Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/25"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
Line 240: Line 240:
 
120. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481902.png ; $\operatorname { div } \mathbf{v} = 0,$ ; confidence 0.963
 
120. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481902.png ; $\operatorname { div } \mathbf{v} = 0,$ ; confidence 0.963
  
121. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011040.png ; $- \operatorname { log } \operatorname { sin } \left( \frac { \pi } { l } \left( z - \frac { l } { 2 } + \frac { i b } { 2 } \right) \right) \right] + \text{const}.$ ; confidence 0.963
+
121. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011040.png ; $- \operatorname { log } \operatorname { sin } \left. \left( \frac { \pi } { l } \left( z - \frac { l } { 2 } + \frac { i b } { 2 } \right) \right) \right] + \text{const}.$ ; confidence 0.963
  
 
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022056.png ; $q \in P _ { K }$ ; confidence 0.963
 
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022056.png ; $q \in P _ { K }$ ; confidence 0.963
Line 444: Line 444:
 
222. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006065.png ; $\operatorname{Im} z < 0$ ; confidence 0.962
 
222. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006065.png ; $\operatorname{Im} z < 0$ ; confidence 0.962
  
223. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012077.png ; $0 \neq A , B < R$ ; confidence 0.962
+
223. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012077.png ; $0 \neq A , B \lhd  R$ ; confidence 0.962
  
 
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030047.png ; $\mathfrak { S } ( T ) = \{ 0 \}$ ; confidence 0.962
 
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030047.png ; $\mathfrak { S } ( T ) = \{ 0 \}$ ; confidence 0.962
Line 520: Line 520:
 
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030015.png ; $Y ^ { \prime } = [ 0,1 [ ^ { N }$ ; confidence 0.961
 
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030015.png ; $Y ^ { \prime } = [ 0,1 [ ^ { N }$ ; confidence 0.961
  
261. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004055.png ; $F _ { \mathbf{X} } ( Y )$ ; confidence 0.961
+
261. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004055.png ; $F _ { \mathcal{X} } ( Y )$ ; confidence 0.961
  
 
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961
 
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961

Latest revision as of 11:46, 10 May 2020

List

1. f130100150.png ; $u \in A _ { p } ( H )$ ; confidence 0.965

2. c120180503.png ; $R (\tilde{ g} )$ ; confidence 0.965

3. w1300506.png ; $\wedge \mathfrak { g } ^ { * }$ ; confidence 0.965

4. l11004036.png ; $\mathcal{X} ( G ) \in \mathcal{X}$ ; confidence 0.965

5. i12001031.png ; $\sigma _ { 2 } \sigma _ { 1 } ^ { - 1 }$ ; confidence 0.965

6. l12009041.png ; $\Gamma ( T ^ { * } M )$ ; confidence 0.965

7. m13025072.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } ( u ^ { * } \rho _ { \varepsilon } ) ( v ^ { * } \rho _ { \varepsilon } )$ ; confidence 0.965

8. m12019010.png ; $P _ { \nu } ^ { ( k ) } ( x )$ ; confidence 0.965

9. v09690041.png ; $P = P ^ { \prime } \subset Z$ ; confidence 0.965

10. n06663084.png ; $k , s$ ; confidence 0.965

11. g120040154.png ; $L = L _ { 1 }$ ; confidence 0.965

12. b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965

13. m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965

14. i12005059.png ; $H ( \theta , \Theta _ { 0 } ) = \operatorname { inf } \{ H ( \theta , \theta _ { 0 } ) : \theta _ { 0 } \in \Theta _ { 0 } \}$ ; confidence 0.965

15. i130090181.png ; $s \neq 1$ ; confidence 0.965

16. g13003098.png ; $\delta ^ { ( k ) } ( . )$ ; confidence 0.965

17. w120030148.png ; $\{ \gamma \in \Gamma _ { n } : f ( \gamma ) \neq 0 \}$ ; confidence 0.965

18. m12011033.png ; $\partial F = K$ ; confidence 0.965

19. s0833603.png ; $- \frac { \operatorname { sin } n \pi } { \pi } \int _ { 0 } ^ { \infty } e ^ { - n \theta - z \operatorname { sinh } \theta } d \theta,$ ; confidence 0.965

20. b12005024.png ; $ \operatorname {dim} E = \infty$ ; confidence 0.965

21. l13006048.png ; $\Delta _ { k } ( \mathbf{s} , \mathbf{t} ) = - \prod _ { j = 1 } ^ { k } ( t _ { j } - s _ { j } ) +$ ; confidence 0.965

