png ; $\alpha \in \mathbf{Z} _ { + } ^ { n } , | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }.$ ; confidence 0.896 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006046.png ; $| x _ { j } | \leq | x _ { i }$ ; confidence 0.896 | + | 285. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006046.png ; $| x _ { j } | \leq | x _ { i }|$ ; confidence 0.896 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006045.png ; $( D \alpha D ) ( D \beta D ) = D \alpha D \beta D = D \alpha ( \ | + | 286. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006045.png ; $( D \alpha D ) ( D \beta D ) = D \alpha D \beta D = D \alpha ( \bigcup _ { \beta ^ { \prime } } D \beta ^ { \prime } ) =$ ; confidence 0.896 |
287. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014032.png ; $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } } \dots$ ; confidence 0.896 | 287. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014032.png ; $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } } \dots$ ; confidence 0.896 | ||
Line 590: | Line 590: | ||
295. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028084.png ; $F ( f ) = F _ { \phi } ( f ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \int _ { \partial D _ { \epsilon } } f ( z ) \overline { \phi ( z ) } d \sigma,$ ; confidence 0.895 | 295. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028084.png ; $F ( f ) = F _ { \phi } ( f ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \int _ { \partial D _ { \epsilon } } f ( z ) \overline { \phi ( z ) } d \sigma,$ ; confidence 0.895 | ||
− | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240363.png ; $SS _ { H }$ ; confidence 0.895 | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240363.png ; $\text{SS} _ { \mathcal{H} }$ ; confidence 0.895 |
297. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008030.png ; $n = k + l$ ; confidence 0.895 | 297. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008030.png ; $n = k + l$ ; confidence 0.895 |
Revision as of 13:02, 10 May 2020
List
1. ; $D _ { z _ { 0 } , r } : = \{ z : | z - z _ { 0 } | \leq r \} \in D$ ; confidence 0.905
2. ; $f _ { S } = 1 - \frac { 3 \sum _ { i = 1 } ^ { n } | R _ { i } - S _ { i } | } { n ^ { 2 } - 1 }.$ ; confidence 0.905
3. ; $\nu = \xi / h$ ; confidence 0.905
4. ; $( \psi [ 1 ] \varphi ) _ { x } = - \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ { x },$ ; confidence 0.905
5. ; $[ a , c ]$ ; confidence 0.905
6. ; $\operatorname { limsup } _ { j \rightarrow \infty } \frac { 1 } { j } \operatorname { log } | f _ { j } |,$ ; confidence 0.905
7. ; $\mathcal{T} ( S )$ ; confidence 0.905
8. ; $L \Delta$ ; confidence 0.905
9. ; $A _ { \epsilon }$ ; confidence 0.905
10. ; $Y ( \omega , x ) = \sum _ { n \in \mathbf{Z} } L ( n ) x ^ { - n - 2 }$ ; confidence 0.905
11. ; $\gamma ( s )$ ; confidence 0.905
12. ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905
13. ; $\int _ { 0 } ^ { \infty } \psi ( f ^ { * } ( s ) / w ( s ) ) w ( s ) d s < \infty,$ ; confidence 0.905
14. ; $e$ ; confidence 0.905
15. ; $( N \times N )$ ; confidence 0.905
16. ; $c ( y ) = \| K ( . , y ) \|$ ; confidence 0.905
17. ; $\alpha_i$ ; confidence 0.905
