Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/29"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 29 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006027.png ; $h ^ { 0 } ( K X \otimes L ^ { * } ) = 0$ ; confidence 0.403
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280155.png ; $\omega \in \hat { G }$ ; confidence 0.940
  
2. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200809.png ; $p = \{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.261
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023020.png ; $0 \notin \overline { D }$ ; confidence 0.940
  
3. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300409.png ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504
+
3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064017.png ; $\{ \lambda _ { k } ^ { ( n ) } \} _ { k = 1 } ^ { n }$ ; confidence 0.940
  
4. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010017.png ; $\{ t = t _ { j } \} \subset R ^ { 3 }$ ; confidence 0.926
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040802.png ; $g \circ h = f$ ; confidence 0.940
  
5. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
+
5. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002013.png ; $T : S \rightarrow S$ ; confidence 0.940
  
6. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l0570209.png ; $F _ { N } + 1 \rightarrow F _ { N }$ ; confidence 0.696
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008047.png ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }+$ ; confidence 0.940
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042069.png ; $\varphi : A \rightarrow B$ ; confidence 0.999
+
7. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r08259096.png ; $Q ( R )$ ; confidence 0.940
  
8. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100207.png ; $\{ G ; , e , - 1 , \vee , \wedge \}$ ; confidence 0.069
+
8. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200104.png ; $e : A \rightarrow f [ A ]$ ; confidence 0.940
  
9. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700064.png ; $( \lambda x y \cdot y x ) A B = B A$ ; confidence 0.496
+
9. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013022.png ; $L = \operatorname { Ker } ( P _ { \sigma } )$ ; confidence 0.940
  
10. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700095.png ; $s e \equiv \lambda x y \cdot y$ ; confidence 0.902
+
10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200109.png ; $\langle u - v , j \rangle \geq 0$ ; confidence 0.940
  
11. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000182.png ; $f : D _ { A } \rightarrow D _ { A }$ ; confidence 0.996
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023034.png ; $z \in \Omega$ ; confidence 0.940
  
12. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700075.png ; $M ^ { k + 1 } N \equiv M ( M ^ { k } N )$ ; confidence 0.997
+
12. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015068.png ; $O ( \varepsilon ^ { - N } )$ ; confidence 0.940
  
13. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
+
13. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001092.png ; $\mathcal{R} _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.940
  
14. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
+
14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png ; $ \operatorname {SO} ( 3 )$ ; confidence 0.940
  
15. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003033.png ; $\operatorname { Map } ( X , Y )$ ; confidence 0.850
+
15. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002075.png ; $P = P ( G ) = \{ x \in G : x \succeq e \}$ ; confidence 0.940
  
16. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004058.png ; $( u _ { q } ^ { n } , u _ { t } ^ { n } + 1 )$ ; confidence 0.277
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180225.png ; $( M , g )$ ; confidence 0.940
  
17. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006030.png ; $G _ { 0 } ( z ) = ( z - H _ { 0 } ) ^ { - 1 }$ ; confidence 0.997
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025023.png ; $E _ { n + 1 } ( x ) = ( 1 - x ^ { 2 } ) U _ { n - 1 } ( x )$ ; confidence 0.940
  
18. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006063.png ; $\operatorname { Re } W ( z ) > 0$ ; confidence 0.984
+
18. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004033.png ; $G = \operatorname { Sp } ( 2 g , \mathbf{R} )$ ; confidence 0.940
  
19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100135.png ; $\rho \in C ^ { 0,1 / 2 } ( R ^ { n } )$ ; confidence 0.962
+
19. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007011.png ; $| q ( x ) | \leq c ( 1 + | x | ) ^ { - b } , b > 2,\text{ for large }|x|.$ ; confidence 0.940
  
20. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010026.png ; $L _ { \gamma , n } ^ { c } < \infty$ ; confidence 0.303
+
20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018029.png ; $E \times E \rightarrow \mathcal{K}$ ; confidence 0.940
  
21. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006091.png ; $( u _ { i } , u _ { t } + 1 , u _ { t } + 2 )$ ; confidence 0.489
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015027.png ; $= \left( 2 ^ { 2 t + 2 } \frac { 2 ^ { 2 t } - 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t + 1 } + 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t - 1 } + 1 } { 3 } , 2 ^ { 4 t - 2 } \right),$ ; confidence 0.940
  
22. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003030.png ; $\alpha \equiv \Pi ( \alpha )$ ; confidence 0.889
+
22. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019044.png ; $N H = G$ ; confidence 0.940
  
23. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003058.png ; $\sigma = k ^ { 2 } ( \pi - A - B - C )$ ; confidence 0.929
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008074.png ; $i , j, \in \mathbf{Z}_+ .$ ; confidence 0.940
  
24. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012091.png ; $V ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.909
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066059.png ; $| K ( x - , y ) - K ( x , y ) | \leq C | x ^ { \prime } - x | ^ { \gamma } | x - y | ^ { - n - \gamma }.$ ; confidence 0.940
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017049.png ; $f : K _ { 0 } \rightarrow K _ { 1 }$ ; confidence 0.993
+
25. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009042.png ; $\hat { \phi } ( \xi ) = \int _ { \mathbf{R} ^ { n } } \phi ( x ) e ^ { - i \xi x } d x,$ ; confidence 0.940
  
26. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170142.png ; $\operatorname { ln } t C ^ { 2 }$ ; confidence 0.375
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006032.png ; $u \in C ( [ 0 , T ] ; D ( \mathcal{A} ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940
  
27. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170141.png ; $\operatorname { ln } t C ^ { * }$ ; confidence 0.330
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004070.png ; $X = E \oplus F$ ; confidence 0.940
  
28. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202001.png ; $\{ A _ { 1 } , \dots , A _ { n } + 1 \}$ ; confidence 0.685
+
28. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002043.png ; $\operatorname { sign } ( X _ { 1 } - X _ { 2 } )$ ; confidence 0.940
  
29. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003023.png ; $\int \Psi ( x , T ( G ) ) d G ( x ) = 0$ ; confidence 0.999
+
29. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006068.png ; $q ^ { - 1 } b \rightarrow r ^ { - 1 } b$ ; confidence 0.940
  
30. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001027.png ; $\hat { f } ( x _ { i } ) = c ( x _ { i } )$ ; confidence 0.882
+
30. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059050.png ; $\operatorname { lim } _ { n \rightarrow \infty } \left[ ( - z ) \frac { P _ { n } ( - z ) } { Q _ { n } ( - z ) } \right] = z \int _ { 0 } ^ { \infty } \frac { d \psi ( t ) } { z + t },$ ; confidence 0.940
  
31. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100121.png ; $\operatorname { Aut } ( G , c )$ ; confidence 0.480
+
31. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016028.png ; $\| x \| _ { 2 } = ( x ^ { T } x ) ^ { 1 / 2 }$ ; confidence 0.940
  
32. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222021.png ; $F = 0 , d F = 0 , \dots , d ^ { m } F = 0$ ; confidence 0.281
+
32. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002060.png ; $u , v \in U$ ; confidence 0.940
  
33. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011035.png ; $\cup S ^ { n } \subset S ^ { n + 2 }$ ; confidence 0.951
+
33. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015051.png ; $X ( p \times n ) = ( X _ { ij } )$ ; confidence 0.940
  
34. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m1201209.png ; $( A ^ { \prime } , f ^ { \prime } )$ ; confidence 1.000
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012025.png ; $U : \operatorname{Cat} \rightarrow \operatorname{Graph}$ ; confidence 0.940
  
35. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012079.png ; $g : B _ { R } \rightarrow R _ { R }$ ; confidence 0.576
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940
  
36. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m1300708.png ; $\{ 0 \} \cup [ m _ { 0 } , \infty )$ ; confidence 1.000
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699015.png ; $X ^ { Y }$ ; confidence 0.940
  
37. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m1300704.png ; $M = \sqrt { P _ { \mu } P ^ { \mu } }$ ; confidence 1.000
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940
  
38. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011078.png ; $v _ { i } = \frac { D u _ { i } } { D t }$ ; confidence 0.700
+
38. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130121.png ; $\delta \neq 0$ ; confidence 0.940
  
39. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013048.png ; $( K _ { ( 1 ) } , \dots , K _ { ( n ) } )$ ; confidence 0.442
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053030.png ; $f _ { n } \rightarrow f$ ; confidence 0.940
  
40. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130132.png ; $N _ { 0 } = \lambda / ( 2 \alpha )$ ; confidence 0.997
+
40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005047.png ; $x \in \Sigma ^ { i } ( f )$ ; confidence 0.940
  
41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m1301303.png ; $\{ v _ { 1 } , \dots , v _ { \nu } \}$ ; confidence 0.717
+
41. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013036.png ; $f ^ { \prime } ( N_{*} ) < 0$ ; confidence 0.940
  
42. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016067.png ; $\hat { f n n m e } ( U ^ { \prime } )$ ; confidence 0.242
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940
  
43. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201903.png ; $f \in L _ { 2 } ( R _ { + } ; x ^ { - 1 } )$ ; confidence 0.619
+
43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260169.png ; $B = \pi ( X )$ ; confidence 0.939
  
44. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019029.png ; $m _ { i } - j = \{ x ^ { i } , x ^ { j } \}$ ; confidence 0.461
+
44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021024.png ; $k = 4,8$ ; confidence 0.939
  
45. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023059.png ; $f _ { t - s } \leq f _ { t , s } \leq f$ ; confidence 0.997
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha.$ ; confidence 0.939
  
46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023022.png ; $( D . Z _ { 1 } ) = ( D . Z _ { 2 } ) \in R$ ; confidence 0.438
+
46. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015043.png ; $\mathbf{R} ^ { n } \backslash \overline { \Omega }$ ; confidence 0.939
  
47. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230123.png ; $f ^ { \prime } \circ \alpha = f$ ; confidence 0.982
+
47. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027027.png ; $| V _ { n , p } ( f , x ) | \leq K ( c ) \operatorname { max } | f ( x ) |$ ; confidence 0.939
  
48. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025015.png ; $f : ( X , * ) \rightarrow ( Y , * )$ ; confidence 0.968
+
48. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017032.png ; $R _ { i } \rightarrow w R _ { i } w ^ { - 1 }$ ; confidence 0.939
  
49. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110020/m11002046.png ; $X \subseteq \underline { Q }$ ; confidence 0.216
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013033.png ; $f ^ { \prime } ( N_{*} ) n$ ; confidence 0.939
  
50. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h04842036.png ; $\Gamma \subset R ^ { \gamma }$ ; confidence 0.421
+
50. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180315.png ; $( \tau _ { 2 } - \tau _ { 1 } ) \circ \nabla \circ \nabla$ ; confidence 0.939
  
51. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260135.png ; $\sigma : X \rightarrow M ( A )$ ; confidence 0.999
+
51. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001026.png ; $\frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } =$ ; confidence 0.939
  
52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260179.png ; $\pi : M ( A ) \rightarrow Q ( A )$ ; confidence 0.994
+
52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005039.png ; $\beta_5$ ; confidence 0.939
  
53. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026030.png ; $\lambda ( x y ) = \lambda ( x ) y$ ; confidence 0.994
+
53. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006063.png ; $W ^ { k } L _ { \Phi } ( \Omega )$ ; confidence 0.939
  
54. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018023.png ; $\mu ( A , B ) = ( - 1 ) ^ { | B | - | A | }$ ; confidence 0.526
+
54. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006021.png ; $e : X ^ { Z \times Y } \rightarrow ( X ^ { Y } ) ^ { Z }$ ; confidence 0.939
  
55. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e1100801.png ; $X _ { 1 } , \dots , X _ { n } , \dots$ ; confidence 0.442
+
55. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110220/m11022021.png ; $W ( u )$ ; confidence 0.939
  
56. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003033.png ; $f : L A \times B \rightarrow C$ ; confidence 0.971
+
56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026061.png ; $\partial _ { s- }$ ; confidence 0.939
  
57. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006025.png ; $\lambda _ { 2 } / \lambda _ { 1 }$ ; confidence 0.981
+
57. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018059.png ; $\emptyset \neq M \subseteq E$ ; confidence 0.939
  
58. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200707.png ; $| m ( E ) | < M _ { E } , \quad m \in M$ ; confidence 0.983
+
58. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015042.png ; $f _ { X } ( X )$ ; confidence 0.939
  
59. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663069.png ; $\Delta _ { k } ^ { k } f ^ { ( s ) }$ ; confidence 0.968
+
59. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004049.png ; $\chi _ { l } ^ { \prime } ( G )$ ; confidence 0.939
  
60. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520126.png ; $N _ { 1 } \in M _ { n \times n } ( K )$ ; confidence 0.981
+
60. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003077.png ; $D B _ { 1 }$ ; confidence 0.939
  
61. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010106.png ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690
+
61. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007012.png ; $\left( \frac { \partial ^ { 2 } u } { \partial z _ { i } \partial \overline{z _ { j } }} \right)$ ; confidence 0.939
  
62. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005068.png ; $5 \oplus \circlearrowleft$ ; confidence 0.107
+
62. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008058.png ; $T \rightarrow 0$ ; confidence 0.939
  
63. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005059.png ; $\Lambda _ { \varphi , w } ^ { * }$ ; confidence 0.950
+
63. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840219.png ; $[ p ( T ) x , x ] \geq 0$ ; confidence 0.939
  
64. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200509.png ; $w : R _ { + } \rightarrow R _ { + }$ ; confidence 0.993
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012380/a01238018.png ; $m \geq n$ ; confidence 0.939
  
65. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012017.png ; $R _ { x b } \equiv R _ { a c b } ^ { c }$ ; confidence 0.106
+
65. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040111.png ; $\equiv - \operatorname { lk } ( L ) v \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { \operatorname { com } ( L ) - 2 } \operatorname { mod } ( z )$ ; confidence 0.939
  
66. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014047.png ; $[ ( 1 + \sqrt { 5 } ) / 2 , \infty )$ ; confidence 0.994
+
66. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520371.png ; $\| \partial \phi _ { i } / \partial x _ { j } \|$ ; confidence 0.939
  
67. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010084.png ; $f ( \Delta ) \subset \hat { R }$ ; confidence 0.461
+
67. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001080.png ; $S ( C ) = H \operatorname { exp } C$ ; confidence 0.938
  
68. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015045.png ; $K = \{ \overline { \Omega } \}$ ; confidence 0.997
+
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005032.png ; $n \leq p$ ; confidence 0.938
  
69. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548016.png ; $\neg p \supset ( p \supset q )$ ; confidence 0.986
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020077.png ; $[ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }$ ; confidence 0.938
  
70. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014067.png ; $f _ { \rho } ^ { C } \in C ^ { k } ( U )$ ; confidence 0.964
+
70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010020.png ; $( \neg \varphi )$ ; confidence 0.938
  
71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017075.png ; $\delta _ { A , B } ( X ) \in C _ { 2 }$ ; confidence 0.743
+
71. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702048.png ; $H ^ { i } ( \overline{X} , \overline{F} _ { n } )$ ; confidence 0.938
  
72. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017071.png ; $\delta _ { A } * _ { B } * ( X ) \in I$ ; confidence 0.306
+
72. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003017.png ; $T ^ { \prime } T$ ; confidence 0.938
  
73. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201706.png ; $\delta _ { A , A } = \delta _ { A }$ ; confidence 0.979
+
73. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025026.png ; $\mathcal{M} ( \Omega ) \subset \mathcal{D} ^ { \prime } ( \Omega ) \times \mathcal{D} ^ { \prime } ( \Omega )$ ; confidence 0.938
  
74. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002019.png ; $p = \| P | \phi \rangle \| ^ { 2 }$ ; confidence 0.473
+
74. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036011.png ; $\{ Y _ { t } , B _ { t } , \text{l} _ { t } \}$ ; confidence 0.938
  
75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001083.png ; $0 \neq K _ { 0 } \subset H ( \pi )$ ; confidence 0.917
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180158.png ; $g ^ { - 1 } : \otimes ^ { 2 } \mathcal{E} \rightarrow \mathcal{R}$ ; confidence 0.938
  
76. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003023.png ; $X \in U _ { q } ( \mathfrak { g } )$ ; confidence 0.656
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017046.png ; $\beta ( a , x ) = R \beta _ { 0 } ( a ) \Phi ( x )$ ; confidence 0.938
  
77. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003021.png ; $p _ { 0 } = \| P _ { 0 } \psi \| ^ { 2 }$ ; confidence 0.826
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010123.png ; $V _ { n }$ ; confidence 0.938
  
78. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007064.png ; $r \in s ] _ { 2 } \otimes s l _ { 2 }$ ; confidence 0.328
+
78. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004071.png ; $P _ { i } ( v )$ ; confidence 0.938
  
79. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008013.png ; $E [ T _ { p } ] = E [ W _ { p } ] + b _ { p }$ ; confidence 0.705
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012017.png ; $\sum _ { n = - \infty } ^ { \infty } | b _ { n } | \leq 10 \sum _ { n = 1 } ^ { \infty } a _ { n } ^ { * }.$ ; confidence 0.938
  
80. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070138.png ; $= ( F ( . ) , h ( . , y ) ) _ { H } = f ( y )$ ; confidence 0.489
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003077.png ; $T _ { E } M ^ { * }$ ; confidence 0.938
  
81. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007093.png ; $( f , g ) _ { H _ { 1 } } = ( f , g ) _ { H }$ ; confidence 0.996
+
81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016049.png ; $J \mapsto M ^ { t } J M$ ; confidence 0.938
  
82. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300909.png ; $\sum _ { l = 1 } ^ { r } g ( a ^ { i } x )$ ; confidence 0.368
+
82. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508017.png ; $\overline { ( h _ { \mu \nu } ) } \square ^ { T } = ( h _ { \mu \nu } )$ ; confidence 0.938
  
83. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012020.png ; $x ^ { * } x \leq y y ^ { * } + z z ^ { * }$ ; confidence 0.931
+
83. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006057.png ; $m /4$ ; confidence 0.938
  
84. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011032.png ; $\{ x \in X : x \varphi \neq x \}$ ; confidence 0.861
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938
  
85. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016023.png ; $\{ R _ { nd } ( \Omega ) : \Omega$ ; confidence 0.965
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a014310185.png ; $C \mathcal{A}$ ; confidence 0.938
  
86. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016040.png ; $c ^ { m + 1 } \rightarrow c ^ { m }$ ; confidence 0.719
+
86. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025033.png ; $U ^ { \prime \prime } \subseteq U$ ; confidence 0.938
  
87. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110130/d1101301.png ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680145.png ; $\alpha _ { i j }$ ; confidence 0.938
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002021.png ; $S N = \pi ^ { - 1 } ( N ) \subset U M$ ; confidence 0.874
+
88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066011.png ; $f _ { Q } = \frac { 1 } { | Q | } \int _ { Q } f ( t ) d t.$ ; confidence 0.938
  
89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301404.png ; $x = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013047.png ; $I / 2 - h _ { \theta } ^ { * }$ ; confidence 0.938
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040114.png ; $y = \{ y _ { 1 } , \dots , y _ { l } \}$ ; confidence 0.605
+
90. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068510/o06851012.png ; $U \subset \mathbf{R} ^ { p }$ ; confidence 0.938
  
91. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s1301309.png ; $\operatorname { har } ( F ) = 0$ ; confidence 0.952
+
91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013030.png ; $\mathbf{F} _ { p }$ ; confidence 0.938
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015030.png ; $\pi : G ( S ) \rightarrow G ( x )$ ; confidence 0.996
+
92. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006045.png ; $d _ { n } = \prod _ { p - 1 | n } p ^ { 1 + v _ { p } ( n ) },$ ; confidence 0.938
  
93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018015.png ; $\alpha \mapsto \alpha ^ { * }$ ; confidence 0.990
+
93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011013.png ; $\overset{\rightharpoonup} { \beta }$ ; confidence 0.938
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045012.png ; $T = \sum _ { t } t ( t ^ { 2 } - 1 ) / 12$ ; confidence 0.983
+
94. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011034.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i i } = 0$ ; confidence 0.938
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020073.png ; $\sigma e _ { t } = e _ { \sigma } t$ ; confidence 0.136
+
95. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200302.png ; $\operatorname{Fun}_{q} ( G )$ ; confidence 0.938
  
96. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020066.png ; $\operatorname { sgn } ( \pi )$ ; confidence 1.000
+
96. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201204.png ; $\alpha _ { k } = \int x ^ { k } d F ( x )$ ; confidence 0.938
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022027.png ; $( M ^ { \prime } , g ^ { \prime } )$ ; confidence 0.999
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030074.png ; $\mathcal{B} ( E )$ ; confidence 0.938
  
98. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049013.png ; $N _ { k } : = \{ p \in P : r ( p ) = k \}$ ; confidence 0.964
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013034.png ; $\text{SP} ^ { - } ( n )$ ; confidence 0.938
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230119.png ; $f ( \lambda ( X X ^ { \prime } ) )$ ; confidence 0.887
+
99. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690110.png ; $\leq 6$ ; confidence 0.938
  
100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230155.png ; $A _ { i } A _ { j } = \delta _ { i j } A$ ; confidence 0.848
+
100. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015016.png ; $\xi \in \mathcal{A}$ ; confidence 0.938
  
101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023088.png ; $P ( | XX ^ { \prime } | \neq 0 ) = 1$ ; confidence 0.753
+
101. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058034.png ; $E \times \mathbf{R}$ ; confidence 0.937
  
102. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051090.png ; $P = \{ u \in V : \sigma ( u ) = 0 \}$ ; confidence 0.992
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020029.png ; $p ( t ) = t ^ { N } - 1$ ; confidence 0.937
  
103. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510144.png ; $L _ { 1 } , L _ { 2 } \subset Z ^ { 0 }$ ; confidence 0.929
+
103. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002098.png ; $\mathcal{P} - \phi$ ; confidence 0.937
  
104. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510149.png ; $P = \{ u \in V : \sigma ( u ) = 0 \}$ ; confidence 0.993
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200168.png ; $\operatorname{dim}V^\lambda<\infty$ ; confidence 0.937
  
105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051091.png ; $N = \{ u \in V : \sigma ( u ) > 0 \}$ ; confidence 0.996
+
105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003011.png ; $| 1 \rangle$ ; confidence 0.937
  
106. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053068.png ; $St = \sum _ { P } \pm 1 _ { F } ^ { G }$ ; confidence 0.250
+
106. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005069.png ; $\delta ( a b ) = \delta ( a ) b + a \delta ( b )$ ; confidence 0.937
  
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540121.png ; $\langle \alpha , b \rangle =$ ; confidence 0.606
+
107. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001097.png ; $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.937
  
108. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026019.png ; $f = ( f ^ { ( n ) } ) _ { n \in N _ { 0 } }$ ; confidence 0.733
+
108. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120117.png ; $B \triangleleft R$ ; confidence 0.937
  
109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027021.png ; $y _ { 1 } , m , < \ldots < y _ { m , m }$ ; confidence 0.269
+
109. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807041.png ; $\overline{X} = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } X$ ; confidence 0.937
  
110. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059039.png ; $( - z ) P _ { N } ( - z ) / Q _ { N } ( - z )$ ; confidence 0.456
+
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030153.png ; $( B _ { X ^ *} , w ^ { * } )$ ; confidence 0.937
  
111. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028025.png ; $\{ X , Y \} \approx \{ D Y , D X \}$ ; confidence 0.988
+
111. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010028.png ; $\mathcal{F} = \{ Y : \operatorname { Hom } _ { H } ( T , Y ) = 0 \}$ ; confidence 0.937
  
112. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067014.png ; $( f ^ { \prime } , g ^ { \prime } )$ ; confidence 1.000
+
112. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001028.png ; $- \infty < t _ { 1 } \leq \ldots \leq t _ { n } < \infty$ ; confidence 0.937
  
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320136.png ; $R = \sum a _ { i } \otimes b _ { 2 }$ ; confidence 0.441
+
113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010017.png ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } ) \in \mathcal{A} _ { p } ( G )$ ; confidence 0.937
  
114. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032011.png ; $x \otimes y \rightarrow x . y$ ; confidence 0.493
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012900/a01290064.png ; $L _ { 2 } ( X , \mu )$ ; confidence 0.937
  
115. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034062.png ; $n = \operatorname { dim } M / 2$ ; confidence 0.987
+
115. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008042.png ; $K _ { p } ( f )$ ; confidence 0.937
  
116. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063017.png ; $M f ( y _ { 1 } , \ldots , y _ { s } ) M$ ; confidence 0.461
+
116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937
  
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064042.png ; $H ( \alpha ) H ( \alpha ^ { - 1 } )$ ; confidence 0.553
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007092.png ; $< d$ ; confidence 0.937
  
118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300507.png ; $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ; confidence 0.610
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040157.png ; $y \in X ^ { \prime }$ ; confidence 0.937
  
119. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008012.png ; $V _ { t } = \mu _ { x } + t d t S - P d t +$ ; confidence 0.753
+
119. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014021.png ; $H ( x ) = 1$ ; confidence 0.937
  
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050129.png ; $f : V ^ { N } \rightarrow W ^ { X }$ ; confidence 0.163
+
120. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001023.png ; $f ( x ) \mapsto S _ { N } ( f ; x ),$ ; confidence 0.937
  
121. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050105.png ; $f : R ^ { 5 } \rightarrow R ^ { 5 }$ ; confidence 0.954
+
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302303.png ; $( L _ { + } , L _ { - } , L _ { 0 } )$ ; confidence 0.937
  
122. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005067.png ; $\Sigma ^ { i } ( g ) = \emptyset$ ; confidence 0.810
+
122. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023086.png ; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.937
  
123. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200501.png ; $f : V ^ { N } \rightarrow W ^ { p }$ ; confidence 0.349
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160177.png ; $x _ { j t } , y _ { i t } \geq 0.$ ; confidence 0.937
  
124. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005050.png ; $G _ { n } ( R ^ { n } \times R ^ { p } )$ ; confidence 0.727
+
124. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002066.png ; $A  *  X$ ; confidence 0.937
  
125. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009017.png ; $\alpha \in T _ { X } \cap T _ { Y }$ ; confidence 0.284
+
125. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002066.png ; $| x | = x ^ { + } ( x ^ { - } ) ^ { - 1 },$ ; confidence 0.937
  
126. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006015.png ; $\gamma = ( 3 \pi ^ { 2 } ) ^ { 2 / 3 }$ ; confidence 1.000
+
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050022.png ; $W ^ { + }$ ; confidence 0.937
  
127. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006090.png ; $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$ ; confidence 0.948
+
127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032036.png ; $\mathcal{T} ( V )$ ; confidence 0.937
  
128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060106.png ; $\rho _ { \text { atom } } ^ { TF }$ ; confidence 0.759
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024012.png ; $d f / f$ ; confidence 0.937
  
129. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009023.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \}$ ; confidence 0.542
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301062.png ; $h > 0$ ; confidence 0.937
  
130. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010031.png ; $X = \{ Y : T \otimes _ { B } Y = 0 \}$ ; confidence 0.997
+
130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015046.png ; $\xi \in \mathcal{A} ^ { \prime \prime }$ ; confidence 0.937
  
131. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301404.png ; $q : Z ^ { Q _ { 0 } } \rightarrow Z$ ; confidence 0.321
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003046.png ; $( a b ) ^ { - 1 } = 1$ ; confidence 0.937
  
132. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013018.png ; $\chi ( z ) = ( z ^ { x } ) _ { x \in Z }$ ; confidence 0.303
+
132. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027014.png ; $\langle w , f \rangle \neq 0$ ; confidence 0.937
  
133. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021041.png ; $| u - u _ { N } | = O ( h ^ { \alpha } )$ ; confidence 0.910
+
133. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010015.png ; $c ( n )$ ; confidence 0.937
  
134. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200183.png ; $[ m + 1 , m + K ( 3 + \pi / \kappa ) ]$ ; confidence 0.997
+
134. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130106.png ; $ \begin{cases} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) }, \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon - \mu _ { 1 } L ) }, \\ { \frac { d L } { d t } = \mu _ { 2 } L F - \nu L }, \end{cases} $ ; confidence 0.937
  
135. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002016.png ; $\geq \frac { 1 } { 16 \pi ^ { 2 } }$ ; confidence 0.999
+
135. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006085.png ; $A = [ a_{i, j} ]$ ; confidence 0.937
  
136. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002027.png ; $B = \{ y : \hat { f } ( y ) \neq 0 \}$ ; confidence 0.954
+
136. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003074.png ; $\mathcal{T} ( M | B )$ ; confidence 0.937
  
137. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005034.png ; $L _ { \infty } ( T ) \cap VMO ( T )$ ; confidence 0.781
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400110.png ; $V \rightarrow H ^ { 0 } ( G / B , \xi )$ ; confidence 0.937
  
138. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v09604019.png ; $P ( Y \backslash T ) \} P ( Z < T )$ ; confidence 0.224
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022180/c02218013.png ; $r + 1$ ; confidence 0.937
  
139. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005076.png ; $V = \oplus _ { n \in Z } V _ { ( n ) }$ ; confidence 0.445
+
139. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520121.png ; $d _ { 1 } = \ldots = d _ { q } = 1$ ; confidence 0.936
  
140. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002057.png ; $H ^ { k } ( f ^ { - 1 } ( y ) , G ) \neq 0$ ; confidence 0.995
+
140. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002085.png ; $s _ { j } ( T ) = \operatorname { inf } \{ \| T - R \| : \operatorname { rank } R \leq j \} , j \geq 0.$ ; confidence 0.936
  
141. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002033.png ; $\overline { H } \square ^ { x }$ ; confidence 0.629
+
141. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001097.png ; $C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta,$ ; confidence 0.936
  
142. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007053.png ; $q ^ { \prime } = ( 1 - \lambda ) q$ ; confidence 0.999
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007067.png ; $f \in C ^ { k } [ N , N + M ]$ ; confidence 0.936
  
143. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011086.png ; $Cd = \frac { D } { \rho V ^ { 2 } b }$ ; confidence 0.870
+
143. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016085.png ; $\text{NSPACE }[ n ] \neq\text{co NSPACE }[n]$ ; confidence 0.936
  
144. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006042.png ; $k ^ { n } ( B _ { N } ( h / k ) - B _ { N } )$ ; confidence 0.309
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027049.png ; $N ( t ) = \sum _ { 1 } ^ { \infty } I ( S _ { k } \leq t )$ ; confidence 0.936
  
145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030145.png ; $\gamma _ { 0 } \in \Gamma _ { W }$ ; confidence 0.210
+
145. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003077.png ; $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } / \mathcal{N}$ ; confidence 0.936
  
146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001025.png ; $\operatorname { deg } ( C ) = 0$ ; confidence 0.997
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025067.png ; $q + 1$ ; confidence 0.936
  
147. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005011.png ; $( C ^ { \infty } ( R ^ { m } , R ) , A )$ ; confidence 0.319
+
147. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320139.png ; $R ^ { 21 } = \sum b _ { i } \otimes a _ { i }$ ; confidence 0.936
  
148. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005053.png ; $f _ { A } : A ^ { m } \rightarrow A$ ; confidence 0.935
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024025.png ; $\mathbf{y} , \beta , \mathbf{e}$ ; confidence 0.936
  
149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005042.png ; $J ^ { \prime } _ { 0 } ( R ^ { n } , R )$ ; confidence 0.170
+
149. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027044.png ; $b _ { i j k }$ ; confidence 0.936
  
150. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005019.png ; $S ^ { 1 } ( \mathfrak { g } ^ { * } )$ ; confidence 0.547
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480114.png ; $b _ { n }$ ; confidence 0.936
  
151. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200602.png ; $( C ^ { \infty } ( R ^ { m } , R ) , A )$ ; confidence 0.466
+
151. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020217.png ; $\sum | I _ { j } | \leq \frac { 1 } { \alpha } \int _ { I } | u ( \vartheta ) | d \vartheta.$ ; confidence 0.936
  
152. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006090.png ; $D \in \operatorname { Der } A$ ; confidence 0.840
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005087.png ; $\left| \prod _ { j = 1 } ^ { k } ( \lambda - A ( t _ { j } ) ) ^ { - 1 } \right\| _ { X } \leq M ( \lambda - \beta ) ^ { - k },$ ; confidence 0.936
  
153. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006088.png ; $T T _ { A } \rightarrow T T _ { A }$ ; confidence 0.985
+
153. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005067.png ; $\sum _ { i , j = 1 } ^ { n } \overline { c } _ { i } K _ { S } ( w _ { j } , w _ { i } ) c _ { j } \geq 0$ ; confidence 0.936
  
154. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007030.png ; $( \beta _ { k } | \beta _ { k } ) = 0$ ; confidence 1.000
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040182.png ; $b \in G$ ; confidence 0.936
  
155. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007044.png ; $\theta ( \alpha , \alpha ) = 1$ ; confidence 1.000
+
155. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030138.png ; $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ ; confidence 0.936
  
156. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007070.png ; $\sigma ( D , X ) = ( a D + b X ) ^ { k }$ ; confidence 0.715
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008035.png ; $s , t \in \mathbf{R}$ ; confidence 0.936
  
157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002086.png ; $y x ^ { - 1 } \in P$ ; confidence 0.936
  
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000
+
158. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009030.png ; $H _ { K } ( \zeta ) = \operatorname { sup } _ { z \in K } \operatorname { Re } ( \zeta z )$ ; confidence 0.936
  
159. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090163.png ; $\Delta ( \lambda ) ^ { \perp }$ ; confidence 1.000
+
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
  
160. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011062.png ; $u \mapsto ( u , \psi ) \varphi$ ; confidence 0.995
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png ; $K _ { 0 }$ ; confidence 0.936
  
161. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110160.png ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 }$ ; confidence 0.563
+
161. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001044.png ; $\mathcal{F} : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.936
  
162. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300802.png ; $u _ { t } - 6 u u _ { x } + u _ { X X X } = 0$ ; confidence 0.321
+
162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008015.png ; $\mathcal{O} _ { S } ^ { * }$ ; confidence 0.936
  
163. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010030.png ; $f : R _ { + } \rightarrow R _ { + }$ ; confidence 0.994
+
163. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028029.png ; $\Gamma \subset D \cap Q$ ; confidence 0.936
  
164. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202002.png ; $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ ; confidence 0.926
+
164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030087.png ; $S = - \Delta + W$ ; confidence 0.936
  
165. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013047.png ; $\Delta H + 2 H ( H ^ { 2 } - K + 1 ) = 0$ ; confidence 0.997
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021050.png ; $k_b$ ; confidence 0.936
  
166. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001022.png ; $Z [ x ( n - k ) ] = z ^ { - k } Z ( x ( n ) )$ ; confidence 0.997
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356026.png ; $f ( x x ^ { * } ) < + \infty$ ; confidence 0.936
  
167. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010070.png ; $\{ 0 , \{ 0 \} , \{ 0 , \{ 0 \} \} \}$ ; confidence 0.579
+
167. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016061.png ; $L _ { p } ( S \times T )$ ; confidence 0.936
  
168. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002024.png ; $\overline { f } - ap = - \infty$ ; confidence 0.560
+
168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o1300302.png ; $\operatorname { su } ( 3 )$ ; confidence 0.936
  
169. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008058.png ; $U ( \alpha + 2 ) / U ( \alpha + 1 )$ ; confidence 0.998
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007098.png ; $2 m$ ; confidence 0.936
  
170. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110147.png ; $\beta = \beta ( \alpha , c ) < 1$ ; confidence 0.989
+
170. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011017.png ; $C ( 10 )$ ; confidence 0.936
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
+
171. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003061.png ; $ki$ ; confidence 0.936
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240515.png ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674
+
172. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014055.png ; $\mathcal{R} ( \phi ) \subset \sigma _ { e } ( T _ { \phi } ) \subset \sigma ( T _ { \phi } ) \subset \operatorname { conv } ( \mathcal{R} ( \phi ) ).$ ; confidence 0.936
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483
+
173. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300108.png ; $Q _ { D _ { + } } - Q _ { D _ { - } } = \left\{ \begin{array} { l } { Q _ { D _ { 0 } } } \text{ for a self}\square\text{ crossing}, \\ { z ^ { 2 } Q _ { D _ { 0 } } }\text{ for a mixed crossing}, \end{array} \right.$ ; confidence 0.936
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002018.png ; $H : A \times I \rightarrow Z$ ; confidence 0.575
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240403.png ; $\text{SS} _ { e }$ ; confidence 0.936
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977
+
175. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004018.png ; $\zeta ( s , a )$ ; confidence 0.936
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002010.png ; $\mu _ { n } = \mu \circ T ^ { - n }$ ; confidence 0.987
+
176. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006055.png ; $\operatorname { ldim } ( P ) = \operatorname { dim } ( \mathcal{C} ( P ) )$ ; confidence 0.936
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040410.png ; $Mod ^ { * } L D = Mod ^ { * } S _ { D }$ ; confidence 0.366
+
177. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040170.png ; $1 \leq s \leq d / ( d - 1 )$ ; confidence 0.936
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004011.png ; $( 40 \lambda \varphi _ { 1 } )$ ; confidence 0.696
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031077.png ; $\operatorname{lim}S _ { R } ^ { \delta } ( x ) = f ( x )$ ; confidence 0.936
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040526.png ; $Co _ { Alg } FMod ^ { * } L _ { D } A$ ; confidence 0.246
+
179. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211059.png ; $X ^ { 2 } ( \hat { \theta } _ { n } )$ ; confidence 0.936
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023096.png ; $P = \left( \frac { u _ { i } u _ { j } ^ { * } - v _ { i } v _ { j } ^ { * } } { 1 - f _ { i } f _ { j } ^ { * } } \right) _ { i , j = 0 } ^ { n - 1 },$ ; confidence 0.936
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006023.png ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565
+
181. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010135.png ; $R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 }$ ; confidence 0.936
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008026.png ; $f ( x ) \leq \alpha g ( x ; m , s )$ ; confidence 0.999
+
182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008020.png ; $\mathcal{M} ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.936
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023042.png ; $c = \operatorname { cos } \alpha$ ; confidence 0.935
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013029.png ; $( \theta _ { n } - 1 , X _ { n } - 1 )$ ; confidence 0.663
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220138.png ; $c ( i , m ) = L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m }$ ; confidence 0.935
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015076.png ; $\operatorname { Ad } ( g ) = 1$ ; confidence 0.367
+
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090278.png ; $\Lambda \supseteq \Phi$ ; confidence 0.935
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015013.png ; $\operatorname { Ker } ( Ad )$ ; confidence 0.657
+
186. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002042.png ; $\alpha \notin \{ 0,1 \}$ ; confidence 0.935
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016023.png ; $\alpha = B / \overline { u } T$ ; confidence 0.506
+
187. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023054.png ; $X_i \in \mathcal{X} ( M )$ ; confidence 0.935
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180122.png ; $R \subseteq \square ^ { n } U$ ; confidence 0.757
+
188. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080154.png ; $\text{l} = 3 g - 3$ ; confidence 0.935
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023033.png ; $p _ { 1 } , \dots , p _ { \gamma }$ ; confidence 0.265
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013710/a01371012.png ; $K = 0$ ; confidence 0.935
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023039.png ; $\partial \Omega \in C ^ { 2 }$ ; confidence 0.998
+
190. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001029.png ; $F_{ ( i )}$ ; confidence 0.935
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027083.png ; $Q _ { x } ^ { * } w \rightarrow w$ ; confidence 0.519
+
191. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014051.png ; $\operatorname { lim } _ { \rho \rightarrow 0 } [ f ( x _ { 0 } + \gamma \rho n _ { 0 } ) - f _ { \rho } ^ { C } ( x _ { 0 } + \gamma \rho n _ { 0 } ) ] = D ( x _ { 0 } ) \psi ( \gamma ),$ ; confidence 0.935
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024011.png ; $\sum _ { x \in C } v _ { x } ( f ) = 0$ ; confidence 0.900
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007059.png ; $< x \operatorname { exp } ( - \frac { 1 } { 25 } \left( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } \right).$ ; confidence 0.935
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028012.png ; $\operatorname { cn } ( u | k )$ ; confidence 0.891
+
193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029016.png ; $F \rightarrow E \rightarrow B$ ; confidence 0.935
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028011.png ; $\operatorname { sn } ( u | k )$ ; confidence 0.919
+
194. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006023.png ; $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.935
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028013.png ; $\operatorname { dn } ( u | k )$ ; confidence 0.884
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017034.png ; $\lambda _ { k } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } },$ ; confidence 0.935
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026026.png ; $K \otimes _ { A } A ^ { \prime }$ ; confidence 0.860
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300205.png ; $x \circ y : = ( x y + y x ) / 2$ ; confidence 0.935
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260102.png ; $X = ( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.523
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005072.png ; $D _ { A } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { A _ { 1 } } & { 0 } & { 0 } & { 0 } \\ { A _ { 2 } } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - A _ { 2 } } & { A _ { 1 } } & { 0 } \end{array} \right),$ ; confidence 0.935
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026021.png ; $y _ { c } \cong \mathfrak { y }$ ; confidence 0.731
+
198. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007060.png ; $\theta ( 1 ) = - \pi / 2$ ; confidence 0.935
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027028.png ; $\chi = \text { trace o } \rho$ ; confidence 0.660
+
199. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040048.png ; $X ^ { G } \hookrightarrow X$ ; confidence 0.935
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280158.png ; $\{ \alpha _ { t } \} _ { t \in G }$ ; confidence 0.985
+
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005053.png ; $f _ { A } : A ^ { m } \rightarrow A$ ; confidence 0.935
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028031.png ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981
+
201. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002084.png ; $k _ { \mu } ^ { \prime \prime } ( \theta ) = V _ { F } ( k _ { \mu } ^ { \prime } ( \theta ) )$ ; confidence 0.935
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029012.png ; $HF _ { * } ^ { inst } ( Y , P _ { Y } )$ ; confidence 0.347
+
202. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230103.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { p } \geq 0$ ; confidence 0.935
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030032.png ; $\overline { \theta ( A ) } = B$ ; confidence 0.970
+
203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180319.png ; $S ( g )$ ; confidence 0.935
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a1303106.png ; $( n \operatorname { log } n )$ ; confidence 0.994
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $\mathcal{C} ^ { \infty } ( \mathcal{D} ( \Omega ) )$ ; confidence 0.935
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032051.png ; $P ( S _ { N } = K ) = J ( J + K ) ^ { - 1 }$ ; confidence 0.607
+
205. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007034.png ; $q ( x ) \in L ^ { 2 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.935
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150106.png ; $\xi : X \rightarrow B O _ { N }$ ; confidence 0.503
+
206. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011037.png ; $C = C _ { 0 } \oplus C _ { 1 },$ ; confidence 0.935
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356
+
207. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006019.png ; $\text{Pl}$ ; confidence 0.935
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021078.png ; $\mu \in \mathfrak { h } ^ { * }$ ; confidence 0.645
+
208. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s1300104.png ; $a , b \in \mathbf{Z}$ ; confidence 0.935
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066054.png ; $| K ( x , y ) | = O ( | x - y | ^ { - x } )$ ; confidence 0.882
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024059.png ; $( i , j )$ ; confidence 0.935
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002051.png ; $b : U \times U \rightarrow R$ ; confidence 0.588
+
210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009071.png ; $t ^ { \lambda }$ ; confidence 0.935
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002021.png ; $b : U \times V \rightarrow R$ ; confidence 0.825
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008035.png ; $( K , v )$ ; confidence 0.935
  