22. t120140139.png ; $\operatorname { dist } _ { \lambda } ( \phi , \phi _ { \lambda } ) = 0$ ; confidence 0.965

23. c130070243.png ; $\mathfrak { D } _ { i } = \sum \mathfrak { D } ( C , C _ { i } ) ( T )$ ; confidence 0.965

24. t130050136.png ; $\sigma _ { \text{l} } ( A , \mathcal{H} ) \cap \sigma _ { \text{r} } ( A , \mathcal{H} )$ ; confidence 0.965

25. d12018014.png ; $A ( K )$ ; confidence 0.965

26. n12010050.png ; $\sigma ( \zeta ) = \sum _ { i = 0 } ^ { k } \beta _ { i } \zeta ^ { i }$ ; confidence 0.965

27. b120040145.png ; $x _ { 0 } \in X _ { 0 }$ ; confidence 0.965

28. m13025069.png ; $( \sigma _ { \varepsilon } ) _ { \varepsilon > 0 } \}$ ; confidence 0.965

29. b12046044.png ; $V _ { H } = V _ { H } e \oplus V _ { H } f$ ; confidence 0.965

30. a12007018.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s.$ ; confidence 0.965

31. n13003054.png ; $L u = \frac { \partial ^ { 2 } } { \partial x ^ { 2 } } \left( E I ( x ) \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } \right) + \rho A ( x ) \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }.$ ; confidence 0.965

32. c120180246.png ; $\operatorname { Ric } ( g )$ ; confidence 0.965

33. t09356051.png ; $x \mapsto \pi_f ( x )$ ; confidence 0.965

34. w13009091.png ; $I ( g ) = \int _ { 0 } ^ { 1 } g ( t ) d B ( t )$ ; confidence 0.965

35. c120180437.png ; $k < n / 2$ ; confidence 0.965

36. i13007079.png ; $L ^ { 2 } ( \mathbf{R} _ { 3 } )$ ; confidence 0.965

37. i13005088.png ; $\{ r _ { - } ( k ) , i k _ { j } , ( m _ { j } ^ { - } ) ^ { 2 } : 1 \leq j \leq J , \forall k > 0 \}$ ; confidence 0.965

38. e120240131.png ; $\epsilon _ { l } \in H ^ { 1 } ( X _ { 0 } ( N ) \times X _ { 0 } ( N ) ; \mathcal{K} _ { 2 } )$ ; confidence 0.965

39. h12002061.png ; $H ^ { \infty } + C$ ; confidence 0.965

40. c120180181.png ; $\Theta \in \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.965

41. e11002024.png ; $E ^ { 2 }$ ; confidence 0.965

42. d12028022.png ; $A _ { 0 } ( \overline { \mathbf{C} } \backslash D ) = \{ f : f \in A ( \overline { \mathbf{C} } \backslash D ) , f ( \infty ) = 0 \}.$ ; confidence 0.965

43. h13006058.png ; $D \xi D$ ; confidence 0.965

44. s1305105.png ; $g = \operatorname { mex } g ( F ( u ) )$ ; confidence 0.964

45. t12020088.png ; $\operatorname { exp } ( - 2 \theta n - 0.7823 \operatorname { log } n ) \leq M _ { 2 } \leq \operatorname { exp } ( - 2 \theta n + 4.5 \operatorname { log } n )$ ; confidence 0.964

46. z130110107.png ; $\frac { 1 } { m } \sum _ { i = 1 } ^ { r } \frac { 1 } { m - i + 1 } = p ( z )$ ; confidence 0.964

47. b12040029.png ; $( g , \mathbf{f} ) \sim ( g h ^ { - 1 } , \varrho ( h ) \mathbf{f} ),$ ; confidence 0.964

48. b0163608.png ; $G / N$ ; confidence 0.964

49. a13014019.png ; $\mathbf{R} ^ { 2 }$ ; confidence 0.964

50. b1201709.png ; $( I - \Delta ) ^ { \alpha / 2 } f$ ; confidence 0.964

51. r11011021.png ; $x ^ { n } \in P \Rightarrow x \in P$ ; confidence 0.964

52. w12003029.png ; $\| P _ { \alpha } \| = 1$ ; confidence 0.964

53. b13030033.png ; $| B ( m , 3 ) |$ ; confidence 0.964

54. c130070232.png ; $T \cap k ( C _ { 1 } ) = T _ { 1 }$ ; confidence 0.964

55. a120310133.png ; $A ^ { \infty } / M$ ; confidence 0.964

56. a12008034.png ; $S ( s + t ) + S ( s - t ) = 2 S ( s ) S ( t )$ ; confidence 0.964