18. ; $\{ ( x _ { i } , y _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.905
19. ; $C _ { 1 } > 0$ ; confidence 0.905
20. ; $\mathbf{C} [ F ]$ ; confidence 0.905
21. ; $\tau _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.905
22. ; $\hat { \mu } ( X _ { i } ) = \sum _ { X _ { j } \leq X _ { i } } \mu ( X _ { j } )$ ; confidence 0.905
23. ; $[ f , g ] = \int _ { a } ^ { b } f \bar{g} r d x$ ; confidence 0.905
24. ; $\varphi _ { 1 }$ ; confidence 0.905
25. ; $\operatorname{mod} p$ ; confidence 0.905
26. ; $\nabla \times \mathbf{E} + \frac { 1 } { c } \frac { \partial \mathbf{B} } { \partial t } = 0;$ ; confidence 0.905
27. ; $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.905
28. ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty , | \varphi _ { j } ( x ) | < c , \forall j , x.$ ; confidence 0.905
29. ; $S = \mathbf{T} ^ { 2 }$ ; confidence 0.905
30. ; $D \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.905
31. ; $\hat { f } \in L ^ { 1 } ( \mathbf{R} )$ ; confidence 0.905
32. ; $p \neq q$ ; confidence 0.905
33. ; $x , y , z \in G$ ; confidence 0.905
34. ; $L _ { 1 } \geq L _ { 2 }$ ; confidence 0.905
35. ; $\operatorname { PrSu } ( P )$ ; confidence 0.905
36. ; $S ( x , r )$ ; confidence 0.905
37. ; $M _ { 0 } \approx M _ { 1 }$ ; confidence 0.905
38. ; $A ^ { - 1 } K = I$ ; confidence 0.905
39. ; $z \mapsto z + k$ ; confidence 0.905
40. ; $= \frac { 1 } { 2 } \left( \frac { \Theta _ { \Delta } ( q ) } { \eta ( q ) ^ { 24 } } + \frac { \eta ( q ) ^ { 24 } } { \eta ( q ^ { 2 } ) ^ { 24 } } \right) +$ ; confidence 0.904
41. ; $x \rightarrow - \infty$ ; confidence 0.904
42. ; $4.2$ ; confidence 0.904
43. ; $\| 0 \| = 0,$ ; confidence 0.904
44. ; $R = \mathbf{Z} _ { p } [ [ \Gamma ] ]$ ; confidence 0.904
45. ; $\Pi _ { 2 }$ ; confidence 0.904
46. ; $F \mathbf{c} _ { k }$ ; confidence 0.904
47. ; $Q _ { r } ( R )$ ; confidence 0.904
48. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { 2 } r ( n x ) = \delta ( x ).$ ; confidence 0.904
49. ; $= x _ { 2 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 0 } } { x _ { 2 } } ) Y ( Y ( u , x _ { 0 } ) v , x _ { 2 } \right),$ ; confidence 0.904
50. ; $g ( F ( u ) ) = \{ g ( v ) : v \in F ( u ) \}$ ; confidence 0.904
51. ; $\mathbf{F}$ ; confidence 0.904
52. ; $\langle [ A ] , \phi \rangle$ ; confidence 0.904
53. ; $K ( G )$ ; confidence 0.904
54. ; $\mathcal{B}$ ; confidence 0.904
55. ; $C > 0$ ; confidence 0.904
56. ; $A _ { 0 }$ ; confidence 0.904
57. ; $\theta _ { 3 }$ ; confidence 0.904
58. ; $\omega _ { 0 } ( G ) = 1$ ; confidence 0.904
59. ; $[ x , x ] > 0$ ; confidence 0.904
60. ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 },$ ; confidence 0.904
61. ; $b \mathcal{A} _ { p }$ ; confidence 0.904
62. ; $W _ { 1 + \infty}$ ; confidence 0.904
63. ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904
64. ; $L ( \lambda ) = \lambda ^ { n } I + \lambda ^ { n - 1 } B _ { n - 1 } + \ldots + \lambda B _ { 1 } + B _ { 0 }$ ; confidence 0.904
65. ; $P ( x , D ) = \sum _ { j = 1 } ^ { n } X _ { j } ^ { 2 }$ ; confidence 0.904
66. ; $M = [ a , b ]$ ; confidence 0.904
67. ; $\mathbf{F} = \mathbf{EX}_4$ ; confidence 0.904
68. ; $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ ; confidence 0.904