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001043.png ; $V _ { i } = F _ { i } / \Gamma _ { i }$ ; confidence 0.974
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024010.png ; $D _ { + }$ ; confidence 0.935
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200307.png ; $\{ c _ { n } , m ( f ) : n , m \in Z \}$ ; confidence 0.462
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001034.png ; $\frac { \partial v } { \partial t } = - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - 2 \left( v \frac { \partial u } { \partial x } + u \frac { \partial v } { \partial x } \right).$ ; confidence 0.935
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300206.png ; $\operatorname { sp } ( J , x )$ ; confidence 0.757
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029038.png ; $X \rightarrow B ( \mu )$ ; confidence 0.935
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004018.png ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611
+
215. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004020.png ; $\operatorname { inf } _ { \nu \in \tilde{A} } \tilde{I} ( \nu ).$ ; confidence 0.935
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005020.png ; $( P _ { N } ) = ( P _ { N } ( z _ { 0 } ) )$ ; confidence 0.383
+
216. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004021.png ; $\xi < \eta < \kappa$ ; confidence 0.935
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png ; $M _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018021.png ; $z_0$ ; confidence 0.935
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005069.png ; $z \in \overline { B } _ { E } * *$ ; confidence 0.909
+
218. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006024.png ; $\operatorname{det} \; \operatorname{ind} \overline { \partial }$ ; confidence 0.935
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300608.png ; $\| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.514
+
219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015013.png ; $( \text{A} )$ ; confidence 0.935
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009031.png ; $\xi = e ^ { i \alpha | n \tau } f$ ; confidence 0.207
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028062.png ; $U _ { \mu }$ ; confidence 0.935
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022099.png ; $H _ { P } ^ { 2 } ( X _ { / R } , A ( j ) )$ ; confidence 0.278
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300604.png ; $\| x \|  = 0$ ; confidence 0.935
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022060.png ; $H _ { M } ^ { * } ( X , Q ( * ) ) _ { Z } =$ ; confidence 0.276
+
222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023034.png ; $\xi \in \partial _ { c } g ( x )$ ; confidence 0.935
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012018.png ; $v ^ { \perp } \subset T _ { p } M$ ; confidence 0.417
+
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005044.png ; $w \in E ^ { * * }$ ; confidence 0.935
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015072.png ; $E _ { P _ { p } } ( \alpha ) = f ( p )$ ; confidence 0.321
+
224. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200803.png ; $A \in C ^ { n \times n }$ ; confidence 0.934
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b1201709.png ; $( I - \Delta ) ^ { \alpha / 2 } f$ ; confidence 0.964
+
225. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005034.png ; $n > p$ ; confidence 0.934
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018057.png ; $\varphi \rightarrow \psi$ ; confidence 0.998
+
226. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003034.png ; $K = ( 1 + k ) / ( 1 - k )$ ; confidence 0.934
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018060.png ; $\varphi \rightarrow \chi$ ; confidence 0.998
+
227. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001063.png ; $B _ { R } = \{ x : | x | \leq R \}$ ; confidence 0.934
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012034.png ; $\int _ { R } \varphi ( t ) d t = 1$ ; confidence 0.994
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002040.png ; $A ^ { \alpha } f$ ; confidence 0.934
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202207.png ; $\int \phi ( v ) Q ( f ) ( v ) d v = 0$ ; confidence 0.998
+
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006093.png ; $\Gamma _ { x } ( t , s )$ ; confidence 0.934
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301505.png ; $\Gamma ^ { \prime } = \Gamma$ ; confidence 0.998
+
230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080135.png ; $F ^ { \prime } ( c )$ ; confidence 0.934
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024019.png ; $k _ { 1 } , \dots , k _ { \gamma }$ ; confidence 0.249
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023067.png ; $s _ { j }$ ; confidence 0.934
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017041.png ; $\psi _ { t } = \psi ( t , S _ { t } )$ ; confidence 0.996
+
232. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023035.png ; $v = v _ { 1 } + v _ { 2 }$ ; confidence 0.934
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017040.png ; $\phi _ { t } = \phi ( t , S _ { t } )$ ; confidence 0.991
+
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013014.png ; $m _ { i j } = - 1$ ; confidence 0.934
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030042.png ; $\psi = \psi ( y ; \eta ) \neq 0$ ; confidence 0.617
+
234. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005059.png ; $x ^ { n } = \operatorname { sinh } u ^ { n },$ ; confidence 0.934
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310107.png ; $\delta > | 1 | n p - 1 | 2 n | - 1 / 2$ ; confidence 0.574
+
235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017060.png ; $L = \phi$ ; confidence 0.934
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031077.png ; $S _ { R } ^ { \delta } ( x ) = f ( x )$ ; confidence 0.936
+
236. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001066.png ; $J \pi ( g ) = \pi ( \tau ( g ) ) J$ ; confidence 0.934
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032075.png ; $a _ { n } + m = F ( a _ { n } , a _ { n } )$ ; confidence 0.087
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034060.png ; $\sum _ { 0 } ^ { \infty } | f _ { n } | \operatorname { sup } _ { U } | \varphi _ { n } ( z ) | \leq \operatorname { sup } _ { K } | f ( z ) |.$ ; confidence 0.934
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032074.png ; $( a _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.323
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049019.png ; $E \in \Sigma$ ; confidence 0.934
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032085.png ; $\dot { k } = \dot { k } ( i ) \in N$ ; confidence 0.465
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029086.png ; $i \neq \operatorname { dim } _ { A } M$ ; confidence 0.934
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034059.png ; $f = \sum f _ { n } \varphi _ { n }$ ; confidence 0.897
+
240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054078.png ; $\{ a , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036034.png ; $\epsilon ( \alpha , b , c , d )$ ; confidence 0.582
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a120250106.png ; $\operatorname {PG} ( 2 , q ),$ ; confidence 0.934
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019063.png ; $\overline { a _ { 1 } } / q _ { 1 }$ ; confidence 0.150
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021099.png ; $B _ { k } = M _ { 1 } \supset \ldots \supset M _ { s } = 0$ ; confidence 0.934
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037056.png ; $L _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.960
+
243. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006023.png ; $SU( N )$ ; confidence 0.934
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037054.png ; $D _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.974
+
244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010045.png ; $\mathcal{A} = \mathcal{A} _ { 0 } \oplus \mathcal{A} _ { 1 } \oplus \ldots$ ; confidence 0.934
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037052.png ; $C _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.987
+
245. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011014.png ; $+ i \infty$ ; confidence 0.934
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200126.png ; $\oplus _ { i } \overline { G }$ ; confidence 0.072
+
246. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; $Y ( t ) \in \mathbf{R} ^ { m }$ ; confidence 0.934
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040049.png ; $\xi = G \times ^ { \varrho } C$ ; confidence 0.615
+
247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203103.png ; $x _ { i } \in [ 0,1 ] ^ { d }$ ; confidence 0.934
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040097.png ; $R * ( b ) H _ { R } \subset H _ { R }$ ; confidence 0.528
+
248. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501021.png ; $\{ B _ { r } , \phi _ { r } , g _ { r } \}$ ; confidence 0.934
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400130.png ; $w ( p - \delta ) + \delta \in C$ ; confidence 0.610
+
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015032.png ; $\mathcal{E} _ { M } ( \mathcal{D} ( \Omega ) ) / \mathcal{N} ( \mathcal{D} ( \Omega ) )$ ; confidence 0.934
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420149.png ; $V = k 1 \oplus g \subset U ( g )$ ; confidence 0.646
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024032.png ; $m \times p$ ; confidence 0.934
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044073.png ; $B ^ { G } = T _ { H } ^ { G } ( B ^ { H } )$ ; confidence 0.995
+
251. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024220/c0242206.png ; $x , y \in V$ ; confidence 0.934
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046040.png ; $( \oplus _ { b } G _ { \neq B } b )$ ; confidence 0.553
+
252. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012031.png ; $h ( G ) \leq h ( C _ { G } ( A ) ) + 2 \text{l} ( A )$ ; confidence 0.934
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026082.png ; $g : B [ R ] \rightarrow R ^ { n }$ ; confidence 0.880
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450163.png ; $\operatorname{Aut}( X )$ ; confidence 0.934
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026052.png ; $\operatorname { log } _ { 5 }$ ; confidence 0.406
+
254. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019036.png ; $V = x ^ { * } P x$ ; confidence 0.934
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028060.png ; $\square _ { 2 } \pi _ { * } ^ { s }$ ; confidence 0.310
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002022.png ; $\int _ { \epsilon } ^ { \rho }$ ; confidence 0.934
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
+
256. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011033.png ; $\frac { \partial q f } { \partial t } + \nabla .  \mathbf{J} = 0.$ ; confidence 0.934
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109204.png ; $- \infty < f ( x ) \leq \infty$ ; confidence 0.999
+
257. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200109.png ; $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$ ; confidence 0.934
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b11092020.png ; $^ { * } ( y - x ) \leq f ( y ) - f ( x )$ ; confidence 0.474
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012920/a01292091.png ; $h \rightarrow 0$ ; confidence 0.934
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290204.png ; $[ H _ { m } ^ { i } ( R ) ] _ { n } = ( 0 )$ ; confidence 0.143
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620110.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 + } \operatorname { Im } m _ { + } ( \lambda ) = \infty$ ; confidence 0.934
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290215.png ; $X = \operatorname { Proj } R$ ; confidence 0.850
+
260. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011060.png ; $\eta ( . )$ ; confidence 0.934
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290189.png ; $R = \oplus _ { N } \geq 0 R _ { N }$ ; confidence 0.563
+
261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026041.png ; $\lambda ^ { * } ( x ) = ( \lambda ( x ^ { * } ) ) ^ { * }$ ; confidence 0.934
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053013.png ; $( \Omega _ { 1 } , A _ { 1 } , \nu )$ ; confidence 0.994
+
262. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011083.png ; $( x , \xi ) \mapsto ( T x , \square ^ { t } T ^ { - 1 } \xi )$ ; confidence 0.934
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053026.png ; $h _ { \gamma } \rightarrow f$ ; confidence 0.473
+
263. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007066.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \eta \in \partial \Delta$ ; confidence 0.934
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300141.png ; $D ( 2 n 1 ) \times D ( 2 n 2 ) ^ { 1 }$ ; confidence 0.523
+
264. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002012.png ; $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$ ; confidence 0.934
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010149.png ; $\zeta \in \partial \Omega$ ; confidence 1.000
+
265. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020990/c02099038.png ; $x \in ( a , b )$ ; confidence 0.934
  
266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003033.png ; $V ^ { \aleph } \subset U ^ { X }$ ; confidence 0.156
+
266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080152.png ; $\mu = \mu ( z , \bar{z} ) \partial _ { \bar{z} } \otimes d \bar{z}$ ; confidence 0.934
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002022.png ; $\int _ { \epsilon } ^ { \rho }$ ; confidence 0.934
+
267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010026.png ; $\{ \square _ { j k } ^ { i } \}$ ; confidence 0.934
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007055.png ; $Ab ^ { Z C } \approx Ab ^ { C }$ ; confidence 0.662
+
268. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011059.png ; $R _ { n } ( x ) = \frac { G _ { p , n } ( x ) } { \int _ { 0 } ^ { \infty } ( 1 - e ^ { - z } ) G _ { p , n } ( d z ) },$ ; confidence 0.934
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008076.png ; $x _ { i j } ^ { k } \in R ^ { n _ { 1 } }$ ; confidence 0.489
+
269. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043770/g043770138.png ; $w_j$ ; confidence 0.933
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080108.png ; $E , A _ { k } \in R ^ { n \times m }$ ; confidence 0.854
+
270. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201106.png ; $C ( n )$ ; confidence 0.933
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008077.png ; $x _ { i j } ^ { v } \in R ^ { x _ { 2 } }$ ; confidence 0.404
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057025.png ; $\mathbf{R} ^ { 2 n }$ ; confidence 0.933
  
272. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006042.png ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031070.png ; $\delta > ( n - 1 ) | 1 / 2 - 1 / p |$ ; confidence 0.933
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007094.png ; $Y = X ^ { \prime } Y ^ { \prime }$ ; confidence 0.999
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040798.png ; $f : \mathbf{A} \twoheadrightarrow \mathbf{C}$ ; confidence 0.933
  
274. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009017.png ; $\vec { c } 0 = \vec { c } _ { N } = 2$ ; confidence 0.263
+
274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024018.png ; $K ( a , b ) \equiv 0$ ; confidence 0.933
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c0221008.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - n / 2 }$ ; confidence 0.996
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010011.png ; $E ( G )$ ; confidence 0.933
  
276. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014052.png ; $\Delta = \{ ( x , x ) : x \in X \}$ ; confidence 0.983
+
276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040103.png ; $P ( x , D ) = L ^ { m } + Q ( x , D )$ ; confidence 0.933
  
277. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015016.png ; $\varphi \in A _ { N } ( R ^ { n } )$ ; confidence 0.923
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015020/b01502010.png ; $\operatorname { Ext } ( A , B )$ ; confidence 0.933
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015075.png ; $u \in G ^ { \infty } ( \Omega )$ ; confidence 0.974
+
278. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408021.png ; $\Omega ( X ; A , B ) = \{ p : [ 0,1 ] \rightarrow X : p ( 0 ) \in A , p ( 1 ) \in B \}.$ ; confidence 0.933
  
279. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015027.png ; $\varphi \in A _ { q } ( R ^ { n } )$ ; confidence 0.895
+
279. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002078.png ; $\{ f \in H ^ { \infty } : \| \phi - f \| _ { L } \infty \leq \rho \}$ ; confidence 0.933
  
280. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170173.png ; $1 , \dots , r _ { m } \in C [ z , z ]$ ; confidence 0.174
+
280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320137.png ; $B_{M\otimes N}(m\otimes n)= \sum b_i n \otimes a_i m $ ; confidence 0.933
  
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017068.png ; $M ( n ) \equiv M ( n ) ( \gamma )$ ; confidence 0.998
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026790/c026790150.png ; $\Delta j$ ; confidence 0.933
  
282. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016094.png ; $A , B \subseteq \Sigma ^ { * }$ ; confidence 0.964
+
282. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691023.png ; $h ( T _ { t } x )$ ; confidence 0.933
  
283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
+
283. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003013.png ; $\mu ( z ) = k \frac { \overline { \varphi } ( z ) } { | \varphi ( z ) | } , 0 < k < 1,$ ; confidence 0.933
  
284. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018042.png ; $E \otimes \ldots \otimes E$ ; confidence 0.960
+
284. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300607.png ; $\frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega,$ ; confidence 0.933
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180279.png ; $\Phi \in \otimes ^ { \Psi } E$ ; confidence 0.354
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010028.png ; $\frac { d } { d t } G ( t ) = \mathcal{L} G ( t ) + [ \mathcal{L} , \mathcal{A} ^ { * } ] G ( t ),$ ; confidence 0.933
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018011.png ; $\lambda ^ { k } T ( \lambda g )$ ; confidence 0.996
+
286. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201603.png ; $X T - I$ ; confidence 0.933
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012210/a0122105.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566
+
287. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201201.png ; $\theta ^ { * } = \operatorname { arg } \operatorname { max } _ { \theta \in \Theta } \int f ( \theta , \phi ) d \phi,$ ; confidence 0.933
  
288. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019051.png ; $c _ { q } = ( - 1 ) ^ { q } q ! / ( 2 q ) !$ ; confidence 0.382
+
288. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004047.png ; $K _ { 1 } \# K _ { 2 }$ ; confidence 0.933
  
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202009.png ; $D ^ { k + 1 } \times S ^ { m - k - 1 }$ ; confidence 0.985
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png ; $t _ { n }$ ; confidence 0.933
  
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210128.png ; $\Delta _ { N } ^ { * } ( \theta )$ ; confidence 0.618
+
290. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003036.png ; $F _ { M } : G \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.933
  
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202207.png ; $: ( X , * ) \rightarrow ( X , * )$ ; confidence 0.619
+
291. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200204.png ; $a = 1 / 2$ ; confidence 0.933
  
292. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202302.png ; $A _ { 0 } \subset R ^ { \gamma }$ ; confidence 0.519
+
292. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201403.png ; $E ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.933
  
293. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025068.png ; $\hat { A } ( t | \hat { \beta } )$ ; confidence 0.543
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096025.png ; $A \rightarrow A$ ; confidence 0.933
  
294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028037.png ; $\pi : F T o p \rightarrow C r s$ ; confidence 0.097
+
294. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014023.png ; $\forall 1 \leq i \leq r \exists 1 \leq j \leq r : A _ { i } ^ { T } = A _ { j }$ ; confidence 0.933
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028036.png ; $[ \pi ( X * ) , C ] \cong [ X , B C ]$ ; confidence 0.921
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027017.png ; $W _ { P } ( \rho )$ ; confidence 0.933
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030025.png ; $\square ^ { 0 } O _ { H } ^ { ( k ) }$ ; confidence 0.566
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030039.png ; $\operatorname { deg } a _ { i } = 2 i - 1$ ; confidence 0.933
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026036.png ; $\langle [ A ] , \phi \rangle$ ; confidence 0.904
+
297. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070218.png ; $T \in \Re ( C , P )$ ; confidence 0.933
  
298. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300604.png ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.983
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201109.png ; $\varphi ( a , b , 3 )$ ; confidence 0.933
  
299. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300603.png ; $C ^ { 2 } ( - \infty , + \infty )$ ; confidence 0.897
+
299. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003048.png ; $\operatorname {GF} _ { 2 }$ ; confidence 0.933
  
300. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006010.png ; $\operatorname { ln } ( x , t )$ ; confidence 0.565
+
300. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017030.png ; $R _ { i } \rightarrow R _ { i } R _ { j }$ ; confidence 0.933

Latest revision as of 12:11, 10 May 2020

List

1. a120280155.png ; $\omega \in \hat { G }$ ; confidence 0.940

2. a12023020.png ; $0 \notin \overline { D }$ ; confidence 0.940

3. s13064017.png ; $\{ \lambda _ { k } ^ { ( n ) } \} _ { k = 1 } ^ { n }$ ; confidence 0.940

4. a130040802.png ; $g \circ h = f$ ; confidence 0.940

5. d13002013.png ; $T : S \rightarrow S$ ; confidence 0.940

6. a13008047.png ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }+$ ; confidence 0.940

7. r08259096.png ; $Q ( R )$ ; confidence 0.940

8. e1200104.png ; $e : A \rightarrow f [ A ]$ ; confidence 0.940

9. r13013022.png ; $L = \operatorname { Ker } ( P _ { \sigma } )$ ; confidence 0.940

10. m1200109.png ; $\langle u - v , j \rangle \geq 0$ ; confidence 0.940

11. a12023034.png ; $z \in \Omega$ ; confidence 0.940

12. c13015068.png ; $O ( \varepsilon ^ { - N } )$ ; confidence 0.940

13. y12001092.png ; $\mathcal{R} _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.940

14. t12001034.png ; $ \operatorname {SO} ( 3 )$ ; confidence 0.940

15. l11002075.png ; $P = P ( G ) = \{ x \in G : x \succeq e \}$ ; confidence 0.940

16. c120180225.png ; $( M , g )$ ; confidence 0.940

17. s12025023.png ; $E _ { n + 1 } ( x ) = ( 1 - x ^ { 2 } ) U _ { n - 1 } ( x )$ ; confidence 0.940

18. s13004033.png ; $G = \operatorname { Sp } ( 2 g , \mathbf{R} )$ ; confidence 0.940

19. i13007011.png ; $| q ( x ) | \leq c ( 1 + | x | ) ^ { - b } , b > 2,\text{ for large }|x|.$ ; confidence 0.940

20. s12018029.png ; $E \times E \rightarrow \mathcal{K}$ ; confidence 0.940

21. d12015027.png ; $= \left( 2 ^ { 2 t + 2 } \frac { 2 ^ { 2 t } - 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t + 1 } + 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t - 1 } + 1 } { 3 } , 2 ^ { 4 t - 2 } \right),$ ; confidence 0.940

22. f12019044.png ; $N H = G$ ; confidence 0.940

23. c12008074.png ; $i , j, \in \mathbf{Z}_+ .$ ; confidence 0.940

24. b11066059.png ; $| K ( x - , y ) - K ( x , y ) | \leq C | x ^ { \prime } - x | ^ { \gamma } | x - y | ^ { - n - \gamma }.$ ; confidence 0.940

25. m12009042.png ; $\hat { \phi } ( \xi ) = \int _ { \mathbf{R} ^ { n } } \phi ( x ) e ^ { - i \xi x } d x,$ ; confidence 0.940

26. a12006032.png ; $u \in C ( [ 0 , T ] ; D ( \mathcal{A} ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940

27. b12004070.png ; $X = E \oplus F$ ; confidence 0.940

28. k13002043.png ; $\operatorname { sign } ( X _ { 1 } - X _ { 2 } )$ ; confidence 0.940

29. e13006068.png ; $q ^ { - 1 } b \rightarrow r ^ { - 1 } b$ ; confidence 0.940

30. s13059050.png ; $\operatorname { lim } _ { n \rightarrow \infty } \left[ ( - z ) \frac { P _ { n } ( - z ) } { Q _ { n } ( - z ) } \right] = z \int _ { 0 } ^ { \infty } \frac { d \psi ( t ) } { z + t },$ ; confidence 0.940

31. c12016028.png ; $\| x \| _ { 2 } = ( x ^ { T } x ) ^ { 1 / 2 }$ ; confidence 0.940

32. b11002060.png ; $u , v \in U$ ; confidence 0.940

33. m12015051.png ; $X ( p \times n ) = ( X _ { ij } )$ ; confidence 0.940

34. d12012025.png ; $U : \operatorname{Cat} \rightarrow \operatorname{Graph}$ ; confidence 0.940

35. a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940

36. b01699015.png ; $X ^ { Y }$ ; confidence 0.940

37. a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940

38. m120130121.png ; $\delta \neq 0$ ; confidence 0.940

39. b12053030.png ; $f _ { n } \rightarrow f$ ; confidence 0.940

40. t12005047.png ; $x \in \Sigma ^ { i } ( f )$ ; confidence 0.940

41. m12013036.png ; $f ^ { \prime } ( N_{*} ) < 0$ ; confidence 0.940

42. a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940

43. m130260169.png ; $B = \pi ( X )$ ; confidence 0.939

44. w12021024.png ; $k = 4,8$ ; confidence 0.939

45. a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha.$ ; confidence 0.939

46. p12015043.png ; $\mathbf{R} ^ { n } \backslash \overline { \Omega }$ ; confidence 0.939

47. d03027027.png ; $| V _ { n , p } ( f , x ) | \leq K ( c ) \operatorname { max } | f ( x ) |$ ; confidence 0.939

48. l12017032.png ; $R _ { i } \rightarrow w R _ { i } w ^ { - 1 }$ ; confidence 0.939

49. m12013033.png ; $f ^ { \prime } ( N_{*} ) n$ ; confidence 0.939

50. c120180315.png ; $( \tau _ { 2 } - \tau _ { 1 } ) \circ \nabla \circ \nabla$ ; confidence 0.939

51. o13001026.png ; $\frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } =$ ; confidence 0.939

52. h12005039.png ; $\beta_5$ ; confidence 0.939

53. o12006063.png ; $W ^ { k } L _ { \Phi } ( \Omega )$ ; confidence 0.939

54. e13006021.png ; $e : X ^ { Z \times Y } \rightarrow ( X ^ { Y } ) ^ { Z }$ ; confidence 0.939

55. m11022021.png ; $W ( u )$ ; confidence 0.939

56. s12026061.png ; $\partial _ { s- }$ ; confidence 0.939

57. s12018059.png ; $\emptyset \neq M \subseteq E$ ; confidence 0.939

58. m12015042.png ; $f _ { X } ( X )$ ; confidence 0.939

59. v12004049.png ; $\chi _ { l } ^ { \prime } ( G )$ ; confidence 0.939

60. d12003077.png ; $D B _ { 1 }$ ; confidence 0.939

61. p13007012.png ; $\left( \frac { \partial ^ { 2 } u } { \partial z _ { i } \partial \overline{z _ { j } }} \right)$ ; confidence 0.939

62. i12008058.png ; $T \rightarrow 0$ ; confidence 0.939

63. k055840219.png ; $[ p ( T ) x , x ] \geq 0$ ; confidence 0.939

64. a01238018.png ; $m \geq n$ ; confidence 0.939

65. j130040111.png ; $\equiv - \operatorname { lk } ( L ) v \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { \operatorname { com } ( L ) - 2 } \operatorname { mod } ( z )$ ; confidence 0.939

66. n067520371.png ; $\| \partial \phi _ { i } / \partial x _ { j } \|$ ; confidence 0.939

67. q12001080.png ; $S ( C ) = H \operatorname { exp } C$ ; confidence 0.938

68. t12005032.png ; $n \leq p$ ; confidence 0.938

69. b13020077.png ; $[ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }$ ; confidence 0.938

70. z13010020.png ; $( \neg \varphi )$ ; confidence 0.938

71. l05702048.png ; $H ^ { i } ( \overline{X} , \overline{F} _ { n } )$ ; confidence 0.938

72. l06003017.png ; $T ^ { \prime } T$ ; confidence 0.938

73. m13025026.png ; $\mathcal{M} ( \Omega ) \subset \mathcal{D} ^ { \prime } ( \Omega ) \times \mathcal{D} ^ { \prime } ( \Omega )$ ; confidence 0.938

74. s13036011.png ; $\{ Y _ { t } , B _ { t } , \text{l} _ { t } \}$ ; confidence 0.938

75. c120180158.png ; $g ^ { - 1 } : \otimes ^ { 2 } \mathcal{E} \rightarrow \mathcal{R}$ ; confidence 0.938

76. a12017046.png ; $\beta ( a , x ) = R \beta _ { 0 } ( a ) \Phi ( x )$ ; confidence 0.938

77. b130010123.png ; $V _ { n }$ ; confidence 0.938

78. j13004071.png ; $P _ { i } ( v )$ ; confidence 0.938

79. b13012017.png ; $\sum _ { n = - \infty } ^ { \infty } | b _ { n } | \leq 10 \sum _ { n = 1 } ^ { \infty } a _ { n } ^ { * }.$ ; confidence 0.938