57. m12012049.png ; $0 \neq a , b , c , d \in R$ ; confidence 0.964

58. y12001057.png ; $1 \leq p , q , r , a , b , c \leq n$ ; confidence 0.964

59. k055840138.png ; $T ^ { + } = J T ^ { * } J$ ; confidence 0.964

60. r07749035.png ; $[ n / 2 ]$ ; confidence 0.964

61. s1300701.png ; $\phi ( f ( x ) ) = \lambda \phi ( x ),$ ; confidence 0.964

62. c02154014.png ; $\{ x : x \in A ^ { + } , \square f ( x ) < + \infty \}$ ; confidence 0.964

63. d1202608.png ; $X _ { n } ( t ) = \frac { 1 } { \sigma \sqrt { n } } [ S _ { [ n t ] } + ( n t - [ n t ] ) \xi_{ [ n t ] + 1} ],$ ; confidence 0.964

64. n067520291.png ; $U D _ { A } = D _ { K_{\rho} }$ ; confidence 0.964

65. d13018046.png ; $E _ { 1 } \cup E _ { 2 }$ ; confidence 0.964

66. b12014044.png ; $s _ { i } ( z ) a ( z ) + t _ { i } ( z ) b ( z ) = r _ { i } ( z ),$ ; confidence 0.964

67. a120180101.png ; $u _ { 1 } = F ( u _ { 0 } ) , u _ { 2 } = F ( u _ { 1 } ),$ ; confidence 0.964

68. p13014067.png ; $f _ { \rho } ^ { C } \in C ^ { k } ( U )$ ; confidence 0.964

69. l120170211.png ; $K ^ { * } \rightarrow \overline { K } \rightarrow K$ ; confidence 0.964

70. z13010026.png ; $\exists x \varphi$ ; confidence 0.964

71. f12024011.png ; $x ^ { ( m ) } ( t ) =$ ; confidence 0.964

72. p12013028.png ; $\lambda \in \mathbf{Q} ( \theta )$ ; confidence 0.964

73. i13005096.png ; $x < x _ { 0 } < \infty$ ; confidence 0.964

74. b12020050.png ; $T ( \theta )$ ; confidence 0.964

75. d12012044.png ; $\operatorname{dom} a_{i+1}=\operatorname{codom} a_i$ ; confidence 0.964

76. b13026069.png ; $\Delta \supset f ( \overline { \Omega } )$ ; confidence 0.964

77. g13001083.png ; $\operatorname { log } _ { \omega } ( \gamma \delta ) = \operatorname { log } _ { \omega } \gamma + \operatorname { log } _ { \omega } \delta,$ ; confidence 0.964

78. b12020047.png ; $\mathcal{H} ( \theta ) = H ^ { 2 } \ominus \theta H ^ { 2 }$ ; confidence 0.964

79. a11010073.png ; $w \in W$ ; confidence 0.964

80. s120230146.png ; $A ( n \times n )$ ; confidence 0.964

81. t13007044.png ; $| \rho ^ { \prime } / \rho | < 1$ ; confidence 0.964

82. t12019014.png ; $t ( k , r )$ ; confidence 0.964

83. n067520405.png ; $( Q , \Lambda ) \neq 0 , \quad q _ { 1 } + \ldots + q _ { n } < 2 ^ { k }.$ ; confidence 0.964

84. w1200109.png ; $D = z d / d z$ ; confidence 0.964

85. r08232050.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta,$ ; confidence 0.964

86. j13002033.png ; $\Gamma _ { \mathbf{p} }$ ; confidence 0.964

87. n067520232.png ; $B \in \mathbf{R} ^ { n \times m }$ ; confidence 0.964

88. r11011029.png ; $\varphi \in \operatorname { Aut } ( X )$ ; confidence 0.964

89. n12002020.png ; $\psi _ { \mu }$ ; confidence 0.964

90. b13012024.png ; $\mathbf{R} = ( - \infty , \infty )$ ; confidence 0.964

91. h0463004.png ; $0 \leq k \leq n$ ; confidence 0.964

92. b12052037.png ; $x _ { + } = x _ { c } - B _ { c } ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.964