69. ; $\operatorname{cocat}( X )$ ; confidence 0.904
70. ; $c _ { m , n } = \sqrt { n } ( n / ( 4 e ( m + n ) ) ) ^ { n }$ ; confidence 0.903
71. ; $S _ { i } = \pm 1$ ; confidence 0.903
72. ; $\mathfrak { D } ( P , x ) T = M ( T ) ^ { \epsilon }$ ; confidence 0.903
73. ; $2 r > 2$ ; confidence 0.903
74. ; $j _ { n } ( \zeta ) = \Gamma \left( \frac { n } { 2 } \right) \left( \frac { 2 } { \zeta } \right) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta ),$ ; confidence 0.903
75. ; $x _ { i j^{\prime} }$ ; confidence 0.903
76. ; $\nu = n$ ; confidence 0.903
77. ; $t , g _ { i } , t ^ { - 1 }$ ; confidence 0.903
78. ; $w : \mathbf{R} \times S ^ { 1 } \rightarrow M$ ; confidence 0.903
79. ; $\varphi + ( k ) = S ( - k ) \varphi _ { - } ( k ),$ ; confidence 0.903
80. ; $\langle p , y \rangle = 0$ ; confidence 0.903
81. ; $\Phi ^ { m } \in C ^ { 2 } ( \overline { D } _ { m } )$ ; confidence 0.903
82. ; $\operatorname{coev}_V : \underline { 1 } \rightarrow V \otimes V ^ { * }$ ; confidence 0.903
83. ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
84. ; $H _ { \mathcal{H} }$ ; confidence 0.903
85. ; $G / B$ ; confidence 0.903
86. ; $\sum Y$ ; confidence 0.903
87. ; $i _ { 1 } : H ^ { 1 } ( D ^ { \prime R} ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.903
88. ; $L _ { p }$ ; confidence 0.903
89. ; $M _ { i } > 0$ ; confidence 0.903
90. ; $L _ { p } ( 1 - s , \chi ) = G _ { \chi } ( u ^ { s } - 1 ) / ( u ^ { s } - 1 )$ ; confidence 0.903
91. ; $X ^ { \perp }$ ; confidence 0.903
92. ; $[ a _ { i } ^ { - } , a _ { i } ^ { + } ]$ ; confidence 0.903
93. ; $X = M \oplus L$ ; confidence 0.903
94. ; $z \in \{ | z | \geq \rho \} \cup \{ | \operatorname { arc } z | < \kappa \}$ ; confidence 0.903
95. ; $\{ 0,1 \} ^ { n }$ ; confidence 0.903
96. ; $| \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.903
97. ; $\zeta _ { i } = \mathsf{E} ( z _ { i } )$ ; confidence 0.903
98. ; $M / \Gamma$ ; confidence 0.903
99. ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903
100. ; $L ^ { 2 } = \operatorname {pt}$ ; confidence 0.902
101. ; $x = x ^ { + } x ^ { - } , \quad x ^ { + } \bigwedge ( x ^ { - } ) ^ { - 1 } = e,$ ; confidence 0.902
102. ; $\operatorname { lim } ( V _ { \overline{1} } ) \neq 0$ ; confidence 0.902
103. ; $H _ { n } = \operatorname { rist } _ { G } ( n )$ ; confidence 0.902
104. ; $p _ { \alpha } \in G ^ { s } ( \Omega )$ ; confidence 0.902
105. ; $\mathbf{R} _ { + }$ ; confidence 0.902
106. ; $\operatorname { ldim } ( P ) \leq \operatorname { dim } ( Q )$ ; confidence 0.902
107. ; $\{ \phi _ { k } \}$ ; confidence 0.902
108. ; $M _ { 0 } = M _ { 0 } ^ { \prime }$ ; confidence 0.902
109. ; $| W |$ ; confidence 0.902
110. ; $Z = \{ x \in \mathbf{R} : f ( x ) = 0 \}$ ; confidence 0.902
111. ; $D _ { t } ^ { * } : ( L ^ { 2 } ) \rightarrow \Gamma ^ { - }$ ; confidence 0.902
112. ; $\hat { \eta } \Omega$ ; confidence 0.902
113. ; $x \neq 0 ( \operatorname { mod } 2 \pi )$ ; confidence 0.902
114. ; $\left[ \underline { f } \square _ { \alpha } ( x ) , \overline { f } _ { \alpha } ( x ) \right]$ ; confidence 0.902
115. ; $P _ { K }$ ; confidence 0.902
116. ; $U _ { \tau } ^ { * } = \operatorname { sup } _ { 0 \leq t < \tau} | U _ { t } |$ ; confidence 0.902
