Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/25"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 25 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002021.png ; $A ( q ) \ddot { q } + b ( q , \dot { q } ) = 0$ ; confidence 0.997
+
1. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100150.png ; $u \in A _ { p } ( H )$ ; confidence 0.965
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004037.png ; $\mu = ( \mu _ { 1 } , \dots , \mu _ { l } )$ ; confidence 0.553
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180503.png ; $R (\tilde{ g} )$ ; confidence 0.965
  
3. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004027.png ; $s _ { \lambda } = \sum _ { T } x ^ { T }$ ; confidence 0.998
+
3. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300506.png ; $\wedge \mathfrak { g } ^ { * }$ ; confidence 0.965
  
4. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050115.png ; $\alpha _ { 1 } , \dots , \alpha _ { n }$ ; confidence 0.186
+
4. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004036.png ; $\mathcal{X} ( G ) \in \mathcal{X}$ ; confidence 0.965
  
5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018046.png ; $\langle e _ { i } , e _ { i } \rangle = 1$ ; confidence 0.526
+
5. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001031.png ; $\sigma _ { 2 } \sigma _ { 1 } ^ { - 1 }$ ; confidence 0.965
  
6. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018044.png ; $\langle e _ { i } , e _ { j } \rangle = 0$ ; confidence 0.686
+
6. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009041.png ; $\Gamma ( T ^ { * } M )$ ; confidence 0.965
  
7. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044027.png ; $H ^ { N - 1 - k } ( S ^ { x } \backslash X )$ ; confidence 0.495
+
7. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025072.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } ( u ^ { * } \rho _ { \varepsilon } ) ( v ^ { * } \rho _ { \varepsilon } )$ ; confidence 0.965
  
8. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044015.png ; $\pi * ( D X \wedge Y ) \simeq [ X , Y ] *$ ; confidence 0.791
+
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019010.png ; $P _ { \nu } ^ { ( k ) } ( x )$ ; confidence 0.965
  
9. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304502.png ; $\{ ( x _ { i } , y _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.905
+
9. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690041.png ; $P = P ^ { \prime } \subset Z$ ; confidence 0.965
  
10. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304506.png ; $\{ ( R _ { i } , S _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.826
+
10. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663084.png ; $k , s$ ; confidence 0.965
  
11. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305105.png ; $g = \operatorname { mex } g ( F ( u ) )$ ; confidence 0.964
+
11. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040154.png ; $L = L _ { 1 }$ ; confidence 0.965
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024051.png ; $\varepsilon _ { i } \rightarrow 0$ ; confidence 0.975
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965
  
13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202505.png ; $0 < \int _ { a } ^ { b } h ( x ) d x < \infty$ ; confidence 0.650
+
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965
  
14. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058026.png ; $I = ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.971
+
14. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005059.png ; $H ( \theta , \Theta _ { 0 } ) = \operatorname { inf } \{ H ( \theta , \theta _ { 0 } ) : \theta _ { 0 } \in \Theta _ { 0 } \}$ ; confidence 0.965
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062070.png ; $A = \operatorname { Re } m _ { 0 } ( i )$ ; confidence 0.996
+
15. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090181.png ; $s \neq 1$ ; confidence 0.965
  
16. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032089.png ; $t ^ { * } : N ^ { * } \rightarrow M ^ { * }$ ; confidence 0.997
+
16. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003098.png ; $\delta ^ { ( k ) } ( . )$ ; confidence 0.965
  
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340171.png ; $H : \Sigma \times M \rightarrow R$ ; confidence 0.951
+
17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030148.png ; $\{ \gamma \in \Gamma _ { n } : f ( \gamma ) \neq 0 \}$ ; confidence 0.965
  
18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340110.png ; $( x _ { + } , u _ { - } \# w ) \equiv x _ { + }$ ; confidence 0.104
+
18. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011033.png ; $\partial F = K$ ; confidence 0.965
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340181.png ; $\tilde { x } _ { i } = ( x _ { i } , u _ { i } )$ ; confidence 0.065
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833603.png ; $- \frac { \operatorname { sin } n \pi } { \pi } \int _ { 0 } ^ { \infty } e ^ { - n \theta - z \operatorname { sinh } \theta } d \theta,$ ; confidence 0.965
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
+
20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005024.png ; $ \operatorname {dim} E = \infty$ ; confidence 0.965
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065028.png ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561
+
21. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006048.png ; $\Delta _ { k } ( \mathbf{s} , \mathbf{t} ) = - \prod _ { j = 1 } ^ { k } ( t _ { j } - s _ { j } ) +$ ; confidence 0.965
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065072.png ; $\alpha , \beta \in \{ - 1 / 2,1 / 2 \}$ ; confidence 0.999
+
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140139.png ; $\operatorname { dist } _ { \lambda } ( \phi , \phi _ { \lambda } ) = 0$ ; confidence 0.965
  
23. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004019.png ; $y ( x ) = \operatorname { exp } ( - x )$ ; confidence 0.996
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070243.png ; $\mathfrak { D } _ { i } = \sum \mathfrak { D } ( C , C _ { i } ) ( T )$ ; confidence 0.965
  
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050130.png ; $\Sigma ^ { 2 } \text { parabolic } =$ ; confidence 0.726
+
24. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050136.png ; $\sigma _ { \text{l} } ( A , \mathcal{H} ) \cap \sigma _ { \text{r} } ( A , \mathcal{H} )$ ; confidence 0.965
  
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006037.png ; $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$ ; confidence 0.837
+
25. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018014.png ; $A ( K )$ ; confidence 0.965
  
26. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010017.png ; $B = \operatorname { End } _ { H } ( T )$ ; confidence 0.660
+
26. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010050.png ; $\sigma ( \zeta ) = \sum _ { i = 0 } ^ { k } \beta _ { i } \zeta ^ { i }$ ; confidence 0.965
  
27. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t1301108.png ; $B = \operatorname { End } _ { A } ( T )$ ; confidence 0.790
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040145.png ; $x _ { 0 } \in X _ { 0 }$ ; confidence 0.965
  
28. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665
+
28. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025069.png ; $( \sigma _ { \varepsilon } ) _ { \varepsilon > 0 } \}$ ; confidence 0.965
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015014.png ; $T ( T ) : = C ^ { * } ( T _ { f } : f \in C ( T ) )$ ; confidence 0.911
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046044.png ; $V _ { H } = V _ { H } e \oplus V _ { H } f$ ; confidence 0.965
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140137.png ; $\phi _ { \lambda } \in L ^ { \infty }$ ; confidence 0.989
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007018.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s.$ ; confidence 0.965
  
31. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050118.png ; $u _ { \gamma } ( 1 ) = D ^ { ( - x - 1 ) } ( u )$ ; confidence 0.291
+
31. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003054.png ; $L u = \frac { \partial ^ { 2 } } { \partial x ^ { 2 } } \left( E I ( x ) \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } \right) + \rho A ( x ) \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }.$ ; confidence 0.965
  
32. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002048.png ; $\overline { H } \square _ { c } ^ { x }$ ; confidence 0.738
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180246.png ; $\operatorname { Ric } ( g )$ ; confidence 0.965
  
33. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020112.png ; $( p , q ) : \Gamma ( F ) \rightarrow X$ ; confidence 0.992
+
33. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356051.png ; $x \mapsto \pi_f ( x )$ ; confidence 0.965
  
34. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004058.png ; $\chi ^ { \prime } ( G ) = \chi ( L ( G ) )$ ; confidence 1.000
+
34. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009091.png ; $I ( g ) = \int _ { 0 } ^ { 1 } g ( t ) d B ( t )$ ; confidence 0.965
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003028.png ; $\omega _ { 0 } \leq \alpha \leq \mu$ ; confidence 0.990
+
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180437.png ; $k < n / 2$ ; confidence 0.965
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759011.png ; $I = \operatorname { ind } _ { k } ( D )$ ; confidence 0.955
+
36. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007079.png ; $L ^ { 2 } ( \mathbf{R} _ { 3 } )$ ; confidence 0.965
  
37. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006025.png ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega WP$ ; confidence 0.713
+
37. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005088.png ; $\{ r _ { - } ( k ) , i k _ { j } , ( m _ { j } ^ { - } ) ^ { 2 } : 1 \leq j \leq J , \forall k > 0 \}$ ; confidence 0.965
  
38. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006060.png ; $T _ { A } M \times T _ { A } M ^ { \prime }$ ; confidence 0.991
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240131.png ; $\epsilon _ { l } \in H ^ { 1 } ( X _ { 0 } ( N ) \times X _ { 0 } ( N ) ; \mathcal{K} _ { 2 } )$ ; confidence 0.965
  
39. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007039.png ; $\rho ( p , q , t ) = e ^ { i ( p D + q X + t l ) }$ ; confidence 0.655
+
39. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002061.png ; $H ^ { \infty } + C$ ; confidence 0.965
  
40. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008029.png ; $W ( q ^ { r } p ^ { s } ) = ( Q ^ { r } P ^ { s } ) s$ ; confidence 0.645
+
40. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180181.png ; $\Theta \in \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.965
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011060.png ; $\varphi , \psi \in L ^ { 2 } ( R ^ { x } )$ ; confidence 0.454
+
41. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110020/e11002024.png ; $E ^ { 2 }$ ; confidence 0.965
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110109.png ; $\chi \in \operatorname { Sp } ( n )$ ; confidence 0.433
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028022.png ; $A _ { 0 } ( \overline { \mathbf{C} } \backslash D ) = \{ f : f \in A ( \overline { \mathbf{C} } \backslash D ) , f ( \infty ) = 0 \}.$ ; confidence 0.965
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019014.png ; $n ( x , t ) = \int _ { R ^ { 3 N } } f _ { w } d p$ ; confidence 0.468
+
43. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006058.png ; $D \xi D$ ; confidence 0.965
  
44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021051.png ; $( 1,1,1,1 , I _ { m } ) = ( 1,4 , I _ { m } )$ ; confidence 0.469
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305105.png ; $g = \operatorname { mex } g ( F ( u ) )$ ; confidence 0.964
  
45. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013014.png ; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159
+
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020088.png ; $\operatorname { exp } ( - 2 \theta n - 0.7823 \operatorname { log } n ) \leq M _ { 2 } \leq \operatorname { exp } ( - 2 \theta n + 4.5 \operatorname { log } n )$ ; confidence 0.964
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w1301304.png ; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946
+
46. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110107.png ; $\frac { 1 } { m } \sum _ { i = 1 } ^ { r } \frac { 1 } { m - i + 1 } = p ( z )$ ; confidence 0.964
  
47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017065.png ; $\operatorname { det } k ( z ) \neq 0$ ; confidence 0.901
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040029.png ; $( g , \mathbf{f} ) \sim ( g h ^ { - 1 } , \varrho ( h ) \mathbf{f} ),$ ; confidence 0.964
  
48. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010110.png ; $\operatorname { sin } C _ { C } D ( A )$ ; confidence 0.052
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163608.png ; $G / N$ ; confidence 0.964
  
49. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005041.png ; $\mathfrak { D } _ { \mathfrak { y } }$ ; confidence 0.329
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014019.png ; $\mathbf{R} ^ { 2 }$ ; confidence 0.964
  
50. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002010.png ; $100 = 89 + 8 + 3,1111 = 987 + 89 + 34 + 1$ ; confidence 1.000
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b1201709.png ; $( I - \Delta ) ^ { \alpha / 2 } f$ ; confidence 0.964
  
51. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008039.png ; $V _ { k + l } ^ { k - l } ( 1,0 ; \alpha ) = 1$ ; confidence 0.837
+
51. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011021.png ; $x ^ { n } \in P \Rightarrow x \in P$ ; confidence 0.964
  
52. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008016.png ; $y = r \operatorname { sin } \theta$ ; confidence 0.977
+
52. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003029.png ; $\| P _ { \alpha } \| = 1$ ; confidence 0.964
  
53. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008015.png ; $x = r \operatorname { cos } \theta$ ; confidence 0.958
+
53. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030033.png ; $| B ( m , 3 ) |$ ; confidence 0.964
  
54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008033.png ; $_ { n } = \prod _ { i = 1 } ^ { n } ( a + i - 1 )$ ; confidence 0.435
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070232.png ; $T \cap k ( C _ { 1 } ) = T _ { 1 }$ ; confidence 0.964
  
55. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011070.png ; $\{ \mu _ { N } ( x ) : x = 1,2 , \ldots \}$ ; confidence 0.329
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310133.png ; $A ^ { \infty } / M$ ; confidence 0.964
  
56. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301305.png ; $( x _ { 1 } , x _ { 2 } , x _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.957
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008034.png ; $S ( s + t ) + S ( s - t ) = 2 S ( s ) S ( t )$ ; confidence 0.964
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
+
57. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012049.png ; $0 \neq a , b , c , d \in R$ ; confidence 0.964
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
+
58. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001057.png ; $1 \leq p , q , r , a , b , c \leq n$ ; confidence 0.964
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940
+
59. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840138.png ; $T ^ { + } = J T ^ { * } J$ ; confidence 0.964
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240435.png ; $\operatorname { tr } ( N \Theta )$ ; confidence 0.777
+
60. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077490/r07749035.png ; $[ n / 2 ]$ ; confidence 0.964
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240481.png ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565
+
61. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300701.png ; $\phi ( f ( x ) ) = \lambda \phi ( x ),$ ; confidence 0.964
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240420.png ; $\zeta _ { 1 } , \ldots , \zeta _ { q }$ ; confidence 0.510
+
62. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154014.png ; $\{ x : x \in A ^ { + } , \square f ( x ) < + \infty \}$ ; confidence 0.964
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040118.png ; $\varphi \rightarrow \psi \in T$ ; confidence 0.986
+
63. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202608.png ; $X _ { n } ( t ) = \frac { 1 } { \sigma \sqrt { n } } [ S _ { [ n t ] } + ( n t - [ n t ] ) \xi_{ [ n t ] + 1} ],$ ; confidence 0.964
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981
+
64. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520291.png ; $U D _ { A } = D _ { K_{\rho} }$ ; confidence 0.964
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040414.png ; $^ { * } L D = S PP _ { U } Mod ^ { * } L _ { D }$ ; confidence 0.061
+
65. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018046.png ; $E _ { 1 } \cup E _ { 2 }$ ; confidence 0.964
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005054.png ; $u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.958
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014044.png ; $s _ { i } ( z ) a ( z ) + t _ { i } ( z ) b ( z ) = r _ { i } ( z ),$ ; confidence 0.964
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007067.png ; $- ( 1 / \sqrt { 12 } - \varepsilon )$ ; confidence 1.000
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180101.png ; $u _ { 1 } = F ( u _ { 0 } ) , u _ { 2 } = F ( u _ { 1 } ),$ ; confidence 0.964
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300903.png ; $G = H _ { 1 } ^ { * } \ldots ^ { * } H _ { k }$ ; confidence 0.492
+
68. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014067.png ; $f _ { \rho } ^ { C } \in C ^ { k } ( U )$ ; confidence 0.964
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030045.png ; $C \times \Omega g \circ \theta X$ ; confidence 0.250
+
69. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170211.png ; $K ^ { * } \rightarrow \overline { K } \rightarrow K$ ; confidence 0.964
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032013.png ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.800
+
70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010026.png ; $\exists x \varphi$ ; confidence 0.964
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016035.png ; $\frac { d A } { d t } = f ( u ) ( 1 - A ) - b A$ ; confidence 0.998
+
71. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024011.png ; $x ^ { ( m ) } ( t ) =$ ; confidence 0.964
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160162.png ; $l _ { j t } \leq x _ { j t } \leq u _ { j t }$ ; confidence 0.445
+
72. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013028.png ; $\lambda \in \mathbf{Q} ( \theta )$ ; confidence 0.964
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018010.png ; $mng : Mod \times Fm \rightarrow$ ; confidence 0.547
+
73. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005096.png ; $x < x _ { 0 } < \infty$ ; confidence 0.964
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020080.png ; $\lambda \in F \backslash \{ 0 \}$ ; confidence 0.989
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020050.png ; $T ( \theta )$ ; confidence 0.964
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023042.png ; $c = \operatorname { cos } \alpha$ ; confidence 0.935
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012044.png ; $\operatorname{dom} a_{i+1}=\operatorname{codom} a_i$ ; confidence 0.964
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023023.png ; $F \in H ( D ) \cap C ( D \cup \Gamma )$ ; confidence 0.999
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026069.png ; $\Delta \supset f ( \overline { \Omega } )$ ; confidence 0.964
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023016.png ; $\gamma = \{ z _ { 1 } : | z _ { 1 } | = 1 \}$ ; confidence 0.996
+
77. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001083.png ; $\operatorname { log } _ { \omega } ( \gamma \delta ) = \operatorname { log } _ { \omega } \gamma + \operatorname { log } _ { \omega } \delta,$ ; confidence 0.964
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027042.png ; $a _ { 1 } ^ { n } , \ldots , a _ { n } ^ { n }$ ; confidence 0.555
+
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020047.png ; $\mathcal{H} ( \theta ) = H ^ { 2 } \ominus \theta H ^ { 2 }$ ; confidence 0.964
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027048.png ; $\{ x _ { x } , : x _ { x } , \in X _ { x } , \}$ ; confidence 0.127
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010073.png ; $w \in W$ ; confidence 0.964
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027053.png ; $x _ { j } ^ { \prime } \rightarrow x$ ; confidence 0.796
+
80. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230146.png ; $A ( n \times n )$ ; confidence 0.964
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260127.png ; $A \{ X _ { 1 } , \dots , X _ { s _ { i } } \}$ ; confidence 0.747
+
81. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007044.png ; $| \rho ^ { \prime } / \rho | < 1$ ; confidence 0.964
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027092.png ; $W ( \rho ) = W ( \overline { \rho } )$ ; confidence 0.998
+
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019014.png ; $t ( k , r )$ ; confidence 0.964
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280173.png ; $a \in M ^ { \alpha } ( [ s , \infty ) )$ ; confidence 0.459
+
83. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520405.png ; $( Q , \Lambda ) \neq 0 , \quad q _ { 1 } + \ldots + q _ { n } < 2 ^ { k }.$ ; confidence 0.964
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201008.png ; $X \equiv ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.819
+
84. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w1200109.png ; $D = z d / d z$ ; confidence 0.964
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210122.png ; $w _ { 1 } = \sigma _ { \gamma } w _ { 2 }$ ; confidence 0.886
+
85. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232050.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta,$ ; confidence 0.964
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001090.png ; $X ^ { * } = X \cup Q \cup \{ \infty \}$ ; confidence 0.605
+
86. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002033.png ; $\Gamma _ { \mathbf{p} }$ ; confidence 0.964
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002054.png ; $\| U _ { x } ( x ^ { * } ) \| = \| x \| ^ { 3 }$ ; confidence 0.836
+
87. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520232.png ; $B \in \mathbf{R} ^ { n \times m }$ ; confidence 0.964
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004075.png ; $L _ { \infty } = L _ { \infty } ( \mu )$ ; confidence 0.996
+
88. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011029.png ; $\varphi \in \operatorname { Aut } ( X )$ ; confidence 0.964
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006071.png ; $\| V \| _ { 2 } = \| V ^ { - 1 } \| _ { 2 } = 1$ ; confidence 0.991
+
89. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002020.png ; $\psi _ { \mu }$ ; confidence 0.964
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007063.png ; $\alpha \mapsto \alpha \dot { b }$ ; confidence 0.336
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012024.png ; $\mathbf{R} = ( - \infty , \infty )$ ; confidence 0.964
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220113.png ; $R H _ { D } ^ { i + 1 } ( X / R , R ( i + 1 - m ) )$ ; confidence 0.212
+
91. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h0463004.png ; $0 \leq k \leq n$ ; confidence 0.964
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301009.png ; $f ( z ) = \langle f , K _ { z } \rangle$ ; confidence 0.830
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052037.png ; $x _ { + } = x _ { c } - B _ { c } ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.964
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010051.png ; $\varphi \in L ^ { \infty } ( D , d A )$ ; confidence 0.993
+
93. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m0620006.png ; $( X _ { n } ) _ { \leq k}$ ; confidence 0.964
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
+
94. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020011.png ; $| t | \leq \pi x$ ; confidence 0.964
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015078.png ; $d _ { S } ( x _ { 1 } , \ldots , x _ { N } ) =$ ; confidence 0.470
+
95. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005057.png ; $\alpha \subset \mathbf{T}$ ; confidence 0.964
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018030.png ; $\varphi ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.508
+
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010031.png ; $\int _ { D } | f | ^ { 2 } d A < \infty$ ; confidence 0.964
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020057.png ; $\theta ( z ) = d + c z ( I - z A ) ^ { - 1 } b$ ; confidence 0.719
+
97. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840276.png ; $[ A x , x ] \geq 0$ ; confidence 0.964
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024016.png ; $g : \overline { U } \rightarrow V$ ; confidence 0.883
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049013.png ; $N _ { k } : = \{ p \in P : r ( p ) = k \}$ ; confidence 0.964
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027081.png ; $\underline { \square } _ { n } ( h )$ ; confidence 0.718
+
99. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016094.png ; $A , B \subseteq \Sigma ^ { * }$ ; confidence 0.964
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030079.png ; $L ^ { 2 } ( Y ^ { \prime } , 1 ^ { 2 } ( N ) )$ ; confidence 0.772
+
100. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301302.png ; $x _ { 1 } = r \operatorname { sin } \theta \operatorname { cos } \varphi$ ; confidence 0.964
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031074.png ; $\delta > | ( 1 / n p ) - ( 1 / 2 n ) | - 1 / 2$ ; confidence 0.997
+
101. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011038.png ; $\cup S ^ { 1 } \subset M$ ; confidence 0.964
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320101.png ; $F ( s , t ) = ( s ^ { p } + t ^ { p } ) ^ { 1 / p }$ ; confidence 0.996
+
102. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060117.png ; $Z \rightarrow \infty$ ; confidence 0.964
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034022.png ; $K _ { N } ( D ^ { \circ } ) . D ^ { \circ }$ ; confidence 0.372
+
103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070118.png ; $\{ \Gamma , k + 2 , \mathbf{v} \}$ ; confidence 0.964
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019017.png ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027056.png ; $w _ { 2 } ( \rho _ { P } )$ ; confidence 0.964
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200178.png ; $\Lambda \in \mathfrak { h } ^ { * }$ ; confidence 0.649
+
105. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011043.png ; $F _ { j } ( z )$ ; confidence 0.964
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200105.png ; $b \in \mathfrak { g } ^ { - \alpha }$ ; confidence 0.606
+
106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015032.png ; $\pi ^ { - 1 } ( x ) = S$ ; confidence 0.964
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400118.png ; $p : \mathfrak { b } \rightarrow C$ ; confidence 0.828
+
107. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019033.png ; $( N , L )$ ; confidence 0.964
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400110.png ; $V \rightarrow H ^ { 0 } ( G / B , \xi )$ ; confidence 0.937
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202407.png ; $v _ { p } ( f )$ ; confidence 0.964
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042036.png ; $\Psi _ { V , W } = \Psi _ { W , V } ^ { - 1 }$ ; confidence 0.994
+
109. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704040.png ; $D ( T )$ ; confidence 0.964
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043084.png ; $k \langle E _ { 1 } , E _ { 2 } \rangle$ ; confidence 0.907
+
110. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006014.png ; $\frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) = \Phi ^ { * } \sigma _ { 1 } \Phi , \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) = \Phi ^ { * } \sigma _ { 2 } \Phi,$ ; confidence 0.964
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023044.png ; $\operatorname { rist } _ { G } ( n )$ ; confidence 0.911
+
111. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066057.png ; $( x , y ) \in \Omega$ ; confidence 0.964
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b1302605.png ; $K : = f _ { 0 } ^ { - 1 } ( ] - \infty , 0 ] )$ ; confidence 0.763
+
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023040.png ; $R _ { t } ( x ) = ( I + t \partial f ) ^ { - 1 } ( x )$ ; confidence 0.964
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051025.png ; $f ( x _ { c } + \lambda d ) < f ( x _ { c } )$ ; confidence 0.950
+
113. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500019.png ; $\mathcal{H} _ { \epsilon } ( C ) = \operatorname { inf } \mathcal{H} _ { \epsilon } ( C , X ),$ ; confidence 0.964
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052084.png ; $s _ { N } = - B _ { N } ^ { - 1 } F ( x _ { N } ) =$ ; confidence 0.592
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013010.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , X _ { n } ),$ ; confidence 0.964
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290124.png ; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170163.png ; $k \leq m$ ; confidence 0.964
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290132.png ; $d = \operatorname { dim } A \geq 1$ ; confidence 0.991
+
116. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774048.png ; $0 \leq k < n$ ; confidence 0.964
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300161.png ; $\langle G , B \rangle = G \times B$ ; confidence 0.884
+
117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012026.png ; $d , d ^ { \prime } : G \rightarrow \mathcal{C}$ ; confidence 0.963
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205602.png ; $\lambda _ { 1 } = \lambda _ { 1 } ( M )$ ; confidence 0.993
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019022.png ; $\mathbf{x} ( h _ { 1 } ) + \ldots + \mathbf{x} ( h _ { p } )$ ; confidence 0.963
  