93. m0620006.png ; $( X _ { n } ) _ { n \leq k}$ ; confidence 0.964

94. d12020011.png ; $| t | \leq \pi x$ ; confidence 0.964

95. q13005057.png ; $\alpha \subset \mathbf{T}$ ; confidence 0.964

96. b13010031.png ; $\int _ { D } | f | ^ { 2 } d A < \infty$ ; confidence 0.964

97. k055840276.png ; $[ A x , x ] \geq 0$ ; confidence 0.964

98. s13049013.png ; $N _ { k } : = \{ p \in P : r ( p ) = k \}$ ; confidence 0.964

99. c13016094.png ; $A , B \subseteq \Sigma ^ { * }$ ; confidence 0.964

100. z1301302.png ; $x _ { 1 } = r \operatorname { sin } \theta \operatorname { cos } \varphi$ ; confidence 0.964

101. m12011038.png ; $\cup S ^ { 1 } \subset M$ ; confidence 0.964

102. t120060117.png ; $Z \rightarrow \infty$ ; confidence 0.964

103. e120070118.png ; $\{ \Gamma , k + 2 , \mathbf{v} \}$ ; confidence 0.964

104. a12027056.png ; $w _ { 2 } ( \rho _ { P } )$ ; confidence 0.964

105. f12011043.png ; $F _ { j } ( z )$ ; confidence 0.964

106. s12015032.png ; $\pi ^ { - 1 } ( x ) = S$ ; confidence 0.964

107. c13019033.png ; $( N , L )$ ; confidence 0.964

108. a1202407.png ; $v _ { p } ( f )$ ; confidence 0.964

109. e03704040.png ; $D ( T )$ ; confidence 0.964

110. o13006014.png ; $\frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) = \Phi ^ { * } \sigma _ { 1 } \Phi , \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) = \Phi ^ { * } \sigma _ { 2 } \Phi,$ ; confidence 0.964

111. b11066057.png ; $( x , y ) \in \Omega$ ; confidence 0.964

112. m12023040.png ; $R _ { t } ( x ) = ( I + t \partial f ) ^ { - 1 } ( x )$ ; confidence 0.964

113. e03500019.png ; $\mathcal{H} _ { \epsilon } ( C ) = \operatorname { inf } \mathcal{H} _ { \epsilon } ( C , X ),$ ; confidence 0.964

114. a12013010.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , X _ { n } ),$ ; confidence 0.964

115. c120170163.png ; $k \leq m$ ; confidence 0.964

116. h04774048.png ; $0 \leq k < n$ ; confidence 0.964

117. d12012026.png ; $d , d ^ { \prime } : G \rightarrow \mathcal{C}$ ; confidence 0.963

118. b13019022.png ; $\mathbf{x} ( h _ { 1 } ) + \ldots + \mathbf{x} ( h _ { p } )$ ; confidence 0.963

119. c12020045.png ; $\iota : S ^ { k } \rightarrow ( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.963

120. h0481902.png ; $\operatorname { div } \mathbf{v} = 0,$ ; confidence 0.963

121. v13011040.png ; $- \operatorname { log } \operatorname { sin } \left. \left( \frac { \pi } { l } \left( z - \frac { l } { 2 } + \frac { i b } { 2 } \right) \right) \right] + \text{const}.$ ; confidence 0.963

122. b13022056.png ; $q \in P _ { K }$ ; confidence 0.963

123. w12018020.png ; $W ^ { ( N ) } ( t )$ ; confidence 0.963

124. h12012083.png ; $\partial _ { \infty } = d _ { M } + f \Sigma _ { \infty } \nabla$ ; confidence 0.963

125. t12007079.png ; $j ^ { 1 / 3 }$ ; confidence 0.963

126. h04601071.png ; $\operatorname{Wh}\{ 1 \} = 0$ ; confidence 0.963

127. e03500057.png ; $\mathcal{P} = \{ B ( y _ { i } , \epsilon ) \}$ ; confidence 0.963

128. a12013061.png ; $v ^ { 2 / 3 }$ ; confidence 0.963

129. k055840373.png ; $L y - \lambda r y = r f$ ; confidence 0.963

130. b01501023.png ; $( B _ { r } , \phi _ { r } )$ ; confidence 0.963

131. f12023041.png ; $f \in C ^ { \infty } ( M , \mathbf{R} )$ ; confidence 0.963