117. ; $10 / 11$ ; confidence 0.902
118. ; $\otimes$ ; confidence 0.902
119. ; $\Sigma ^ { 1 _ { 1 }}$ ; confidence 0.902
120. ; $\mathbf{false} \equiv \lambda x y . y$ ; confidence 0.902
121. ; $\int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.902
122. ; $v _{- 1}1 = v$ ; confidence 0.902
123. ; $g = \psi h$ ; confidence 0.902
124. ; $F R - R A ^ { * }$ ; confidence 0.902
125. ; $a > 1$ ; confidence 0.902
126. ; $\emptyset \neq E \subset X$ ; confidence 0.902
127. ; $\| f \| _ { * } = \operatorname { sup } _ { Q } \frac { 1 } { | Q | } \int _ { Q } | f ( t ) - f _ { Q } | d t < \infty,$ ; confidence 0.901
128. ; $n = 1$ ; confidence 0.901
129. ; $\mathcal{V} ^ { \Lambda }$ ; confidence 0.901
130. ; $\Lambda _ { D } ( a , x )$ ; confidence 0.901
131. ; $A _ { g }$ ; confidence 0.901
132. ; $T _ { m } ( a , b ) = ( a + b - 1 ) \vee 0$ ; confidence 0.901
133. ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times \mathbf{Z} _ { 2 },$ ; confidence 0.901
134. ; $f ( \phi | \theta ^ { ( t ) } )$ ; confidence 0.901
135. ; $\beta : i \rightarrow j$ ; confidence 0.901
136. ; $\mu ^ { * } ( K _ { X } + B ) = K _ { Y } + \sum _ { j = 1 } ^ { t } b _ { j } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } d _ { k } D _ { k }$ ; confidence 0.901
137. ; $\mathcal{L} ( T _ { n } | P _ { n } ) \Rightarrow N ( 0 , \Gamma )$ ; confidence 0.901
138. ; $k _ { t } ( x , x )$ ; confidence 0.901
139. ; $\| u \| _ { p , T } = ( \int _ { T } | u ( x ) | ^ { p } d x ) ^ { 1 / p }$ ; confidence 0.901
140. ; $\{ f , g \} = \sum \left( \frac { \partial f } { \partial p _ { j } } \frac { \partial g } { \partial q _ { j } } - \frac { \partial f } { \partial q _ { j } } \frac { \partial g } { \partial p _ { j } } \right).$ ; confidence 0.901
141. ; $S \neq 0$ ; confidence 0.901
142. ; $\varphi \in T$ ; confidence 0.901
143. ; $\mathcal{P} = \left( \begin{array} { c c } { \lambda _ { + } } & { 0 } \\ { 0 } & { \lambda _ { - } } \end{array} \right) , \quad \mathcal{P} ^ { N } = \left( \begin{array} { c c } { \lambda _ { + } ^ { N } } & { 0 } \\ { 0 } & { \lambda ^ { N } } \end{array} \right),$ ; confidence 0.901
144. ; $f \circ g ( \mathbf{P} ^ { 1 } )$ ; confidence 0.901
145. ; $\nabla _ { \Gamma } s : T M \rightarrow V Y$ ; confidence 0.901
146. ; $P \tilde { U }$ ; confidence 0.901
147. ; $| \operatorname { Im } z | < \delta$ ; confidence 0.901
148. ; $L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.901
149. ; $G ( A ) = \cap _ { \epsilon > 0} H ( A _ { \epsilon } )$ ; confidence 0.901
150. ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ ; confidence 0.901
151. ; $S ( f ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.901
152. ; $\operatorname { det } k ( z ) \neq 0$ ; confidence 0.901
153. ; $( U _ { 1 } \supset V _ { 1 } \supset \ldots \supset U _ { n } )$ ; confidence 0.900
154. ; $\sum _ { x \in C } v _ { x } ( f ) = 0$ ; confidence 0.900
155. ; $X \subset S ^ { N }$ ; confidence 0.900
156. ; $c _ { i } ^ { U }$ ; confidence 0.900
157. ; $p ( x . y ) = p ( x ) + p ( y )$ ; confidence 0.900
158. ; $\{ ( \tau _ { j } , \text{l} _ { j } ) \}$ ; confidence 0.900
159. ; $\pi _ { n } ( X , Y ) = [ \Sigma ^ { n } X , Y ] \cong [ X , \Omega ^ { n } Y ],$ ; confidence 0.900