119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200206.png ; $u _ { t } ( x ) = t ^ { - \gamma } u ( x / t )$ ; confidence 0.237
+
119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020045.png ; $\iota : S ^ { k } \rightarrow ( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.963
  
120. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003019.png ; $f : I \times G \rightarrow R ^ { m }$ ; confidence 0.711
+
120. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481902.png ; $\operatorname { div } \mathbf{v} = 0,$ ; confidence 0.963
  
121. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200306.png ; $f : J \times G \rightarrow R ^ { m }$ ; confidence 0.589
+
121. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011040.png ; $- \operatorname { log } \operatorname { sin } \left. \left( \frac { \pi } { l } \left( z - \frac { l } { 2 } + \frac { i b } { 2 } \right) \right) \right] + \text{const}.$ ; confidence 0.963
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005010.png ; $S = S ^ { - 1 } : = \{ s ^ { - 1 } : s \in S \}$ ; confidence 0.779
+
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022056.png ; $q \in P _ { K }$ ; confidence 0.963
  
123. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300902.png ; $x = \operatorname { cos } \theta$ ; confidence 0.999
+
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018020.png ; $W ^ { ( N ) } ( t )$ ; confidence 0.963
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210018.png ; $( \chi _ { n } ^ { 2 } - n ) / \sqrt { 2 n }$ ; confidence 0.993
+
124. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012083.png ; $\partial _ { \infty } = d _ { M } + f \Sigma _ { \infty } \nabla$ ; confidence 0.963
  
125. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160150.png ; $PH = ATIMEALT [ n ^ { O ( 1 ) } , O ( 1 ) ]$ ; confidence 0.400
+
125. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007079.png ; $j ^ { 1 / 3 }$ ; confidence 0.963
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180199.png ; $W ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.782
+
126. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601071.png ; $\operatorname{Wh}\{ 1 \} = 0$ ; confidence 0.963
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180472.png ; $\hat { N } = N _ { 0 } \times ( - 1 , + 1 )$ ; confidence 0.443
+
127. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500057.png ; $\mathcal{P} = \{ B ( y _ { i } , \epsilon ) \}$ ; confidence 0.963
  
128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180192.png ; $R ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.557
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013061.png ; $v ^ { 2 / 3 }$ ; confidence 0.963
  
129. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180404.png ; $A ( \mathfrak { g } ) = 0 \in S ^ { 2 } E$ ; confidence 0.349
+
129. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840373.png ; $L y - \lambda r y = r f$ ; confidence 0.963
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019039.png ; $\varphi \in H ^ { 2 m } ( \Gamma , C )$ ; confidence 0.909
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501023.png ; $( B _ { r } , \phi _ { r } )$ ; confidence 0.963
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210145.png ; $\{ P _ { \alpha _ { R } , } , \theta \}$ ; confidence 0.445
+
131. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023041.png ; $f \in C ^ { \infty } ( M , \mathbf{R} )$ ; confidence 0.963
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021020.png ; $P _ { N } \approx P _ { N } ^ { \prime }$ ; confidence 0.233
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050143.png ; $P ( n )$ ; confidence 0.963
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202307.png ; $f ^ { \prime } ( \theta ) \in A _ { 0 }$ ; confidence 0.955
+
133. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004011.png ; $\Lambda _ { L } ( a , x )$ ; confidence 0.963
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021024.png ; $w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } }$ ; confidence 0.846
+
134. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500095.png ; $I _ { \epsilon } ( X ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \mathcal{H} _ { \epsilon } ^ { \prime \prime } ( X ^ { n } ),$ ; confidence 0.963
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025053.png ; $\overline { N } = \sum _ { k } N _ { k }$ ; confidence 0.992
+
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015058.png ; $\ddot { x } + p \dot { x } + q x = 0,$ ; confidence 0.963
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025020.png ; $R _ { j } = \{ k : X _ { k } \geq T _ { j } \}$ ; confidence 0.908
+
136. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025033.png ; $( f u ) v = u ( f v ) = f ( u v )$ ; confidence 0.963
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202708.png ; $\gamma ( s ) \in \partial \Omega$ ; confidence 0.999
+
137. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004015.png ; $g _ { k } ( z ) = z ^ { k } ( \operatorname { mod } f ( z ) ).$ ; confidence 0.963
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030089.png ; $\operatorname { tr } ( K _ { i } ) = 1$ ; confidence 0.415
+
138. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020104.png ; $\mathcal{P} _ { - } \phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.963
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030042.png ; $u : H \rightarrow H ^ { \prime }$ ; confidence 0.987
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013044.png ; $R ( \theta ^ { * } ) = \sum _ { n = - \infty } ^ { \infty } \operatorname { cov } ( H ( \theta ^ { * } , X _ { n } ) , H ( \theta ^ { * } , X _ { 0 } ) ).$ ; confidence 0.963
  
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020244.png ; $\overline { u } 1 , \overline { q }$ ; confidence 0.487
+
140. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007065.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ ; confidence 0.963
  
141. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002018.png ; $\overline { u } _ { 1 } = u _ { 1 } ^ { * }$ ; confidence 0.956
+
141. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007078.png ; $\Delta h = \sum h_{ ( 1 )} \otimes h_{ ( 2 )}$ ; confidence 0.963
  
142. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024025.png ; $f ( r ) ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945
+
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021081.png ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ^ { \prime } ] \Rightarrow \tilde{\mathcal{L}} ^ { \prime }$ ; confidence 0.963
  
143. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060109.png ; $= \oplus _ { k _ { i } \in H } Bel _ { k }$ ; confidence 0.376
+
143. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070173.png ; $R ( P )$ ; confidence 0.963
  
144. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012026.png ; $d , d ^ { \prime } : G \rightarrow C$ ; confidence 0.963
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005015.png ; $t \mapsto ( I - A ( t ) ) ( I - A ( 0 ) ) ^ { - 1 }$ ; confidence 0.963
  
145. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011025.png ; $\gamma _ { i } ^ { 2 } = 1 , i = 1,2,3,4$ ; confidence 0.984
+
145. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010089.png ; $P M _ { p } ( G ) = C V _ { p } ( G )$ ; confidence 0.963
  
146. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301302.png ; $r = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }$ ; confidence 0.999
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050039.png ; $\tau : = \{ \tau _ { x } : x \geq 0 \}$ ; confidence 0.963
  
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301707.png ; $u = 0 \text { in } \partial \Omega$ ; confidence 0.953
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203201.png ; $L ^ { p } ( \mu )$ ; confidence 0.963
  
148. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230115.png ; $d ( z , w ) R ( z , w ) = G ( z ) J G ^ { * } ( w )$ ; confidence 0.968
+
148. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408032.png ; $( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.963
  
149. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028062.png ; $A ( D ) ^ { * } \simeq A ( \tilde { D } )$ ; confidence 0.872
+
149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017065.png ; $\omega ^ { p } ( G )$ ; confidence 0.963
  
150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012064.png ; $f ( y | \mu , \Sigma , \nu ) \propto$ ; confidence 0.953
+
150. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019047.png ; $A \in \mathcal{L} ( \mathbf{R} ^ { n } )$ ; confidence 0.963
  
151. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300108.png ; $\alpha _ { 1 } , \dots , a _ { m } \in R$ ; confidence 0.088
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034051.png ; $\varphi _ { 0 } = 1$ ; confidence 0.963
  
152. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006066.png ; $[ \Gamma , [ \Gamma , \Gamma ] ] = 0$ ; confidence 0.999
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005020.png ; $U ( s , s ) = I$ ; confidence 0.963
  
153. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500096.png ; $X ^ { n } = X \times \ldots \times X$ ; confidence 0.887
+
153. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001024.png ; $\sigma : V \rightarrow \mathcal{R}$ ; confidence 0.963
  
154. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500084.png ; $H _ { \epsilon } ^ { \prime } ( \xi )$ ; confidence 0.979
+
154. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572040.png ; $x , y , z$ ; confidence 0.963
  
155. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015071.png ; $\lambda _ { 1 } \neq \lambda _ { 2 }$ ; confidence 0.999
+
155. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m1302605.png ; $C _ { 0 } ( \Omega )$ ; confidence 0.963
  
156. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190191.png ; $\Phi = ( h _ { 1 } , h _ { 2 } , p , W ^ { + } )$ ; confidence 0.996
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197085.png ; $W ^ { p }$ ; confidence 0.963
  
157. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190188.png ; $\Phi _ { 1 } , \Phi _ { 2 } \in \Gamma$ ; confidence 0.979
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013028.png ; $\phi _ { - } ( x , t , z ) = \operatorname { exp } \left( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } \right),$ ; confidence 0.963
  
158. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190193.png ; $h _ { 3 } \subset W ^ { + } \cup \{ p \}$ ; confidence 0.997
+
158. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067099.png ; $\operatorname {GL} ^ { 2 } ( n ) = \operatorname {GL} ( n ) V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.963
  
159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230141.png ; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946
+
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300602.png ; $u ^ { \prime \prime } + k ^ { 2 } u - q ( x ) u = 0 , x > 0,$ ; confidence 0.963
  
160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026024.png ; $\theta \mapsto P ( \theta , \mu )$ ; confidence 0.595
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080101.png ; $f ( x ) / f$ ; confidence 0.963
  
161. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007014.png ; $f ( n ) = g ( n ) \overline { h ( n ) } / q$ ; confidence 0.996
+
161. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007031.png ; $Z = x + i y$ ; confidence 0.963
  
162. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027012.png ; $\Lambda _ { m } ^ { \alpha , \beta }$ ; confidence 0.682
+
162. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002037.png ; $M _ { \mu } = M _ { F }$ ; confidence 0.963
  
163. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001033.png ; $\operatorname { inf } ( S x , y ) = 0$ ; confidence 0.968
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c1200503.png ; $\mathbf{D} = \{ z \in \mathbf{C} : | z | < 1 \}$ ; confidence 0.963
  
164. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300109.png ; $p = \operatorname { char } F _ { q }$ ; confidence 0.289
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700037.png ; $( \lambda x x ) y x$ ; confidence 0.963
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c02502011.png ; $f : X \rightarrow \overline { R }$ ; confidence 0.994
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031047.png ; $\operatorname { lim } _ { R } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.962
  
166. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004048.png ; $f : X \rightarrow \overline { G }$ ; confidence 0.996
+
166. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340198.png ; $\alpha _ { H _ { 3 } } - \alpha _ { H _ { 2 } } - \alpha _ { H _ { 1 } }$ ; confidence 0.962
  
167. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005035.png ; $\phi _ { f } \phi _ { g } = \phi _ { f g }$ ; confidence 0.883
+
167. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005097.png ; $L ( - 1 )$ ; confidence 0.962
  
168. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017024.png ; $\sigma ( A _ { 2 } ( G ) , C V _ { 2 } ( G ) )$ ; confidence 0.998
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008027.png ; $A u = f$ ; confidence 0.962
  
169. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011019.png ; $S ^ { \prime } \hookrightarrow Q$ ; confidence 0.681
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002066.png ; $x = ( x ^ { \prime } , x ^ { \prime \prime } )$ ; confidence 0.962
  
170. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110156.png ; $\Delta \subset \subset \Gamma$ ; confidence 0.877
+
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t1202104.png ; $t ( M ; x , y )$ ; confidence 0.962
  
171. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014068.png ; $\lambda \geq \frac { Q + 1 } { Q - 1 }$ ; confidence 0.976
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013420/a01342022.png ; $Z_n$ ; confidence 0.962
  
172. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016034.png ; $k _ { G } \notin \{ \pm \infty , 0 \}$ ; confidence 0.981
+
172. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230116.png ; $d ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } d _ { i j } z ^ { i } w ^ { * j }.$ ; confidence 0.962
  
173. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017015.png ; $w = \sum _ { i = 1 } ^ { n } m _ { i } e _ { i }$ ; confidence 0.608
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026061.png ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ f , \Omega , z ]$ ; confidence 0.962
  
174. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230113.png ; $[ \omega \wedge D _ { 1 } , D _ { 2 } ] =$ ; confidence 0.872
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a0117807.png ; $\{ a , b \}$ ; confidence 0.962
  
175. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023096.png ; $[ K , L ] \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.987
+
175. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002075.png ; $q = N$ ; confidence 0.962
  
176. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024061.png ; $\psi : J _ { t } \rightarrow R ^ { x }$ ; confidence 0.697
+
176. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007090.png ; $q ( x ) \in Q$ ; confidence 0.962
  
177. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028031.png ; $N _ { Ax } ( \tilde { B } ) \geq h ^ { N }$ ; confidence 0.625
+
177. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900160.png ; $T ( \zeta )$ ; confidence 0.962
  
178. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029067.png ; $f _ { L } \rightarrow f f _ { L } ^ { L }$ ; confidence 0.095
+
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007012.png ; $\Gamma _ { 0 } ( p ) + = \langle \Gamma _ { 0 } ( p ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { p } & { 0 } \end{array} \right) \rangle$ ; confidence 0.962
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489024.png ; $\beta _ { 1 } , \ldots , \beta _ { n }$ ; confidence 0.525
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290133.png ; $A / H _ { \mathfrak{m} } ^ { 0 } ( A )$ ; confidence 0.962
  
180. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003040.png ; $B = ( C ^ { \infty } ( \Omega ) ) ^ { N }$ ; confidence 0.797
+
180. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011072.png ; $f ^ { * } : M \rightarrow \mathcal{F} ( \mathbf{R} ).$ ; confidence 0.962
  
181. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003083.png ; $x \in \Omega \backslash \Gamma$ ; confidence 0.480
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012065.png ; $\lambda ^ { * } \geq \lambda ( x , y )$ ; confidence 0.962
  
182. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040175.png ; $B \subset \Omega \times G ( n , m )$ ; confidence 0.970
+
182. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001045.png ; $\rho ( x , \partial B ) = \operatorname { inf } _ { y \in \partial B } \rho ( x , y )$ ; confidence 0.962
  
183. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040141.png ; $u \in D _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.986
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018079.png ; $[ n / 1 ]_{ f } ( t )$ ; confidence 0.962
  
184. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004072.png ; $p _ { \alpha } \in G ^ { s } ( \Omega )$ ; confidence 0.902
+
184. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003016.png ; $H ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } )$ ; confidence 0.962
  
185. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007017.png ; $F ( \alpha ) \in \sigma ( \alpha )$ ; confidence 0.713
+
185. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006071.png ; $t ^ { p } \operatorname { log } ^ { \sigma } t$ ; confidence 0.962
  
186. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043380/g0433809.png ; $\epsilon ( t h ) / t \rightarrow 0$ ; confidence 0.895
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034069.png ; $z _ { 0 } \in M$ ; confidence 0.962
  
187. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001052.png ; $\alpha \wedge \beta ^ { x } \neq 0$ ; confidence 0.632
+
187. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019030.png ; $t _ { 0 } \in [ 0 , t ]$ ; confidence 0.962
  
188. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002015.png ; $w _ { i } ^ { 1 } = \ldots = w _ { i } ^ { q }$ ; confidence 0.349
+
188. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018098.png ; $\phi ( x + t )$ ; confidence 0.962
  
189. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200209.png ; $\{ \hat { \phi } ( j ) \} _ { j \geq 0 }$ ; confidence 0.953
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027062.png ; $\sum _ { 1 } ^ { \infty } p _ { j } = 1$ ; confidence 0.962
  
190. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120158.png ; $\pi : T ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.998
+
190. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650266.png ; $M ^ { g }$ ; confidence 0.962
  
191. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h1201508.png ; $\operatorname { log } | A ^ { - 1 } |$ ; confidence 0.997
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004022.png ; $c > 0$ ; confidence 0.962
  
192. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001013.png ; $d _ { \chi _ { \lambda } } ^ { S _ { n } }$ ; confidence 0.549
+
192. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005016.png ; $\Lambda _ { k } ( \mathbf{a} )$ ; confidence 0.962
  
193. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006013.png ; $f ( k ) = | f ( k ) | e ^ { - i \delta ( k ) }$ ; confidence 0.750
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240529.png ; $\mathbf{R}$ ; confidence 0.962
  
194. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007084.png ; $\alpha ^ { \prime } , \alpha \in M$ ; confidence 0.992
+
194. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s1306207.png ; $x = + \infty$ ; confidence 0.962
  
195. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010029.png ; $C ( t ) = ( 4 K B - A ^ { 2 } ) / 4 f ( t ) ^ { 2 }$ ; confidence 0.990
+
195. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016015.png ; $L ^ { 2 } ( S ^ { 1 } , \mathbf{C} ^ { n } )$ ; confidence 0.962
  
196. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001021.png ; $F = X + F _ { ( 2 ) } + \ldots + F _ { ( d ) }$ ; confidence 0.739
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010020.png ; $t \rightarrow S ( t ) x$ ; confidence 0.962
  
197. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300109.png ; $Q _ { D \cup 0 } = ( v ^ { - 1 } - v ) Q _ { D }$ ; confidence 0.978
+
197. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006026.png ; $H ^ { ( 1 ) } Q ^ { + } = Q ^ { + } H ^ { ( 0 ) }$ ; confidence 0.962
  
198. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066023.png ; $L _ { p } ( \mathbf{R} )$ ; confidence 0.962
  
199. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005067.png ; $0 < - ( K _ { X } + B ) g ( P ^ { 1 } ) \leq 2 d$ ; confidence 0.952
+
199. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300407.png ; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t,$ ; confidence 0.962
  
200. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008015.png ; $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ ; confidence 0.995
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010278.png ; $\hat{X}$ ; confidence 0.962
  
201. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584050.png ; $[ x , y ] = ( G x , y ) , \quad x , y \in K )$ ; confidence 0.906
+
201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060116.png ; $E ^ { \text{Q} } ( N )$ ; confidence 0.962
  
202. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200301.png ; $\operatorname { Ric } ( \omega )$ ; confidence 0.997
+
202. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201505.png ; $\eta \in \mathcal{A} \mapsto \xi \eta \in \mathcal{A}$ ; confidence 0.962
  
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k0550803.png ; $\sum _ { k = 1 } ^ { n } | d z _ { k } | ^ { 2 }$ ; confidence 0.897
+
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210105.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } p _ { i } ( \lambda + k ) z ^ { \lambda + k } =$ ; confidence 0.962
  
204. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508010.png ; $\overline { \square } = \square$ ; confidence 0.811
+
204. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003044.png ; $L _ { 1 } ( \mathcal{E} ) = L _ { 2 } (\mathcal{E} ) = L _ { 3 } ( \mathcal{E} )$ ; confidence 0.962
  
205. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002075.png ; $P = P ( G ) = \{ x \in G : x \succeq e \}$ ; confidence 0.940
+
205. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302408.png ; $\langle x y z \rangle$ ; confidence 0.962
  
206. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003098.png ; $P = \{ \delta _ { X } : x \in [ 0,1 ] \}$ ; confidence 0.483
+
206. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015031.png ; $S = J \Delta ^ { 1 / 2 } = \Delta ^ { - 1 / 2 } J$ ; confidence 0.962
  
207. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003044.png ; $L _ { 1 } ( E ) = L _ { 2 } ( E ) = L _ { 3 } ( E )$ ; confidence 0.962
+
207. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015073.png ; $\Delta ^ { i t } \mathcal{L} ( \mathcal{A} ) \Delta ^ { - i t } = \mathcal{L} ( \mathcal{A} )$ ; confidence 0.962
  
208. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000211.png ; $( \lambda x , x x ) ( \lambda x , x x )$ ; confidence 0.697
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017049.png ; $\beta ( a , x ) = \beta _ { 0 } ( a )$ ; confidence 0.962
  
209. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000191.png ; $( \lambda x , f ( x ) ) \cdot e = f ( e )$ ; confidence 0.337
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020070.png ; $\mathfrak { g } = \mathfrak { g } _ { + } \oplus \mathfrak { h } \oplus \mathfrak { g } _ { - }$ ; confidence 0.962
  
210. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000150.png ; $\{ x : \sigma \} \vdash x : \sigma$ ; confidence 0.906
+
210. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012075.png ; $H C$ ; confidence 0.962
  
211. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005028.png ; $\sqrt { 2 / \pi } F ( \tau ) G ( \tau )$ ; confidence 0.948
+
211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007066.png ; $c _ { 2 } ( s ) > 0$ ; confidence 0.962
  
212. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006064.png ; $\operatorname { Im } h ^ { I I } ( z )$ ; confidence 0.747
+
212. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021061.png ; $( - 1 ) ^ { r } q ^ { k ( n - r ) } t ( M ; 1 - q ^ { k } , 0 )$ ; confidence 0.962
  
213. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010072.png ; $\nabla f _ { j } \in L ^ { 2 } ( R ^ { n } )$ ; confidence 0.988
+
213. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020222.png ; $H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \cong \mathbf{Z}$ ; confidence 0.962
  
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201004.png ; $e _ { 1 } \leq e _ { 2 } \leq \ldots < 0$ ; confidence 0.834
+
214. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003037.png ; $B w$ ; confidence 0.962
  
215. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010059.png ; $l _ { \partial , n } = L _ { 0 , n } ^ { 1 }$ ; confidence 0.404
+
215. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003012.png ; $\sum _ { i = 1 } ^ { n } \rho ( x _ { i } , T _ { n } )$ ; confidence 0.962
  
216. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003076.png ; $l = 2 \pi \operatorname { sinh } r$ ; confidence 0.965
+
216. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053089.png ; $H _ { r - 1 } ( C )$ ; confidence 0.962
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004030.png ; $r _ { 1 } ^ { 2 } , \ldots , r _ { n } ^ { 2 }$ ; confidence 0.533
+
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006018.png ; $e ^ { - i H t }$ ; confidence 0.962
  
218. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005068.png ; $( - X _ { 0 } , X _ { 1 } , \dots , X _ { n } )$ ; confidence 0.602
+
218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230140.png ; $M \rightarrow B$ ; confidence 0.962
  
219. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005069.png ; $( - Y _ { 0 } , Y _ { 1 } , \dots , Y _ { n } )$ ; confidence 0.545
+
219. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520434.png ; $X \rightarrow V$ ; confidence 0.962
  
220. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012037.png ; $K _ { p } = K _ { s } \cap \hat { K } _ { p }$ ; confidence 0.314
+
220. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260112.png ; $B (\mathcal{H} ) / K ( \mathcal{H} )$ ; confidence 0.962
  
221. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017030.png ; $R _ { i } \rightarrow R _ { i } R _ { j }$ ; confidence 0.933
+
221. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390157.png ; $\alpha _ { 1 } , \alpha _ { 2 } \in \mathbf{C}$ ; confidence 0.962
  
222. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170155.png ; $K ^ { 2 } \times I ^ { n } \searrow pt$ ; confidence 0.846
+
222. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006065.png ; $\operatorname{Im} z < 0$ ; confidence 0.962
  
223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170229.png ; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941
+
223. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012077.png ; $0 \neq A , B \lhd  R$ ; confidence 0.962
  
224. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017029.png ; $R _ { i } \rightarrow R _ { i } ^ { - 1 }$ ; confidence 0.993
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030047.png ; $\mathfrak { S } ( T ) = \{ 0 \}$ ; confidence 0.962
  
225. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027060.png ; $p _ { 0 } = 0$ ; confidence 0.962
  
226. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001028.png ; $\hat { f } ( x _ { i } ) \neq c ( x _ { i } )$ ; confidence 0.915
+
226. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306603.png ; $\mathbf{T} = \{ z \in \mathbf{C} : | z | = 1 \}$ ; confidence 0.962
  
227. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009011.png ; $- i \partial / \partial x _ { j }$ ; confidence 0.526
+
227. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100135.png ; $\rho \in C ^ { 0,1 / 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.962
  
228. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222084.png ; $( x x _ { t } x _ { \lambda } x _ { v } ) = 0$ ; confidence 0.486
+
228. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005052.png ; $( 1,1 , T + T ^ { q / 2 } )$ ; confidence 0.962
  
229. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011076.png ; $g : K \rightarrow \overline { M }$ ; confidence 0.773
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008052.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.962
  
230. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011075.png ; $f : \overline { M } \rightarrow K$ ; confidence 0.982
+
230. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006051.png ; $[ \Gamma X _ { 1 } , \Gamma X _ { 2 } ] - \Gamma ( [ X _ { 1 } , X _ { 2 } ] )$ ; confidence 0.962
  
231. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743
+
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009070.png ; $\operatorname { Re } \left\{ \frac { z f ^ { \prime } ( z ) } { f ( z ) ^ { 1 - \beta } g ( z ) ^ { \beta } } \right\} > 0 ( z \in U ).$ ; confidence 0.962
  
232. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300607.png ; $\alpha _ { 1 } \geq d ^ { m - 1 } ( d - 1 )$ ; confidence 0.752
+
232. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008063.png ; $f _ { 1 } ( x , k )$ ; confidence 0.962
  
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008025.png ; $E [ 0 , \sigma ] A ( f ) \Omega \neq 0$ ; confidence 0.993
+
233. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025054.png ; $\epsilon \leq \theta \leq \pi - \epsilon$ ; confidence 0.962
  
234. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011036.png ; $\partial \phi \nmid \partial t$ ; confidence 0.806
+
234. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004012.png ; $L ( x , y )$ ; confidence 0.962
  
235. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013087.png ; $\prod _ { i , j } l _ { i j } ^ { m _ { i j } }$ ; confidence 0.952
+
235. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024036.png ; $f_{( r )} ( x _ { 0 } )$ ; confidence 0.962
  
236. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015028.png ; $\int _ { Y } \int x f _ { X , Y } d X d Y = 1$ ; confidence 0.205
+
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018013.png ; $W ^ { ( N ) } ( t ) = W ( R _ { t } )$ ; confidence 0.962
  
237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201506.png ; $x _ { 11 } ( . ) , \ldots , x _ { p x } ( . )$ ; confidence 0.113
+
237. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012074.png ; $B \in \mathcal{N} \mathcal{P}$ ; confidence 0.962
  
238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019026.png ; $D = x ^ { 2 } + y ^ { 2 } + t ^ { 2 } - 1 - 2 x y t$ ; confidence 0.986
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210138.png ; $w _ { 1 } \in W ^ { ( k ) }$ ; confidence 0.962
  
239. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021037.png ; $\psi : K ^ { n } \rightarrow K ^ { n }$ ; confidence 0.154
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029051.png ; $\langle S : R \rangle$ ; confidence 0.962
  
240. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019042.png ; $M _ { N } = [ m _ { i j } ] _ { i , j = 0 } ^ { n }$ ; confidence 0.176
+
240. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003083.png ; $[ L ^ { 1 } ( Q ) ]^*$ ; confidence 0.962
  
241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023045.png ; $d f _ { t } \rightarrow \partial f$ ; confidence 0.998
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021019.png ; $\Delta ^ { + }$ ; confidence 0.961
  
242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m1302308.png ; $Z = \sum _ { i = 1 } ^ { t } r _ { i } C _ { j }$ ; confidence 0.509
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240200.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \beta = 0$ ; confidence 0.961
  
243. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023095.png ; $\phi ^ { + } : X ^ { + } \rightarrow Y$ ; confidence 0.997
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100149.png ; $\operatorname { Res } _ { H } A _ { p } ( G ) = A _ { p } ( H )$ ; confidence 0.961
  
244. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230145.png ; $\{ < \operatorname { dim } X _ { n }$ ; confidence 0.430
+
244. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019017.png ; $x = \operatorname { cosh } \alpha$ ; confidence 0.961
  
245. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202405.png ; $u ( x , y ) \rightarrow u [ 1 ] ( x , y )$ ; confidence 0.996
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021065.png ; $M _ { \theta }$ ; confidence 0.961
  
246. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025033.png ; $U ^ { \prime \prime } \subseteq U$ ; confidence 0.938
+
246. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304105.png ; $p , q \in \mathcal{P}$ ; confidence 0.961
  
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025021.png ; $S _ { \Gamma } ^ { \prime } ( R ^ { n } )$ ; confidence 0.820
+
247. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004012.png ; $\mathbf{P} ^ { 1 } ( \mathbf{Q} )$ ; confidence 0.961
  
248. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020103.png ; $( \operatorname { cos } t ) ^ { - 1 }$ ; confidence 1.000
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211047.png ; $\| \partial p _ { i } ( \theta ) / \partial \theta _ { j } \|$ ; confidence 0.961
  
249. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002055.png ; $\hat { \theta } = \psi _ { \mu } ( X )$ ; confidence 0.870
+
249. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040760/f0407606.png ; $n p$ ; confidence 0.961
  
250. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663013.png ; $r _ { i } = r _ { i } ^ { * } + \alpha _ { i }$ ; confidence 0.346
+
250. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026011.png ; $\delta ^ { 2 } U _ { j } = h ^ { - 2 } ( U _ { j + 1 } - 2 U _ { j } + U _ { j - 1 } )$ ; confidence 0.961
  
251. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663058.png ; $H _ { p } ^ { \gamma } ( R ^ { \gamma } )$ ; confidence 0.185
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007042.png ; $\sigma ( n ) / n \geq \alpha$ ; confidence 0.961
  
252. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011023.png ; $x _ { 1 } ^ { * } , \ldots , x _ { n } ^ { * }$ ; confidence 0.573
+
252. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080105.png ; $= \operatorname { tanh } [ \frac { H + 2 m J } { k _ { B } T } ],$ ; confidence 0.961
  
253. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520212.png ; $G = GL _ { m } ( K ) \times GL _ { n } ( K )$ ; confidence 0.351
+
253. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120121.png ; $H ( A )$ ; confidence 0.961
  
254. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520290.png ; $U : H \rightarrow L _ { \rho } ^ { 2 }$ ; confidence 0.952
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027034.png ; $W ( \rho )$ ; confidence 0.961
  
255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752091.png ; $M _ { m \times n } ( \overline { R } )$ ; confidence 0.646
+
255. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013017.png ; $S ( T + i ) ^ { - 1 }$ ; confidence 0.961
  
256. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520421.png ; $\phi _ { i } = \lambda _ { i } y _ { i } a$ ; confidence 0.991
+
256. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011040.png ; $H \geq 4$ ; confidence 0.961
  
257. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520379.png ; $Q \equiv ( q _ { 1 } , \dots , q _ { n } )$ ; confidence 0.607
+
257. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302010.png ; $\operatorname {GL} ^ { k } ( n )$ ; confidence 0.961
  
258. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520383.png ; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624
+
258. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001024.png ; $\Phi _ { 1 }$ ; confidence 0.961
  
259. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001036.png ; $\alpha _ { 1 } , \dots , a _ { N } \in G$ ; confidence 0.112
+
259. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110128.png ; $\phi = v _ { i }$ ; confidence 0.961
  
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010156.png ; $\theta , \theta ^ { \prime } \in M$ ; confidence 0.999
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030015.png ; $Y ^ { \prime } = [ 0,1 [ ^ { N }$ ; confidence 0.961
  
261. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001090.png ; $\Gamma u = u _ { N } + h u , k a \ll 1 , h =$ ; confidence 0.313
+
261. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004055.png ; $F _ { \mathcal{X} } ( Y )$ ; confidence 0.961
  
262. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010157.png ; $\theta ^ { \prime } - \theta = \xi$ ; confidence 0.998
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961
  
263. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300505.png ; $\operatorname { Im } T = K J K ^ { * }$ ; confidence 0.919
+
263. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
  
264. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005039.png ; $\operatorname { Im } A = K J K ^ { * }$ ; confidence 0.956
+
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034057.png ; $K \subset M$ ; confidence 0.961
  
265. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006063.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } )$ ; confidence 1.000
+
265. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067054.png ; $\pi_{\text{W}} : W ( M ) \rightarrow M$ ; confidence 0.961
  
266. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008046.png ; $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$ ; confidence 0.972
+
266. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015012.png ; $P : L ^ { 2 } ( \mathbf{T} ) \rightarrow H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.961
  
267. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005035.png ; $\varphi ( 2 u ) \leq K \varphi ( u )$ ; confidence 0.999
+
267. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r1301104.png ; $\zeta ( s ) : = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } } = \prod _ { p } \frac { 1 } { 1 - \frac { 1 } { p ^ { s } } }$ ; confidence 0.961
  
268. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006069.png ; $\Delta _ { A } F ( x ) = F ( x + h ) - F ( x )$ ; confidence 0.729
+
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037080.png ; $\{ 0,1 , \neg , \vee , \wedge \}$ ; confidence 0.961
  
269. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101035.png ; $\alpha _ { 1 } \ldots \alpha _ { t }$ ; confidence 0.651
+
269. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660332.png ; $M ( f )$ ; confidence 0.961
  
270. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070112.png ; $z \rightarrow \partial \Omega$ ; confidence 1.000
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040380.png ; $\Omega h ^ { - 1 } ( F ) = h ^ { - 1 } ( \Omega F )$ ; confidence 0.961
  
271. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009030.png ; $\Omega \times \partial \Omega$ ; confidence 0.998
+
271. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011038.png ; $\sum f ( \overset{\rightharpoonup } { e } ) = 0$ ; confidence 0.961
  
272. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003051.png ; $\operatorname { un } _ { q } ( G / H )$ ; confidence 0.745
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001064.png ; $0 \leq i \leq t$ ; confidence 0.961
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021060/c02106012.png ; $| \alpha | ^ { 2 } + | \beta | ^ { 2 } = 1$ ; confidence 0.997
+
273. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020209.png ; $\operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.961
  
274. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070143.png ; $R : G _ { q } \rightarrow U _ { q } ( g )$ ; confidence 0.752
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240105.png ; $y$ ; confidence 0.961
  
275. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008077.png ; $E [ T ( x ) ] ps = \frac { x } { 1 - \rho }$ ; confidence 0.308
+
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014030.png ; $T A - A T = I$ ; confidence 0.961
  
276. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008086.png ; $T \int \operatorname { SRPTF } =$ ; confidence 0.069
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a1200507.png ; $f ( . )$ ; confidence 0.961
  
277. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007054.png ; $u _ { j } : = ( u , \varphi _ { j } ) _ { 0 }$ ; confidence 0.993
+
277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023064.png ; $X _ { 2 } ( p \times m )$ ; confidence 0.961
  
278. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080118.png ; $v _ { j } : = ( v , \varphi _ { j } ) _ { 0 }$ ; confidence 0.887
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c1302605.png ; $\mathcal{D} ^ { j }$ ; confidence 0.961
  
279. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008029.png ; $K f : = ( K f ) ( . ) = ( f , K ( x , ) ) = f ( . )$ ; confidence 0.326
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028030.png ; $[ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z$ ; confidence 0.961
  
280. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r1301409.png ; $U \cap \sigma ( R ) = \{ \lambda \}$ ; confidence 1.000
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006053.png ; $\overline { S ( k ) } = S ( - k ) = S ^ { - 1 } ( k )$ ; confidence 0.961
  
281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200206.png ; $h : R ^ { N } \times R \rightarrow R$ ; confidence 0.992
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209056.png ; $R / J ( R )$ ; confidence 0.961
  
282. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200203.png ; $L : R ^ { N } \times R \rightarrow R$ ; confidence 0.958
+
282. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006051.png ; $W ^ { k } E _ { \Phi } ( \Omega )$ ; confidence 0.961
  
283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014033.png ; $Q _ { \lambda } = \sum _ { T } x ^ { T } ,$ ; confidence 0.683
+
283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014062.png ; $\beta : j \rightarrow i$ ; confidence 0.961
  
284. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004052.png ; $\lambda ^ { \prime } = ( 3,2,1,1 )$ ; confidence 1.000
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110055.png ; $A _ { 2 }$ ; confidence 0.961
  
285. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005091.png ; $w _ { 1 } , \dots , w _ { N } \in \Omega$ ; confidence 0.221
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002045.png ; $u = B ^ { - 1 } l$ ; confidence 0.961
  
286. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038024.png ; $\operatorname { ln } t _ { \tau } A$ ; confidence 0.339
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210014.png ; $\sqrt { \chi _ { n } ^ { 2 } }$ ; confidence 0.961
  
287. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038021.png ; $\operatorname { ln } t _ { \rho } A$ ; confidence 0.713
+
287. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200801.png ; $F ( X , Y ) \in \mathbf{Z} [ X , Y ]$ ; confidence 0.961
  
288. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045028.png ; $= 12 E [ F x ( X ) F _ { \gamma } ( Y ) ] - 3$ ; confidence 0.059
+
288. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004017.png ; $J _ { f } ( x )$ ; confidence 0.961
  
289. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022062.png ; $\operatorname { det } ( \Delta )$ ; confidence 0.999
+
289. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034030/d0340302.png ; $\overset{\rightharpoonup }{ E }$ ; confidence 0.961
  
290. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048037.png ; $H _ { S } ^ { 1 } ( D ) = \text { coker } D$ ; confidence 0.948
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007029.png ; $f \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.961
  
291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304802.png ; $\beta : E ( \beta ) \rightarrow M$ ; confidence 0.999
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080011.png ; $\nabla$ ; confidence 0.961
  
292. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048053.png ; $( E _ { f } ^ { p q } , a _ { \ell } ^ { p q } )$ ; confidence 0.195
+
292. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630121.png ; $u |_{ \partial \Omega}$ ; confidence 0.961
  
293. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230113.png ; $\phi ( \lambda ( T T ^ { \prime } ) )$ ; confidence 0.973
+
293. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840118.png ; $[ x , y ] = 0$ ; confidence 0.961
  
294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023094.png ; $X _ { i } = B U \Rightarrow A _ { i } = B$ ; confidence 0.286
+
294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011087.png ; $( x , \xi ) \mapsto ( x , \xi + S x )$ ; confidence 0.960
  
295. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027014.png ; $( Q _ { n } , [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157
+
295. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020203.png ; $w ( z ) \leq c ^ { 2 }$ ; confidence 0.960
  
296. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067099.png ; $GL ^ { 2 } ( n ) = GL ( n ) V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.963
+
296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005026.png ; $| t ( k ) | ^ { 2 } + | r ( k ) | ^ { 2 } = 1$ ; confidence 0.960
  
297. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620151.png ; $q _ { 2 } ( . ) \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.922
+
297. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010045.png ; $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ ; confidence 0.960
  
298. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840168.png ; $\operatorname { Im } \lambda > 0$ ; confidence 0.861
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280127.png ; $U \supset \mathbf{C} ^ { n } \backslash D$ ; confidence 0.960
  
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032097.png ; $\operatorname { str } ( id ) = p - q$ ; confidence 0.606
+
299. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101038.png ; $p _ { i } \in \pi$ ; confidence 0.960
  
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340108.png ; $w : R \times S ^ { 1 } \rightarrow M$ ; confidence 0.903
+
300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020029.png ; $g _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } \phi _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.960