132. a130050143.png ; $P ( n )$ ; confidence 0.963

133. k12004011.png ; $\Lambda _ { L } ( a , x )$ ; confidence 0.963

134. e03500095.png ; $I _ { \epsilon } ( X ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \mathcal{H} _ { \epsilon } ^ { \prime \prime } ( X ^ { n } ),$ ; confidence 0.963

135. e12015058.png ; $\ddot { x } + p \dot { x } + q x = 0,$ ; confidence 0.963

136. m13025033.png ; $( f u ) v = u ( f v ) = f ( u v )$ ; confidence 0.963

137. l06004015.png ; $g _ { k } ( z ) = z ^ { k } ( \operatorname { mod } f ( z ) ).$ ; confidence 0.963

138. h120020104.png ; $\mathcal{P} _ { - } \phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.963

139. a12013044.png ; $R ( \theta ^ { * } ) = \sum _ { n = - \infty } ^ { \infty } \operatorname { cov } ( H ( \theta ^ { * } , X _ { n } ) , H ( \theta ^ { * } , X _ { 0 } ) ).$ ; confidence 0.963

140. j13007065.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ ; confidence 0.963

141. q12007078.png ; $\Delta h = \sum h_{ ( 1 )} \otimes h_{ ( 2 )}$ ; confidence 0.963

142. c12021081.png ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ^ { \prime } ] \Rightarrow \tilde{\mathcal{L}} ^ { \prime }$ ; confidence 0.963

143. c130070173.png ; $R ( P )$ ; confidence 0.963

144. a12005015.png ; $t \mapsto ( I - A ( t ) ) ( I - A ( 0 ) ) ^ { - 1 }$ ; confidence 0.963

145. f13010089.png ; $P M _ { p } ( G ) = C V _ { p } ( G )$ ; confidence 0.963

146. b12050039.png ; $\tau : = \{ \tau _ { x } : x \geq 0 \}$ ; confidence 0.963

147. b1203201.png ; $L ^ { p } ( \mu )$ ; confidence 0.963

148. t09408032.png ; $( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.963

149. w12017065.png ; $\omega ^ { p } ( G )$ ; confidence 0.963

150. c13019047.png ; $A \in \mathcal{L} ( \mathbf{R} ^ { n } )$ ; confidence 0.963

151. b12034051.png ; $\varphi _ { 0 } = 1$ ; confidence 0.963

152. a12005020.png ; $U ( s , s ) = I$ ; confidence 0.963

153. h12001024.png ; $\sigma : V \rightarrow \mathcal{R}$ ; confidence 0.963

154. b01572040.png ; $x , y , z$ ; confidence 0.963

155. m1302605.png ; $C _ { 0 } ( \Omega )$ ; confidence 0.963

156. a01197085.png ; $W ^ { p }$ ; confidence 0.963

157. a13013028.png ; $\phi _ { - } ( x , t , z ) = \operatorname { exp } \left( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } \right),$ ; confidence 0.963

158. s09067099.png ; $\operatorname {GL} ^ { 2 } ( n ) = \operatorname {GL} ( n ) V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.963

159. i1300602.png ; $u ^ { \prime \prime } + k ^ { 2 } u - q ( x ) u = 0 , x > 0,$ ; confidence 0.963

160. a130080101.png ; $f ( x ) / f$ ; confidence 0.963

161. v13007031.png ; $Z = x + i y$ ; confidence 0.963

162. n12002037.png ; $M _ { \mu } = M _ { F }$ ; confidence 0.963

163. c1200503.png ; $\mathbf{D} = \{ z \in \mathbf{C} : | z | < 1 \}$ ; confidence 0.963

164. l05700037.png ; $( \lambda x x ) y x$ ; confidence 0.963

165. b12031047.png ; $\operatorname { lim } _ { R } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.962

166. s120340198.png ; $\alpha _ { H _ { 3 } } - \alpha _ { H _ { 2 } } - \alpha _ { H _ { 1 } }$ ; confidence 0.962

167. v13005097.png ; $L ( - 1 )$ ; confidence 0.962

168. a12008027.png ; $A u = f$ ; confidence 0.962

169. c12002066.png ; $x = ( x ^ { \prime } , x ^ { \prime \prime } )$ ; confidence 0.962

170. t1202104.png ; $t ( M ; x , y )$ ; confidence 0.962

171. a01342022.png ; $Z_n$ ; confidence 0.962

172. d120230116.png ; $d ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } d _ { i j } z ^ { i } w ^ { * j }.$ ; confidence 0.962

173. b13026061.png ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ f , \Omega , z ]$ ; confidence 0.962