80. l12003077.png ; $T _ { E } M ^ { * }$ ; confidence 0.938

81. e12016049.png ; $J \mapsto M ^ { t } J M$ ; confidence 0.938

82. k05508017.png ; $\overline { ( h _ { \mu \nu } ) } \square ^ { T } = ( h _ { \mu \nu } )$ ; confidence 0.938

83. l13006057.png ; $m /4$ ; confidence 0.938

84. b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938

85. a014310185.png ; $C \mathcal{A}$ ; confidence 0.938

86. m12025033.png ; $U ^ { \prime \prime } \subseteq U$ ; confidence 0.938

87. a110680145.png ; $\alpha _ { i j }$ ; confidence 0.938

88. b11066011.png ; $f _ { Q } = \frac { 1 } { | Q | } \int _ { Q } f ( t ) d t.$ ; confidence 0.938

89. a12013047.png ; $I / 2 - h _ { \theta } ^ { * }$ ; confidence 0.938

90. o06851012.png ; $U \subset \mathbf{R} ^ { p }$ ; confidence 0.938

91. d12013030.png ; $\mathbf{F} _ { p }$ ; confidence 0.938

92. v12006045.png ; $d _ { n } = \prod _ { p - 1 | n } p ^ { 1 + v _ { p } ( n ) },$ ; confidence 0.938

93. d13011013.png ; $\overset{\rightharpoonup} { \beta }$ ; confidence 0.938

94. d12011034.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i i } = 0$ ; confidence 0.938

95. q1200302.png ; $\operatorname{Fun}_{q} ( G )$ ; confidence 0.938

96. k1201204.png ; $\alpha _ { k } = \int x ^ { k } d F ( x )$ ; confidence 0.938

97. a13030074.png ; $\mathcal{B} ( E )$ ; confidence 0.938

98. p13013034.png ; $\text{SP} ^ { - } ( n )$ ; confidence 0.938

99. h047690110.png ; $\leq 6$ ; confidence 0.938

100. t12015016.png ; $\xi \in \mathcal{A}$ ; confidence 0.938

101. b11058034.png ; $E \times \mathbf{R}$ ; confidence 0.937

102. a12020029.png ; $p ( t ) = t ^ { N } - 1$ ; confidence 0.937

103. h12002098.png ; $\mathcal{P} - \phi$ ; confidence 0.937

104. b130200168.png ; $\operatorname{dim}V^\lambda<\infty$ ; confidence 0.937

105. q13003011.png ; $| 1 \rangle$ ; confidence 0.937

106. w12005069.png ; $\delta ( a b ) = \delta ( a ) b + a \delta ( b )$ ; confidence 0.937

107. y12001097.png ; $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.937

108. m120120117.png ; $B \triangleleft R$ ; confidence 0.937

109. h04807041.png ; $\overline{X} = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } X$ ; confidence 0.937

110. w120030153.png ; $( B _ { X ^ *} , w ^ { * } )$ ; confidence 0.937

111. t13010028.png ; $\mathcal{F} = \{ Y : \operatorname { Hom } _ { H } ( T , Y ) = 0 \}$ ; confidence 0.937

112. q12001028.png ; $- \infty < t _ { 1 } \leq \ldots \leq t _ { n } < \infty$ ; confidence 0.937

113. f13010017.png ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } ) \in \mathcal{A} _ { p } ( G )$ ; confidence 0.937

114. a01290064.png ; $L _ { 2 } ( X , \mu )$ ; confidence 0.937

115. k12008042.png ; $K _ { p } ( f )$ ; confidence 0.937

116. t120010141.png ; $7$ ; confidence 0.937

117. c13007092.png ; $< d$ ; confidence 0.937

118. b120040157.png ; $y \in X ^ { \prime }$ ; confidence 0.937

119. w13014021.png ; $H ( x ) = 1$ ; confidence 0.937

120. l13001023.png ; $f ( x ) \mapsto S _ { N } ( f ; x ),$ ; confidence 0.937

121. c1302303.png ; $( L _ { + } , L _ { - } , L _ { 0 } )$ ; confidence 0.937

122. f12023086.png ; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.937

123. a120160177.png ; $x _ { j t } , y _ { i t } \geq 0.$ ; confidence 0.937

124. j12002066.png ; $A * X$ ; confidence 0.937

125. l11002066.png ; $| x | = x ^ { + } ( x ^ { - } ) ^ { - 1 },$ ; confidence 0.937

126. b12050022.png ; $W ^ { + }$ ; confidence 0.937

127. s12032036.png ; $\mathcal{T} ( V )$ ; confidence 0.937

128. a12024012.png ; $d f / f$ ; confidence 0.937

129. a01301062.png ; $h > 0$ ; confidence 0.937

130. t12015046.png ; $\xi \in \mathcal{A} ^ { \prime \prime }$ ; confidence 0.937

131. b12003046.png ; $( a b ) ^ { - 1 } = 1$ ; confidence 0.937

132. m12027014.png ; $\langle w , f \rangle \neq 0$ ; confidence 0.937

133. f12010015.png ; $c ( n )$ ; confidence 0.937

134. m120130106.png ; $ \begin{cases} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) }, \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon - \mu _ { 1 } L ) }, \\ { \frac { d L } { d t } = \mu _ { 2 } L F - \nu L }, \end{cases} $ ; confidence 0.937

135. g13006085.png ; $A = [ a_{i, j} ]$ ; confidence 0.937

136. i13003074.png ; $\mathcal{T} ( M | B )$ ; confidence 0.937

137. b120400110.png ; $V \rightarrow H ^ { 0 } ( G / B , \xi )$ ; confidence 0.937

138. c02218013.png ; $r + 1$ ; confidence 0.937

139. n067520121.png ; $d _ { 1 } = \ldots = d _ { q } = 1$ ; confidence 0.936

140. h12002085.png ; $s _ { j } ( T ) = \operatorname { inf } \{ \| T - R \| : \operatorname { rank } R \leq j \} , j \geq 0.$ ; confidence 0.936

141. o13001097.png ; $C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta,$ ; confidence 0.936

142. e13007067.png ; $f \in C ^ { k } [ N , N + M ]$ ; confidence 0.936

143. c13016085.png ; $\text{NSPACE }[ n ] \neq\text{co NSPACE }[n]$ ; confidence 0.936

144. b12027049.png ; $N ( t ) = \sum _ { 1 } ^ { \infty } I ( S _ { k } \leq t )$ ; confidence 0.936

145. g13003077.png ; $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } / \mathcal{N}$ ; confidence 0.936

146. a12025067.png ; $q + 1$ ; confidence 0.936

147. s120320139.png ; $R ^ { 21 } = \sum b _ { i } \otimes a _ { i }$ ; confidence 0.936

148. a13024025.png ; $\mathbf{y} , \beta , \mathbf{e}$ ; confidence 0.936

149. m12027044.png ; $b _ { i j k }$ ; confidence 0.936

150. a011480114.png ; $b _ { n }$ ; confidence 0.936

151. j120020217.png ; $\sum | I _ { j } | \leq \frac { 1 } { \alpha } \int _ { I } | u ( \vartheta ) | d \vartheta.$ ; confidence 0.936

152. a12005087.png ; $\left| \prod _ { j = 1 } ^ { k } ( \lambda - A ( t _ { j } ) ) ^ { - 1 } \right\| _ { X } \leq M ( \lambda - \beta ) ^ { - k },$ ; confidence 0.936

153. s12005067.png ; $\sum _ { i , j = 1 } ^ { n } \overline { c } _ { i } K _ { S } ( w _ { j } , w _ { i } ) c _ { j } \geq 0$ ; confidence 0.936

154. a130040182.png ; $b \in G$ ; confidence 0.936

155. w120030138.png ; $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ ; confidence 0.936

156. a12008035.png ; $s , t \in \mathbf{R}$ ; confidence 0.936

157. l11002086.png ; $y x ^ { - 1 } \in P$ ; confidence 0.936

158. f12009030.png ; $H _ { K } ( \zeta ) = \operatorname { sup } _ { z \in K } \operatorname { Re } ( \zeta z )$ ; confidence 0.936

159. c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936

160. a110420154.png ; $K _ { 0 }$ ; confidence 0.936

161. o13001044.png ; $\mathcal{F} : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.936

162. t12008015.png ; $\mathcal{O} _ { S } ^ { * }$ ; confidence 0.936

163. d12028029.png ; $\Gamma \subset D \cap Q$ ; confidence 0.936

164. b12030087.png ; $S = - \Delta + W$ ; confidence 0.936

165. b13021050.png ; $k_b$ ; confidence 0.936

166. t09356026.png ; $f ( x x ^ { * } ) < + \infty$ ; confidence 0.936

167. d12016061.png ; $L _ { p } ( S \times T )$ ; confidence 0.936

168. o1300302.png ; $\operatorname { su } ( 3 )$ ; confidence 0.936

169. a12007098.png ; $2 m$ ; confidence 0.936

170. p12011017.png ; $C ( 10 )$ ; confidence 0.936

171. l06003061.png ; $ki$ ; confidence 0.936

172. t12014055.png ; $\mathcal{R} ( \phi ) \subset \sigma _ { e } ( T _ { \phi } ) \subset \sigma ( T _ { \phi } ) \subset \operatorname { conv } ( \mathcal{R} ( \phi ) ).$ ; confidence 0.936

173. j1300108.png ; $Q _ { D _ { + } } - Q _ { D _ { - } } = \left\{ \begin{array} { l } { Q _ { D _ { 0 } } } \text{ for a self}\square\text{ crossing}, \\ { z ^ { 2 } Q _ { D _ { 0 } } }\text{ for a mixed crossing}, \end{array} \right.$ ; confidence 0.936

174. a130240403.png ; $\text{SS} _ { e }$ ; confidence 0.936

175. c13004018.png ; $\zeta ( s , a )$ ; confidence 0.936

176. i12006055.png ; $\operatorname { ldim } ( P ) = \operatorname { dim } ( \mathcal{C} ( P ) )$ ; confidence 0.936

177. g120040170.png ; $1 \leq s \leq d / ( d - 1 )$ ; confidence 0.936

178. b12031077.png ; $\operatorname{lim}S _ { R } ^ { \delta } ( x ) = f ( x )$ ; confidence 0.936

179. c02211059.png ; $X ^ { 2 } ( \hat { \theta } _ { n } )$ ; confidence 0.936

180. d12023096.png ; $P = \left( \frac { u _ { i } u _ { j } ^ { * } - v _ { i } v _ { j } ^ { * } } { 1 - f _ { i } f _ { j } ^ { * } } \right) _ { i , j = 0 } ^ { n - 1 },$ ; confidence 0.936

181. y120010135.png ; $R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 }$ ; confidence 0.936

182. w12008020.png ; $\mathcal{M} ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.936

183. a13023042.png ; $c = \operatorname { cos } \alpha$ ; confidence 0.935

184. b110220138.png ; $c ( i , m ) = L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m }$ ; confidence 0.935

185. w120090278.png ; $\Lambda \supseteq \Phi$ ; confidence 0.935

186. g13002042.png ; $\alpha \notin \{ 0,1 \}$ ; confidence 0.935

187. f12023054.png ; $X_i \in \mathcal{X} ( M )$ ; confidence 0.935

188. w130080154.png ; $\text{l} = 3 g - 3$ ; confidence 0.935

189. a01371012.png ; $K = 0$ ; confidence 0.935

190. j12001029.png ; $F_{ ( i )}$ ; confidence 0.935

191. p13014051.png ; $\operatorname { lim } _ { \rho \rightarrow 0 } [ f ( x _ { 0 } + \gamma \rho n _ { 0 } ) - f _ { \rho } ^ { C } ( x _ { 0 } + \gamma \rho n _ { 0 } ) ] = D ( x _ { 0 } ) \psi ( \gamma ),$ ; confidence 0.935