Latest revision as of 11:46, 10 May 2020

List

1. f130100150.png ; $u \in A _ { p } ( H )$ ; confidence 0.965

2. c120180503.png ; $R (\tilde{ g} )$ ; confidence 0.965

3. w1300506.png ; $\wedge \mathfrak { g } ^ { * }$ ; confidence 0.965

4. l11004036.png ; $\mathcal{X} ( G ) \in \mathcal{X}$ ; confidence 0.965

5. i12001031.png ; $\sigma _ { 2 } \sigma _ { 1 } ^ { - 1 }$ ; confidence 0.965

6. l12009041.png ; $\Gamma ( T ^ { * } M )$ ; confidence 0.965

7. m13025072.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } ( u ^ { * } \rho _ { \varepsilon } ) ( v ^ { * } \rho _ { \varepsilon } )$ ; confidence 0.965

8. m12019010.png ; $P _ { \nu } ^ { ( k ) } ( x )$ ; confidence 0.965

9. v09690041.png ; $P = P ^ { \prime } \subset Z$ ; confidence 0.965

10. n06663084.png ; $k , s$ ; confidence 0.965

11. g120040154.png ; $L = L _ { 1 }$ ; confidence 0.965

12. b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965

13. m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965

14. i12005059.png ; $H ( \theta , \Theta _ { 0 } ) = \operatorname { inf } \{ H ( \theta , \theta _ { 0 } ) : \theta _ { 0 } \in \Theta _ { 0 } \}$ ; confidence 0.965

15. i130090181.png ; $s \neq 1$ ; confidence 0.965

16. g13003098.png ; $\delta ^ { ( k ) } ( . )$ ; confidence 0.965

17. w120030148.png ; $\{ \gamma \in \Gamma _ { n } : f ( \gamma ) \neq 0 \}$ ; confidence 0.965

18. m12011033.png ; $\partial F = K$ ; confidence 0.965

19. s0833603.png ; $- \frac { \operatorname { sin } n \pi } { \pi } \int _ { 0 } ^ { \infty } e ^ { - n \theta - z \operatorname { sinh } \theta } d \theta,$ ; confidence 0.965

20. b12005024.png ; $ \operatorname {dim} E = \infty$ ; confidence 0.965

21. l13006048.png ; $\Delta _ { k } ( \mathbf{s} , \mathbf{t} ) = - \prod _ { j = 1 } ^ { k } ( t _ { j } - s _ { j } ) +$ ; confidence 0.965

22. t120140139.png ; $\operatorname { dist } _ { \lambda } ( \phi , \phi _ { \lambda } ) = 0$ ; confidence 0.965

23. c130070243.png ; $\mathfrak { D } _ { i } = \sum \mathfrak { D } ( C , C _ { i } ) ( T )$ ; confidence 0.965

24. t130050136.png ; $\sigma _ { \text{l} } ( A , \mathcal{H} ) \cap \sigma _ { \text{r} } ( A , \mathcal{H} )$ ; confidence 0.965

25. d12018014.png ; $A ( K )$ ; confidence 0.965

26. n12010050.png ; $\sigma ( \zeta ) = \sum _ { i = 0 } ^ { k } \beta _ { i } \zeta ^ { i }$ ; confidence 0.965

27. b120040145.png ; $x _ { 0 } \in X _ { 0 }$ ; confidence 0.965

28. m13025069.png ; $( \sigma _ { \varepsilon } ) _ { \varepsilon > 0 } \}$ ; confidence 0.965

29. b12046044.png ; $V _ { H } = V _ { H } e \oplus V _ { H } f$ ; confidence 0.965

30. a12007018.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s.$ ; confidence 0.965

31. n13003054.png ; $L u = \frac { \partial ^ { 2 } } { \partial x ^ { 2 } } \left( E I ( x ) \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } \right) + \rho A ( x ) \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }.$ ; confidence 0.965

32. c120180246.png ; $\operatorname { Ric } ( g )$ ; confidence 0.965

33. t09356051.png ; $x \mapsto \pi_f ( x )$ ; confidence 0.965

34. w13009091.png ; $I ( g ) = \int _ { 0 } ^ { 1 } g ( t ) d B ( t )$ ; confidence 0.965

35. c120180437.png ; $k < n / 2$ ; confidence 0.965

36. i13007079.png ; $L ^ { 2 } ( \mathbf{R} _ { 3 } )$ ; confidence 0.965

37. i13005088.png ; $\{ r _ { - } ( k ) , i k _ { j } , ( m _ { j } ^ { - } ) ^ { 2 } : 1 \leq j \leq J , \forall k > 0 \}$ ; confidence 0.965

38. e120240131.png ; $\epsilon _ { l } \in H ^ { 1 } ( X _ { 0 } ( N ) \times X _ { 0 } ( N ) ; \mathcal{K} _ { 2 } )$ ; confidence 0.965

39. h12002061.png ; $H ^ { \infty } + C$ ; confidence 0.965

40. c120180181.png ; $\Theta \in \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.965

41. e11002024.png ; $E ^ { 2 }$ ; confidence 0.965

42. d12028022.png ; $A _ { 0 } ( \overline { \mathbf{C} } \backslash D ) = \{ f : f \in A ( \overline { \mathbf{C} } \backslash D ) , f ( \infty ) = 0 \}.$ ; confidence 0.965

43. h13006058.png ; $D \xi D$ ; confidence 0.965

44. s1305105.png ; $g = \operatorname { mex } g ( F ( u ) )$ ; confidence 0.964

45. t12020088.png ; $\operatorname { exp } ( - 2 \theta n - 0.7823 \operatorname { log } n ) \leq M _ { 2 } \leq \operatorname { exp } ( - 2 \theta n + 4.5 \operatorname { log } n )$ ; confidence 0.964

46. z130110107.png ; $\frac { 1 } { m } \sum _ { i = 1 } ^ { r } \frac { 1 } { m - i + 1 } = p ( z )$ ; confidence 0.964

47. b12040029.png ; $( g , \mathbf{f} ) \sim ( g h ^ { - 1 } , \varrho ( h ) \mathbf{f} ),$ ; confidence 0.964

48. b0163608.png ; $G / N$ ; confidence 0.964

49. a13014019.png ; $\mathbf{R} ^ { 2 }$ ; confidence 0.964

50. b1201709.png ; $( I - \Delta ) ^ { \alpha / 2 } f$ ; confidence 0.964

51. r11011021.png ; $x ^ { n } \in P \Rightarrow x \in P$ ; confidence 0.964

52. w12003029.png ; $\| P _ { \alpha } \| = 1$ ; confidence 0.964

53. b13030033.png ; $| B ( m , 3 ) |$ ; confidence 0.964

54. c130070232.png ; $T \cap k ( C _ { 1 } ) = T _ { 1 }$ ; confidence 0.964

55. a120310133.png ; $A ^ { \infty } / M$ ; confidence 0.964

56. a12008034.png ; $S ( s + t ) + S ( s - t ) = 2 S ( s ) S ( t )$ ; confidence 0.964

57. m12012049.png ; $0 \neq a , b , c , d \in R$ ; confidence 0.964

58. y12001057.png ; $1 \leq p , q , r , a , b , c \leq n$ ; confidence 0.964

59. k055840138.png ; $T ^ { + } = J T ^ { * } J$ ; confidence 0.964

60. r07749035.png ; $[ n / 2 ]$ ; confidence 0.964

61. s1300701.png ; $\phi ( f ( x ) ) = \lambda \phi ( x ),$ ; confidence 0.964

62. c02154014.png ; $\{ x : x \in A ^ { + } , \square f ( x ) < + \infty \}$ ; confidence 0.964

63. d1202608.png ; $X _ { n } ( t ) = \frac { 1 } { \sigma \sqrt { n } } [ S _ { [ n t ] } + ( n t - [ n t ] ) \xi_{ [ n t ] + 1} ],$ ; confidence 0.964

64. n067520291.png ; $U D _ { A } = D _ { K_{\rho} }$ ; confidence 0.964

65. d13018046.png ; $E _ { 1 } \cup E _ { 2 }$ ; confidence 0.964

66. b12014044.png ; $s _ { i } ( z ) a ( z ) + t _ { i } ( z ) b ( z ) = r _ { i } ( z ),$ ; confidence 0.964

67. a120180101.png ; $u _ { 1 } = F ( u _ { 0 } ) , u _ { 2 } = F ( u _ { 1 } ),$ ; confidence 0.964

68. p13014067.png ; $f _ { \rho } ^ { C } \in C ^ { k } ( U )$ ; confidence 0.964

69. l120170211.png ; $K ^ { * } \rightarrow \overline { K } \rightarrow K$ ; confidence 0.964

70. z13010026.png ; $\exists x \varphi$ ; confidence 0.964

71. f12024011.png ; $x ^ { ( m ) } ( t ) =$ ; confidence 0.964

72. p12013028.png ; $\lambda \in \mathbf{Q} ( \theta )$ ; confidence 0.964

73. i13005096.png ; $x < x _ { 0 } < \infty$ ; confidence 0.964

74. b12020050.png ; $T ( \theta )$ ; confidence 0.964

75. d12012044.png ; $\operatorname{dom} a_{i+1}=\operatorname{codom} a_i$ ; confidence 0.964

76. b13026069.png ; $\Delta \supset f ( \overline { \Omega } )$ ; confidence 0.964

77. g13001083.png ; $\operatorname { log } _ { \omega } ( \gamma \delta ) = \operatorname { log } _ { \omega } \gamma + \operatorname { log } _ { \omega } \delta,$ ; confidence 0.964

78. b12020047.png ; $\mathcal{H} ( \theta ) = H ^ { 2 } \ominus \theta H ^ { 2 }$ ; confidence 0.964

79. a11010073.png ; $w \in W$ ; confidence 0.964

80. s120230146.png ; $A ( n \times n )$ ; confidence 0.964

81. t13007044.png ; $| \rho ^ { \prime } / \rho | < 1$ ; confidence 0.964

82. t12019014.png ; $t ( k , r )$ ; confidence 0.964

83. n067520405.png ; $( Q , \Lambda ) \neq 0 , \quad q _ { 1 } + \ldots + q _ { n } < 2 ^ { k }.$ ; confidence 0.964

84. w1200109.png ; $D = z d / d z$ ; confidence 0.964

85. r08232050.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta,$ ; confidence 0.964

86. j13002033.png ; $\Gamma _ { \mathbf{p} }$ ; confidence 0.964

87. n067520232.png ; $B \in \mathbf{R} ^ { n \times m }$ ; confidence 0.964

88. r11011029.png ; $\varphi \in \operatorname { Aut } ( X )$ ; confidence 0.964

89. n12002020.png ; $\psi _ { \mu }$ ; confidence 0.964

90. b13012024.png ; $\mathbf{R} = ( - \infty , \infty )$ ; confidence 0.964

91. h0463004.png ; $0 \leq k \leq n$ ; confidence 0.964

92. b12052037.png ; $x _ { + } = x _ { c } - B _ { c } ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.964