174. a0117807.png ; $\{ a , b \}$ ; confidence 0.962

175. v12002075.png ; $q = N$ ; confidence 0.962

176. i13007090.png ; $q ( x ) \in Q$ ; confidence 0.962

177. v096900160.png ; $T ( \zeta )$ ; confidence 0.962

178. t12007012.png ; $\Gamma _ { 0 } ( p ) + = \langle \Gamma _ { 0 } ( p ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { p } & { 0 } \end{array} \right) \rangle$ ; confidence 0.962

179. b130290133.png ; $A / H _ { \mathfrak{m} } ^ { 0 } ( A )$ ; confidence 0.962

180. n12011072.png ; $f ^ { * } : M \rightarrow \mathcal{F} ( \mathbf{R} ).$ ; confidence 0.962

181. a12012065.png ; $\lambda ^ { * } \geq \lambda ( x , y )$ ; confidence 0.962

182. l13001045.png ; $\rho ( x , \partial B ) = \operatorname { inf } _ { y \in \partial B } \rho ( x , y )$ ; confidence 0.962

183. a12018079.png ; $[ n / 1 ]_{ f } ( t )$ ; confidence 0.962

184. e13003016.png ; $H ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } )$ ; confidence 0.962

185. o12006071.png ; $t ^ { p } \operatorname { log } ^ { \sigma } t$ ; confidence 0.962

186. b12034069.png ; $z _ { 0 } \in M$ ; confidence 0.962

187. c13019030.png ; $t _ { 0 } \in [ 0 , t ]$ ; confidence 0.962

188. d12018098.png ; $\phi ( x + t )$ ; confidence 0.962

189. b12027062.png ; $\sum _ { 1 } ^ { \infty } p _ { j } = 1$ ; confidence 0.962

190. i050650266.png ; $M ^ { g }$ ; confidence 0.962

191. a12004022.png ; $c > 0$ ; confidence 0.962

192. l13005016.png ; $\Lambda _ { k } ( \mathbf{a} )$ ; confidence 0.962

193. a130240529.png ; $\mathbf{R}$ ; confidence 0.962

194. s1306207.png ; $x = + \infty$ ; confidence 0.962

195. l12016015.png ; $L ^ { 2 } ( S ^ { 1 } , \mathbf{C} ^ { n } )$ ; confidence 0.962

196. a12010020.png ; $t \rightarrow S ( t ) x$ ; confidence 0.962

197. d12006026.png ; $H ^ { ( 1 ) } Q ^ { + } = Q ^ { + } H ^ { ( 0 ) }$ ; confidence 0.962

198. b11066023.png ; $L _ { p } ( \mathbf{R} )$ ; confidence 0.962

199. c1300407.png ; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t,$ ; confidence 0.962

200. a110010278.png ; $\hat{X}$ ; confidence 0.962

201. t120060116.png ; $E ^ { \text{Q} } ( N )$ ; confidence 0.962

202. t1201505.png ; $\eta \in \mathcal{A} \mapsto \xi \eta \in \mathcal{A}$ ; confidence 0.962

203. f120210105.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } p _ { i } ( \lambda + k ) z ^ { \lambda + k } =$ ; confidence 0.962

204. l11003044.png ; $L _ { 1 } ( \mathcal{E} ) = L _ { 2 } (\mathcal{E} ) = L _ { 3 } ( \mathcal{E} )$ ; confidence 0.962

205. f1302408.png ; $\langle x y z \rangle$ ; confidence 0.962

206. t12015031.png ; $S = J \Delta ^ { 1 / 2 } = \Delta ^ { - 1 / 2 } J$ ; confidence 0.962

207. t12015073.png ; $\Delta ^ { i t } \mathcal{L} ( \mathcal{A} ) \Delta ^ { - i t } = \mathcal{L} ( \mathcal{A} )$ ; confidence 0.962

208. a12017049.png ; $\beta ( a , x ) = \beta _ { 0 } ( a )$ ; confidence 0.962

209. b13020070.png ; $\mathfrak { g } = \mathfrak { g } _ { + } \oplus \mathfrak { h } \oplus \mathfrak { g } _ { - }$ ; confidence 0.962

210. n12012075.png ; $H C$ ; confidence 0.962

211. m12007066.png ; $c _ { 2 } ( s ) > 0$ ; confidence 0.962

212. t12021061.png ; $( - 1 ) ^ { r } q ^ { k ( n - r ) } t ( M ; 1 - q ^ { k } , 0 )$ ; confidence 0.962