160. ; $G : \mathfrak { A } \rightarrow \mathfrak { X }$ ; confidence 0.900
161. ; $l + n > 2$ ; confidence 0.900
162. ; $\text{IPC}$ ; confidence 0.900
163. ; $\text{S} 5 ^ { \text{W} }$ ; confidence 0.900
164. ; $h _ { 1 } \cup h _ { 2 }$ ; confidence 0.900
165. ; $\{ \emptyset \}$ ; confidence 0.900
166. ; $\gamma , \delta \in F ^ { * }$ ; confidence 0.900
167. ; $T p ( A _ { y } ) = A$ ; confidence 0.900
168. ; $t \wedge s = \operatorname { min } ( t , s )$ ; confidence 0.900
169. ; $\operatorname{ dim} \mathfrak { g } ^ { \alpha } < \infty$ ; confidence 0.900
170. ; $0 \leq b _ { j } \leq 1$ ; confidence 0.900
171. ; $t \in \mathbf{I}$ ; confidence 0.900
172. ; $K _ { i } ( X )$ ; confidence 0.900
173. ; $\tilde { \nabla }$ ; confidence 0.900
174. ; $Q _ { n } ( t ) = Q ( t ) + \frac { t - F _ { n } ( Q ( t ) ) } { f ( Q ( t ) ) } +$ ; confidence 0.900
175. ; $( f \times g ) ( q , p ) : = W ^ { - 1 } ( W ( f ) .W ( g ) ).$ ; confidence 0.900
176. ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.900
177. ; $\delta \nu ( X ) = \int \langle X ( x ) , V \rangle d \nu ( x , V ).$ ; confidence 0.900
178. ; $\operatorname { deg } _ { B } [ f , \Omega , C _ { i } ]$ ; confidence 0.900
179. ; $L _ { p } ( 0,1 )$ ; confidence 0.899
180. ; $P _ { j } ( x )$ ; confidence 0.899
181. ; $\{ \mathcal{L} _ { m } \}$ ; confidence 0.899
182. ; $\lambda _ { i } - \lambda _ { j }$ ; confidence 0.899
183. ; $[ x , x ] \geq 0$ ; confidence 0.899
184. ; $u _ { f } \in U$ ; confidence 0.899
185. ; $D _ { t _ { 0 } }$ ; confidence 0.899
186. ; $|$ ; confidence 0.899
187. ; $w \in \mathcal{E} ^ { \prime } ( \Omega )$ ; confidence 0.899
188. ; $d _ { 0 } : O G \rightarrow O G ^ { \prime } , \quad d _ { A } : A G \rightarrow A G ^ { \prime }$ ; confidence 0.899
189. ; $\{ f_{m} \}$ ; confidence 0.899
190. ; $s = 2$ ; confidence 0.899
191. ; $[ x y z ] = - [ y x z ],$ ; confidence 0.899
192. ; $W ( \overline { \rho } ) = \overline { W ( \rho ) }$ ; confidence 0.899
193. ; $\mathcal{R} _ { j k } ^ { i }$ ; confidence 0.899
194. ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z ) = \angle F ^ { \prime } ( \omega ) = \omega \overline { \eta } d ( \omega )$ ; confidence 0.899
195. ; $g \circ \alpha = \beta \circ f$ ; confidence 0.899
196. ; $\mathbf{q}_j$ ; confidence 0.899
197. ; $\mathfrak{D}$ ; confidence 0.899
198. ; $\frac { 1 } { n } \sum _ { k = 1 } ^ { n } f ( \lambda _ { k } ^ { ( n ) } ) = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } f ( a ( e ^ { i \theta } ) ) d \theta + o ( 1 ),$ ; confidence 0.899
199. ; $| f|$ ; confidence 0.899
200. ; $A _ { p } ( G )$ ; confidence 0.899
201. ; $\nabla _ { A } * F _ { A } = 0,$ ; confidence 0.899
202. ; $\times \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) S _ { \mu , i \tau } ( x ) \left| \Gamma ( \frac { 1 - \mu + i \tau } { 2 } ) \right| ^ { 2 } g ( \tau ) d \tau.$ ; confidence 0.899
203. ; $\left\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + 1 } { \varepsilon } , | y | < \varepsilon \right\},$ ; confidence 0.899
204. ; $\text{time}_\mathcal{A}( X )$ ; confidence 0.899
205. ; $\lambda ( L ) = \operatorname { sup } \{ E ( f ) : f \in L , \| f \| _ { L _ { 2 } ( \Omega ) } = 1 \}$ ; confidence 0.899