192. a13007059.png ; $< x \operatorname { exp } ( - \frac { 1 } { 25 } \left( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } \right).$ ; confidence 0.935

193. c12029016.png ; $F \rightarrow E \rightarrow B$ ; confidence 0.935

194. k13006023.png ; $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.935

195. d13017034.png ; $\lambda _ { k } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } },$ ; confidence 0.935

196. b1300205.png ; $x \circ y : = ( x y + y x ) / 2$ ; confidence 0.935

197. t13005072.png ; $D _ { A } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { A _ { 1 } } & { 0 } & { 0 } & { 0 } \\ { A _ { 2 } } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - A _ { 2 } } & { A _ { 1 } } & { 0 } \end{array} \right),$ ; confidence 0.935

198. v13007060.png ; $\theta ( 1 ) = - \pi / 2$ ; confidence 0.935

199. s13040048.png ; $X ^ { G } \hookrightarrow X$ ; confidence 0.935

200. w12005053.png ; $f _ { A } : A ^ { m } \rightarrow A$ ; confidence 0.935

201. n12002084.png ; $k _ { \mu } ^ { \prime \prime } ( \theta ) = V _ { F } ( k _ { \mu } ^ { \prime } ( \theta ) )$ ; confidence 0.935

202. s120230103.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { p } \geq 0$ ; confidence 0.935

203. c120180319.png ; $S ( g )$ ; confidence 0.935

204. c1301504.png ; $\mathcal{C} ^ { \infty } ( \mathcal{D} ( \Omega ) )$ ; confidence 0.935

205. i13007034.png ; $q ( x ) \in L ^ { 2 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.935

206. d13011037.png ; $C = C _ { 0 } \oplus C _ { 1 },$ ; confidence 0.935

207. d13006019.png ; $\text{Pl}$ ; confidence 0.935

208. s1300104.png ; $a , b \in \mathbf{Z}$ ; confidence 0.935

209. a13024059.png ; $( i , j )$ ; confidence 0.935

210. w12009071.png ; $t ^ { \lambda }$ ; confidence 0.935

211. d11008035.png ; $( K , v )$ ; confidence 0.935

212. b12024010.png ; $D _ { + }$ ; confidence 0.935

213. b12001034.png ; $\frac { \partial v } { \partial t } = - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - 2 \left( v \frac { \partial u } { \partial x } + u \frac { \partial v } { \partial x } \right).$ ; confidence 0.935

214. c12029038.png ; $X \rightarrow B ( \mu )$ ; confidence 0.935

215. y12004020.png ; $\operatorname { inf } _ { \nu \in \tilde{A} } \tilde{I} ( \nu ).$ ; confidence 0.935

216. h12004021.png ; $\xi < \eta < \kappa$ ; confidence 0.935

217. a01018021.png ; $z_0$ ; confidence 0.935

218. w13006024.png ; $\operatorname{det} \; \operatorname{ind} \overline { \partial }$ ; confidence 0.935

219. e12015013.png ; $( \text{A} )$ ; confidence 0.935

220. a12028062.png ; $U _ { \mu }$ ; confidence 0.935

221. b1300604.png ; $\| x \| = 0$ ; confidence 0.935

222. m12023034.png ; $\xi \in \partial _ { c } g ( x )$ ; confidence 0.935

223. b12005044.png ; $w \in E ^ { * * }$ ; confidence 0.935

224. c1200803.png ; $A \in C ^ { n \times n }$ ; confidence 0.934

225. t12005034.png ; $n > p$ ; confidence 0.934

226. t12003034.png ; $K = ( 1 + k ) / ( 1 - k )$ ; confidence 0.934

227. o13001063.png ; $B _ { R } = \{ x : | x | \leq R \}$ ; confidence 0.934

228. c12002040.png ; $A ^ { \alpha } f$ ; confidence 0.934

229. i13006093.png ; $\Gamma _ { x } ( t , s )$ ; confidence 0.934

230. d130080135.png ; $F ^ { \prime } ( c )$ ; confidence 0.934

231. a12023067.png ; $s _ { j }$ ; confidence 0.934

232. m13023035.png ; $v = v _ { 1 } + v _ { 2 }$ ; confidence 0.934

233. m13013014.png ; $m _ { i j } = - 1$ ; confidence 0.934

234. l06005059.png ; $x ^ { n } = \operatorname { sinh } u ^ { n },$ ; confidence 0.934

235. l12017060.png ; $L = \phi$ ; confidence 0.934

236. q12001066.png ; $J \pi ( g ) = \pi ( \tau ( g ) ) J$ ; confidence 0.934

237. b12034060.png ; $\sum _ { 0 } ^ { \infty } | f _ { n } | \operatorname { sup } _ { U } | \varphi _ { n } ( z ) | \leq \operatorname { sup } _ { K } | f ( z ) |.$ ; confidence 0.934

238. b12049019.png ; $E \in \Sigma$ ; confidence 0.934

239. b13029086.png ; $i \neq \operatorname { dim } _ { A } M$ ; confidence 0.934

240. s13054078.png ; $\{ a , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934

241. a120250106.png ; $\operatorname {PG} ( 2 , q ),$ ; confidence 0.934

242. b12021099.png ; $B _ { k } = M _ { 1 } \supset \ldots \supset M _ { s } = 0$ ; confidence 0.934

243. v13006023.png ; $SU( N )$ ; confidence 0.934

244. k12010045.png ; $\mathcal{A} = \mathcal{A} _ { 0 } \oplus \mathcal{A} _ { 1 } \oplus \ldots$ ; confidence 0.934

245. m11011014.png ; $+ i \infty$ ; confidence 0.934

246. d1203009.png ; $Y ( t ) \in \mathbf{R} ^ { m }$ ; confidence 0.934

247. c1203103.png ; $x _ { i } \in [ 0,1 ] ^ { d }$ ; confidence 0.934

248. b01501021.png ; $\{ B _ { r } , \phi _ { r } , g _ { r } \}$ ; confidence 0.934

249. c13015032.png ; $\mathcal{E} _ { M } ( \mathcal{D} ( \Omega ) ) / \mathcal{N} ( \mathcal{D} ( \Omega ) )$ ; confidence 0.934

250. a13024032.png ; $m \times p$ ; confidence 0.934

251. c0242206.png ; $x , y \in V$ ; confidence 0.934

252. f13012031.png ; $h ( G ) \leq h ( C _ { G } ( A ) ) + 2 \text{l} ( A )$ ; confidence 0.934

253. a011450163.png ; $\operatorname{Aut}( X )$ ; confidence 0.934

254. l12019036.png ; $V = x ^ { * } P x$ ; confidence 0.934

255. c12002022.png ; $\int _ { \epsilon } ^ { \rho }$ ; confidence 0.934

256. e12011033.png ; $\frac { \partial q f } { \partial t } + \nabla . \mathbf{J} = 0.$ ; confidence 0.934

257. j1200109.png ; $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$ ; confidence 0.934

258. a01292091.png ; $h \rightarrow 0$ ; confidence 0.934

259. s130620110.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 + } \operatorname { Im } m _ { + } ( \lambda ) = \infty$ ; confidence 0.934

260. n12011060.png ; $\eta ( . )$ ; confidence 0.934

261. m13026041.png ; $\lambda ^ { * } ( x ) = ( \lambda ( x ^ { * } ) ) ^ { * }$ ; confidence 0.934

262. w12011083.png ; $( x , \xi ) \mapsto ( T x , \square ^ { t } T ^ { - 1 } \xi )$ ; confidence 0.934

263. j13007066.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \eta \in \partial \Delta$ ; confidence 0.934

264. o12002012.png ; $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$ ; confidence 0.934

265. c02099038.png ; $x \in ( a , b )$ ; confidence 0.934

266. w130080152.png ; $\mu = \mu ( z , \bar{z} ) \partial _ { \bar{z} } \otimes d \bar{z}$ ; confidence 0.934

267. w12010026.png ; $\{ \square _ { j k } ^ { i } \}$ ; confidence 0.934

268. z13011059.png ; $R _ { n } ( x ) = \frac { G _ { p , n } ( x ) } { \int _ { 0 } ^ { \infty } ( 1 - e ^ { - z } ) G _ { p , n } ( d z ) },$ ; confidence 0.934

269. g043770138.png ; $w_j$ ; confidence 0.933

270. p1201106.png ; $C ( n )$ ; confidence 0.933

271. b11057025.png ; $\mathbf{R} ^ { 2 n }$ ; confidence 0.933

272. b12031070.png ; $\delta > ( n - 1 ) | 1 / 2 - 1 / p |$ ; confidence 0.933

273. a130040798.png ; $f : \mathbf{A} \twoheadrightarrow \mathbf{C}$ ; confidence 0.933

274. f13024018.png ; $K ( a , b ) \equiv 0$ ; confidence 0.933

275. m12010011.png ; $E ( G )$ ; confidence 0.933

276. g120040103.png ; $P ( x , D ) = L ^ { m } + Q ( x , D )$ ; confidence 0.933

277. b01502010.png ; $\operatorname { Ext } ( A , B )$ ; confidence 0.933

278. t09408021.png ; $\Omega ( X ; A , B ) = \{ p : [ 0,1 ] \rightarrow X : p ( 0 ) \in A , p ( 1 ) \in B \}.$ ; confidence 0.933

279. h12002078.png ; $\{ f \in H ^ { \infty } : \| \phi - f \| _ { L } \infty \leq \rho \}$ ; confidence 0.933

280. s120320137.png ; $B_{M\otimes N}(m\otimes n)= \sum b_i n \otimes a_i m $ ; confidence 0.933

281. c026790150.png ; $\Delta j$ ; confidence 0.933

282. v09691023.png ; $h ( T _ { t } x )$ ; confidence 0.933

283. t12003013.png ; $\mu ( z ) = k \frac { \overline { \varphi } ( z ) } { | \varphi ( z ) | } , 0 < k < 1,$ ; confidence 0.933

284. n1300607.png ; $\frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega,$ ; confidence 0.933

285. b12010028.png ; $\frac { d } { d t } G ( t ) = \mathcal{L} G ( t ) + [ \mathcal{L} , \mathcal{A} ^ { * } ] G ( t ),$ ; confidence 0.933

286. f1201603.png ; $X T - I$ ; confidence 0.933

287. e1201201.png ; $\theta ^ { * } = \operatorname { arg } \operatorname { max } _ { \theta \in \Theta } \int f ( \theta , \phi ) d \phi,$ ; confidence 0.933

288. j13004047.png ; $K _ { 1 } \# K _ { 2 }$ ; confidence 0.933

289. a13013054.png ; $t _ { n }$ ; confidence 0.933

290. k12003036.png ; $F _ { M } : G \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.933

291. o1200204.png ; $a = 1 / 2$ ; confidence 0.933

292. p1201403.png ; $E ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.933

293. b11096025.png ; $A \rightarrow A$ ; confidence 0.933

294. c13014023.png ; $\forall 1 \leq i \leq r \exists 1 \leq j \leq r : A _ { i } ^ { T } = A _ { j }$ ; confidence 0.933

295. a12027017.png ; $W _ { P } ( \rho )$ ; confidence 0.933

296. a11030039.png ; $\operatorname { deg } a _ { i } = 2 i - 1$ ; confidence 0.933

297. c130070218.png ; $T \in \Re ( C , P )$ ; confidence 0.933

298. a1201109.png ; $\varphi ( a , b , 3 )$ ; confidence 0.933

299. q13003048.png ; $\operatorname {GF} _ { 2 }$ ; confidence 0.933

300. l12017030.png ; $R _ { i } \rightarrow R _ { i } R _ { j }$ ; confidence 0.933

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/29. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/29&oldid=44439