213. v120020222.png ; $H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \cong \mathbf{Z}$ ; confidence 0.962

214. n13003037.png ; $B w$ ; confidence 0.962

215. m12003012.png ; $\sum _ { i = 1 } ^ { n } \rho ( x _ { i } , T _ { n } )$ ; confidence 0.962

216. s13053089.png ; $H _ { r - 1 } ( C )$ ; confidence 0.962

217. l12006018.png ; $e ^ { - i H t }$ ; confidence 0.962

218. f120230140.png ; $M \rightarrow B$ ; confidence 0.962

219. n067520434.png ; $X \rightarrow V$ ; confidence 0.962

220. m130260112.png ; $B (\mathcal{H} ) / K ( \mathcal{H} )$ ; confidence 0.962

221. h047390157.png ; $\alpha _ { 1 } , \alpha _ { 2 } \in \mathbf{C}$ ; confidence 0.962

222. l12006065.png ; $\operatorname{Im} z < 0$ ; confidence 0.962

223. m12012077.png ; $0 \neq A , B \lhd R$ ; confidence 0.962

224. a13030047.png ; $\mathfrak { S } ( T ) = \{ 0 \}$ ; confidence 0.962

225. b12027060.png ; $p _ { 0 } = 0$ ; confidence 0.962

226. s1306603.png ; $\mathbf{T} = \{ z \in \mathbf{C} : | z | = 1 \}$ ; confidence 0.962

227. l120100135.png ; $\rho \in C ^ { 0,1 / 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.962

228. f12005052.png ; $( 1,1 , T + T ^ { q / 2 } )$ ; confidence 0.962

229. a12008052.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.962

230. e12006051.png ; $[ \Gamma X _ { 1 } , \Gamma X _ { 2 } ] - \Gamma ( [ X _ { 1 } , X _ { 2 } ] )$ ; confidence 0.962

231. b12009070.png ; $\operatorname { Re } \left\{ \frac { z f ^ { \prime } ( z ) } { f ( z ) ^ { 1 - \beta } g ( z ) ^ { \beta } } \right\} > 0 ( z \in U ).$ ; confidence 0.962

232. o13008063.png ; $f _ { 1 } ( x , k )$ ; confidence 0.962

233. s12025054.png ; $\epsilon \leq \theta \leq \pi - \epsilon$ ; confidence 0.962

234. l13004012.png ; $L ( x , y )$ ; confidence 0.962

235. d03024036.png ; $f_{( r )} ( x _ { 0 } )$ ; confidence 0.962

236. w12018013.png ; $W ^ { ( N ) } ( t ) = W ( R _ { t } )$ ; confidence 0.962

237. n12012074.png ; $B \in \mathcal{N} \mathcal{P}$ ; confidence 0.962

238. b120210138.png ; $w _ { 1 } \in W ^ { ( k ) }$ ; confidence 0.962

239. c12029051.png ; $\langle S : R \rangle$ ; confidence 0.962

240. l11003083.png ; $[ L ^ { 1 } ( Q ) ]^*$ ; confidence 0.962

241. b12021019.png ; $\Delta ^ { + }$ ; confidence 0.961

242. a130240200.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \beta = 0$ ; confidence 0.961

243. f130100149.png ; $\operatorname { Res } _ { H } A _ { p } ( G ) = A _ { p } ( H )$ ; confidence 0.961

244. m12019017.png ; $x = \operatorname { cosh } \alpha$ ; confidence 0.961

245. b12021065.png ; $M _ { \theta }$ ; confidence 0.961

246. s1304105.png ; $p , q \in \mathcal{P}$ ; confidence 0.961

247. s13004012.png ; $\mathbf{P} ^ { 1 } ( \mathbf{Q} )$ ; confidence 0.961

248. c02211047.png ; $\| \partial p _ { i } ( \theta ) / \partial \theta _ { j } \|$ ; confidence 0.961

249. f0407606.png ; $n p$ ; confidence 0.961

250. c12026011.png ; $\delta ^ { 2 } U _ { j } = h ^ { - 2 } ( U _ { j + 1 } - 2 U _ { j } + U _ { j - 1 } )$ ; confidence 0.961

251. a13007042.png ; $\sigma ( n ) / n \geq \alpha$ ; confidence 0.961

252. i120080105.png ; $= \operatorname { tanh } [ \frac { H + 2 m J } { k _ { B } T } ],$ ; confidence 0.961