206. ; $k = \mathbf{Q}$ ; confidence 0.899
207. ; $h < n$ ; confidence 0.899
208. ; $\overline { P ( - \xi ) }$ ; confidence 0.899
209. ; $T _ { \lambda } ^ { + }$ ; confidence 0.898
210. ; $\hat { \tau } : C \rightarrow Y$ ; confidence 0.898
211. ; $B = ( b _ { i , j} )$ ; confidence 0.898
212. ; $T ( . )$ ; confidence 0.898
213. ; $\top \otimes \top = \top $ ; confidence 0.898
214. ; $L _ { 2 } = L _ { 2 } [ 0 , \infty )$ ; confidence 0.898
215. ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898
216. ; $g ^ { n } = 1 , E ^ { n } = F ^ { n } = 0,$ ; confidence 0.898
217. ; $A = \left( \begin{array} { c c } { B } & { C } \\ { C ^ { * } } & { D } \end{array} \right)$ ; confidence 0.898
218. ; $Y = \operatorname { Gal } ( M ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes \mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.898
219. ; $f \in H _ { c } ( D )$ ; confidence 0.898
220. ; $S \boxplus T$ ; confidence 0.898
221. ; $\overline { B } ( A )$ ; confidence 0.898
222. ; $\phi / | \phi |$ ; confidence 0.898
223. ; $z _ { 1 } = \ldots = z _ { k } = 0$ ; confidence 0.898
224. ; $H _ { 1 } : \theta = q = 1 - p$ ; confidence 0.898
225. ; $\lambda_ f ( x )$ ; confidence 0.898
226. ; $\operatorname { grad } S _ { H }$ ; confidence 0.898
227. ; $K ( s , t ) = \overline { K ( t , s ) }$ ; confidence 0.898
228. ; $G _ { X } \leq G _ { X } ^ { g };$ ; confidence 0.898
229. ; $d s _ { M } ^ { 2 } = d t ^ { 2 } + f ( t ) d s _ { N } ^ { 2 },$ ; confidence 0.898
230. ; $\mathcal{S} \Rightarrow \rho \Rightarrow q$ ; confidence 0.898
231. ; $\operatorname {GF} ( q )$ ; confidence 0.897
232. ; $r ^ { \prime } ( A ) = \operatorname { lim } _ { n \rightarrow \infty } \beta ( A ^ { n } ).$ ; confidence 0.897
233. ; $\Omega ^ { k } ( M ; T M ) = \Gamma ( \wedge ^ { k } T ^ { * } M \otimes T M )$ ; confidence 0.897
234. ; $P \tilde{T}$ ; I'm not sure.
235. ; $C ^ { 2 } ( - \infty , + \infty )$ ; confidence 0.897
236. ; $x , y , z , u , v , w \in U$ ; confidence 0.897
237. ; $\Gamma \cup \{ \varphi \} \subseteq \text{Fm}$ ; confidence 0.897
238. ; $L u = f$ ; confidence 0.897
239. ; $0 \leq s \leq l$ ; confidence 0.897
240. ; $k \times k$ ; confidence 0.897
241. ; $\alpha > 0$ ; confidence 0.897
242. ; $H _ { n } \cong L _ { n } \times \ldots \times L _ { n }$ ; confidence 0.897
243. ; $u ( t ) = e ^ { i h t }$ ; confidence 0.897
244. ; $[ x , x ] = 0$ ; confidence 0.897
245. ; $( \phi , e ^ { - i H t } \phi ) = \frac { 1 } { 2 \pi i } \int _ { C } e ^ { - i z t } ( \phi , G ( z ) \phi ) d z,$ ; confidence 0.897
246. ; $9_{42}$ ; confidence 0.897
247. ; $\phi = id$ ; confidence 0.897
248. ; $( 1 + a ^ { 2 } ) \frac { d \tau } { d \xi } =$ ; confidence 0.897
249. ; $\sum _ { k = 1 } ^ { n } | d z _ { k } | ^ { 2 }$ ; confidence 0.897
250. ; $\beta ^ { n } \neq 0$ ; confidence 0.897
251. ; $\Lambda _ { G } = 1$ ; confidence 0.897
252. ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi ,$ ; confidence 0.897
253. ; $G \in \mathcal{R}$ ; confidence 0.897
254. ; $\gamma _ { k }$ ; confidence 0.897
255. ; $\nabla . \mathbf{D} = q_ f;$ ; confidence 0.897
256. ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 ) / ( u ^ { s } - u )$ ; confidence 0.897