253. h120120121.png ; $H ( A )$ ; confidence 0.961

254. a12027034.png ; $W ( \rho )$ ; confidence 0.961

255. w12013017.png ; $S ( T + i ) ^ { - 1 }$ ; confidence 0.961

256. w13011040.png ; $H \geq 4$ ; confidence 0.961

257. g04302010.png ; $\operatorname {GL} ^ { k } ( n )$ ; confidence 0.961

258. i12001024.png ; $\Phi _ { 1 }$ ; confidence 0.961

259. m130110128.png ; $\phi = v _ { i }$ ; confidence 0.961

260. b12030015.png ; $Y ^ { \prime } = [ 0,1 [ ^ { N }$ ; confidence 0.961

261. l11004055.png ; $F _ { \mathcal{X} } ( Y )$ ; confidence 0.961

262. a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961

263. k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961

264. b12034057.png ; $K \subset M$ ; confidence 0.961

265. s09067054.png ; $\pi_{\text{W}} : W ( M ) \rightarrow M$ ; confidence 0.961

266. t13015012.png ; $P : L ^ { 2 } ( \mathbf{T} ) \rightarrow H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.961

267. r1301104.png ; $\zeta ( s ) : = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } } = \prod _ { p } \frac { 1 } { 1 - \frac { 1 } { p ^ { s } } }$ ; confidence 0.961

268. b12037080.png ; $\{ 0,1 , \neg , \vee , \wedge \}$ ; confidence 0.961

269. c022660332.png ; $M ( f )$ ; confidence 0.961

270. a130040380.png ; $\Omega h ^ { - 1 } ( F ) = h ^ { - 1 } ( \Omega F )$ ; confidence 0.961

271. p12011038.png ; $\sum f ( \overset{\rightharpoonup } { e } ) = 0$ ; confidence 0.961

272. b13001064.png ; $0 \leq i \leq t$ ; confidence 0.961

273. v120020209.png ; $\operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.961

274. a130240105.png ; $y$ ; confidence 0.961

275. l12014030.png ; $T A - A T = I$ ; confidence 0.961

276. a1200507.png ; $f ( . )$ ; confidence 0.961

277. s12023064.png ; $X _ { 2 } ( p \times m )$ ; confidence 0.961

278. c1302605.png ; $\mathcal{D} ^ { j }$ ; confidence 0.961

279. b13028030.png ; $[ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z$ ; confidence 0.961

280. i13006053.png ; $\overline { S ( k ) } = S ( - k ) = S ^ { - 1 } ( k )$ ; confidence 0.961

281. a01209056.png ; $R / J ( R )$ ; confidence 0.961

282. o12006051.png ; $W ^ { k } E _ { \Phi } ( \Omega )$ ; confidence 0.961

283. t13014062.png ; $\beta : j \rightarrow i$ ; confidence 0.961

284. a01110055.png ; $A _ { 2 }$ ; confidence 0.961

285. b11002045.png ; $u = B ^ { - 1 } l$ ; confidence 0.961

286. c02210014.png ; $\sqrt { \chi _ { n } ^ { 2 } }$ ; confidence 0.961

287. t1200801.png ; $F ( X , Y ) \in \mathbf{Z} [ X , Y ]$ ; confidence 0.961

288. q13004017.png ; $J _ { f } ( x )$ ; confidence 0.961

289. d0340302.png ; $\overset{\rightharpoonup }{ E }$ ; confidence 0.961

290. a12007029.png ; $f \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.961

291. a01080011.png ; $\nabla$ ; confidence 0.961

292. n066630121.png ; $u |_{ \partial \Omega}$ ; confidence 0.961

293. k055840118.png ; $[ x , y ] = 0$ ; confidence 0.961

294. w12011087.png ; $( x , \xi ) \mapsto ( x , \xi + S x )$ ; confidence 0.960

295. j120020203.png ; $w ( z ) \leq c ^ { 2 }$ ; confidence 0.960

296. i13005026.png ; $| t ( k ) | ^ { 2 } + | r ( k ) | ^ { 2 } = 1$ ; confidence 0.960

297. c13010045.png ; $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ ; confidence 0.960

298. d120280127.png ; $U \supset \mathbf{C} ^ { n } \backslash D$ ; confidence 0.960

299. p07101038.png ; $p _ { i } \in \pi$ ; confidence 0.960

300. t12020029.png ; $g _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } \phi _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.960

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/25. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/25&oldid=45813