257. ; $\chi ( x )$ ; confidence 0.897
258. ; $Q _ { n } ( z , \tau ) = \phi _ { n } ( z ) + \tau \phi _ { n } ^ { * } ( z )$ ; confidence 0.897
259. ; $H ^ { 1 } = H ^ { 1 } ( \Gamma , k , \mathbf{v} ; P ( k ) )$ ; confidence 0.897
260. ; $f = \sum f _ { n } \varphi _ { n }$ ; confidence 0.897
261. ; $C _ { N }$ ; confidence 0.897
262. ; $f \in H _ { 0 } ^ { 1 }$ ; confidence 0.897
263. ; $A G ( 2 , q )$ ; confidence 0.896
264. ; $F ( \tau ) = \int _ { 0 } ^ { \infty } \operatorname { Im } K _ { 1 / 2 + i \tau} ( x ) f ( x ) d x,$ ; confidence 0.896
265. ; $\partial S$ ; confidence 0.896
266. ; $t \mapsto \sqrt { - 1 }t$ ; confidence 0.896
267. ; $g \neq 1$ ; confidence 0.896
268. ; $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ ; confidence 0.896
269. ; $\square _ { 2 } F _ { 1 } ( a , b ; c ; z )$ ; confidence 0.896
270. ; $s ( \zeta ) \in E ^ { * }$ ; confidence 0.896
271. ; $s = m$ ; confidence 0.896
272. ; $z _ { t } ^ { ( i ) }$ ; confidence 0.896
273. ; $k \in \mathbf{Z} ^ { 0 }$ ; confidence 0.896
274. ; $c _ { i } = c _ { - i } ^ { * }$ ; confidence 0.896
275. ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
276. ; $k \in \mathbf{Z}$ ; confidence 0.896
277. ; $p _ { i } : X \rightarrow X_i$ ; confidence 0.896
278. ; $A _ { k } ^ { ( 2 ) } = U A _ { k } ^ { ( 1 ) } U ^ { - 1 } ( k = 1,2 ),$ ; confidence 0.896
279. ; $\mathcal{F} = \{ C : \operatorname { Hom } _ { \Lambda } ( \mathcal{T} , C ) = 0 \}$ ; confidence 0.896
280. ; $m ^ { \uparrow X } ( A ) = m ( B )$ ; confidence 0.896
281. ; $K ( G , 1 )$ ; confidence 0.896
282. ; $\mathcal{T} ( T _ { A } ) = \{ M _ { A } : \operatorname { Ext } _ { A } ^ { 1 } ( T , M ) = 0 \}$ ; confidence 0.896
283. ; $N _ { f } < 2 N _ { c }$ ; confidence 0.896
284. ; $\alpha \in \mathbf{Z} _ { + } ^ { n } , | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }.$ ; confidence 0.896
285. ; $| x _ { j } | \leq | x _ { i }|$ ; confidence 0.896
286. ; $( D \alpha D ) ( D \beta D ) = D \alpha D \beta D = D \alpha ( \bigcup _ { \beta ^ { \prime } } D \beta ^ { \prime } ) =$ ; confidence 0.896
287. ; $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } } \dots$ ; confidence 0.896
288. ; $Y ( N )$ ; confidence 0.896
289. ; $\epsilon ( p , m )$ ; confidence 0.896
290. ; $\theta ^ { ( t ) }$ ; confidence 0.896
291. ; $x _ { 3 }$ ; confidence 0.895
292. ; $( \mathcal{H} ^ { \otimes r } , \mathcal{H} ^ { \otimes r + k } )$ ; confidence 0.895
293. ; $29,899$ ; confidence 0.895
294. ; $\int \rho _ { \varepsilon } ( x ) d x = 1$ ; confidence 0.895
295. ; $F ( f ) = F _ { \phi } ( f ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \int _ { \partial D _ { \epsilon } } f ( z ) \overline { \phi ( z ) } d \sigma,$ ; confidence 0.895
296. ; $\text{SS} _ { \mathcal{H} }$ ; confidence 0.895
297. ; $n = k + l$ ; confidence 0.895
298. ; $( a + i b ) x = x ( c + i d ) \Leftrightarrow ( a - i b ) x = x ( c - i d ),$ ; confidence 0.895
299. ; $e = e ( w | v ) = ( w L : v K )$ ; confidence 0.895
300. ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895
Maximilian Janisch/latexlist/latex/NoNroff/33. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/33&oldid=45774