93. m0620006.png ; $( X _ { n } ) _ { n \leq k}$ ; confidence 0.964

94. d12020011.png ; $| t | \leq \pi x$ ; confidence 0.964

95. q13005057.png ; $\alpha \subset \mathbf{T}$ ; confidence 0.964

96. b13010031.png ; $\int _ { D } | f | ^ { 2 } d A < \infty$ ; confidence 0.964

97. k055840276.png ; $[ A x , x ] \geq 0$ ; confidence 0.964

98. s13049013.png ; $N _ { k } : = \{ p \in P : r ( p ) = k \}$ ; confidence 0.964

99. c13016094.png ; $A , B \subseteq \Sigma ^ { * }$ ; confidence 0.964

100. z1301302.png ; $x _ { 1 } = r \operatorname { sin } \theta \operatorname { cos } \varphi$ ; confidence 0.964

101. m12011038.png ; $\cup S ^ { 1 } \subset M$ ; confidence 0.964

102. t120060117.png ; $Z \rightarrow \infty$ ; confidence 0.964

103. e120070118.png ; $\{ \Gamma , k + 2 , \mathbf{v} \}$ ; confidence 0.964

104. a12027056.png ; $w _ { 2 } ( \rho _ { P } )$ ; confidence 0.964

105. f12011043.png ; $F _ { j } ( z )$ ; confidence 0.964

106. s12015032.png ; $\pi ^ { - 1 } ( x ) = S$ ; confidence 0.964

107. c13019033.png ; $( N , L )$ ; confidence 0.964

108. a1202407.png ; $v _ { p } ( f )$ ; confidence 0.964

109. e03704040.png ; $D ( T )$ ; confidence 0.964

110. o13006014.png ; $\frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) = \Phi ^ { * } \sigma _ { 1 } \Phi , \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) = \Phi ^ { * } \sigma _ { 2 } \Phi,$ ; confidence 0.964

111. b11066057.png ; $( x , y ) \in \Omega$ ; confidence 0.964

112. m12023040.png ; $R _ { t } ( x ) = ( I + t \partial f ) ^ { - 1 } ( x )$ ; confidence 0.964

113. e03500019.png ; $\mathcal{H} _ { \epsilon } ( C ) = \operatorname { inf } \mathcal{H} _ { \epsilon } ( C , X ),$ ; confidence 0.964

114. a12013010.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , X _ { n } ),$ ; confidence 0.964

115. c120170163.png ; $k \leq m$ ; confidence 0.964

116. h04774048.png ; $0 \leq k < n$ ; confidence 0.964

117. d12012026.png ; $d , d ^ { \prime } : G \rightarrow \mathcal{C}$ ; confidence 0.963

118. b13019022.png ; $\mathbf{x} ( h _ { 1 } ) + \ldots + \mathbf{x} ( h _ { p } )$ ; confidence 0.963

119. c12020045.png ; $\iota : S ^ { k } \rightarrow ( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.963

120. h0481902.png ; $\operatorname { div } \mathbf{v} = 0,$ ; confidence 0.963

121. v13011040.png ; $- \operatorname { log } \operatorname { sin } \left. \left( \frac { \pi } { l } \left( z - \frac { l } { 2 } + \frac { i b } { 2 } \right) \right) \right] + \text{const}.$ ; confidence 0.963

122. b13022056.png ; $q \in P _ { K }$ ; confidence 0.963

123. w12018020.png ; $W ^ { ( N ) } ( t )$ ; confidence 0.963

124. h12012083.png ; $\partial _ { \infty } = d _ { M } + f \Sigma _ { \infty } \nabla$ ; confidence 0.963

125. t12007079.png ; $j ^ { 1 / 3 }$ ; confidence 0.963

126. h04601071.png ; $\operatorname{Wh}\{ 1 \} = 0$ ; confidence 0.963

127. e03500057.png ; $\mathcal{P} = \{ B ( y _ { i } , \epsilon ) \}$ ; confidence 0.963

128. a12013061.png ; $v ^ { 2 / 3 }$ ; confidence 0.963

129. k055840373.png ; $L y - \lambda r y = r f$ ; confidence 0.963

130. b01501023.png ; $( B _ { r } , \phi _ { r } )$ ; confidence 0.963

131. f12023041.png ; $f \in C ^ { \infty } ( M , \mathbf{R} )$ ; confidence 0.963

132. a130050143.png ; $P ( n )$ ; confidence 0.963

133. k12004011.png ; $\Lambda _ { L } ( a , x )$ ; confidence 0.963

134. e03500095.png ; $I _ { \epsilon } ( X ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \mathcal{H} _ { \epsilon } ^ { \prime \prime } ( X ^ { n } ),$ ; confidence 0.963

135. e12015058.png ; $\ddot { x } + p \dot { x } + q x = 0,$ ; confidence 0.963

136. m13025033.png ; $( f u ) v = u ( f v ) = f ( u v )$ ; confidence 0.963

137. l06004015.png ; $g _ { k } ( z ) = z ^ { k } ( \operatorname { mod } f ( z ) ).$ ; confidence 0.963

138. h120020104.png ; $\mathcal{P} _ { - } \phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.963

139. a12013044.png ; $R ( \theta ^ { * } ) = \sum _ { n = - \infty } ^ { \infty } \operatorname { cov } ( H ( \theta ^ { * } , X _ { n } ) , H ( \theta ^ { * } , X _ { 0 } ) ).$ ; confidence 0.963

140. j13007065.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ ; confidence 0.963

141. q12007078.png ; $\Delta h = \sum h_{ ( 1 )} \otimes h_{ ( 2 )}$ ; confidence 0.963

142. c12021081.png ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ^ { \prime } ] \Rightarrow \tilde{\mathcal{L}} ^ { \prime }$ ; confidence 0.963

143. c130070173.png ; $R ( P )$ ; confidence 0.963

144. a12005015.png ; $t \mapsto ( I - A ( t ) ) ( I - A ( 0 ) ) ^ { - 1 }$ ; confidence 0.963

145. f13010089.png ; $P M _ { p } ( G ) = C V _ { p } ( G )$ ; confidence 0.963

146. b12050039.png ; $\tau : = \{ \tau _ { x } : x \geq 0 \}$ ; confidence 0.963

147. b1203201.png ; $L ^ { p } ( \mu )$ ; confidence 0.963

148. t09408032.png ; $( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.963

149. w12017065.png ; $\omega ^ { p } ( G )$ ; confidence 0.963

150. c13019047.png ; $A \in \mathcal{L} ( \mathbf{R} ^ { n } )$ ; confidence 0.963

151. b12034051.png ; $\varphi _ { 0 } = 1$ ; confidence 0.963

152. a12005020.png ; $U ( s , s ) = I$ ; confidence 0.963

153. h12001024.png ; $\sigma : V \rightarrow \mathcal{R}$ ; confidence 0.963

154. b01572040.png ; $x , y , z$ ; confidence 0.963

155. m1302605.png ; $C _ { 0 } ( \Omega )$ ; confidence 0.963

156. a01197085.png ; $W ^ { p }$ ; confidence 0.963

157. a13013028.png ; $\phi _ { - } ( x , t , z ) = \operatorname { exp } \left( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } \right),$ ; confidence 0.963

158. s09067099.png ; $\operatorname {GL} ^ { 2 } ( n ) = \operatorname {GL} ( n ) V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.963

159. i1300602.png ; $u ^ { \prime \prime } + k ^ { 2 } u - q ( x ) u = 0 , x > 0,$ ; confidence 0.963

160. a130080101.png ; $f ( x ) / f$ ; confidence 0.963

161. v13007031.png ; $Z = x + i y$ ; confidence 0.963

162. n12002037.png ; $M _ { \mu } = M _ { F }$ ; confidence 0.963

163. c1200503.png ; $\mathbf{D} = \{ z \in \mathbf{C} : | z | < 1 \}$ ; confidence 0.963

164. l05700037.png ; $( \lambda x x ) y x$ ; confidence 0.963

165. b12031047.png ; $\operatorname { lim } _ { R } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.962

166. s120340198.png ; $\alpha _ { H _ { 3 } } - \alpha _ { H _ { 2 } } - \alpha _ { H _ { 1 } }$ ; confidence 0.962

167. v13005097.png ; $L ( - 1 )$ ; confidence 0.962

168. a12008027.png ; $A u = f$ ; confidence 0.962

169. c12002066.png ; $x = ( x ^ { \prime } , x ^ { \prime \prime } )$ ; confidence 0.962

170. t1202104.png ; $t ( M ; x , y )$ ; confidence 0.962

171. a01342022.png ; $Z_n$ ; confidence 0.962

172. d120230116.png ; $d ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } d _ { i j } z ^ { i } w ^ { * j }.$ ; confidence 0.962

173. b13026061.png ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ f , \Omega , z ]$ ; confidence 0.962

174. a0117807.png ; $\{ a , b \}$ ; confidence 0.962

175. v12002075.png ; $q = N$ ; confidence 0.962

176. i13007090.png ; $q ( x ) \in Q$ ; confidence 0.962

177. v096900160.png ; $T ( \zeta )$ ; confidence 0.962

178. t12007012.png ; $\Gamma _ { 0 } ( p ) + = \langle \Gamma _ { 0 } ( p ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { p } & { 0 } \end{array} \right) \rangle$ ; confidence 0.962

179. b130290133.png ; $A / H _ { \mathfrak{m} } ^ { 0 } ( A )$ ; confidence 0.962

180. n12011072.png ; $f ^ { * } : M \rightarrow \mathcal{F} ( \mathbf{R} ).$ ; confidence 0.962

181. a12012065.png ; $\lambda ^ { * } \geq \lambda ( x , y )$ ; confidence 0.962

182. l13001045.png ; $\rho ( x , \partial B ) = \operatorname { inf } _ { y \in \partial B } \rho ( x , y )$ ; confidence 0.962

183. a12018079.png ; $[ n / 1 ]_{ f } ( t )$ ; confidence 0.962

184. e13003016.png ; $H ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } )$ ; confidence 0.962

185. o12006071.png ; $t ^ { p } \operatorname { log } ^ { \sigma } t$ ; confidence 0.962

186. b12034069.png ; $z _ { 0 } \in M$ ; confidence 0.962

187. c13019030.png ; $t _ { 0 } \in [ 0 , t ]$ ; confidence 0.962

188. d12018098.png ; $\phi ( x + t )$ ; confidence 0.962

189. b12027062.png ; $\sum _ { 1 } ^ { \infty } p _ { j } = 1$ ; confidence 0.962

190. i050650266.png ; $M ^ { g }$ ; confidence 0.962

191. a12004022.png ; $c > 0$ ; confidence 0.962

192. l13005016.png ; $\Lambda _ { k } ( \mathbf{a} )$ ; confidence 0.962

193. a130240529.png ; $\mathbf{R}$ ; confidence 0.962

194. s1306207.png ; $x = + \infty$ ; confidence 0.962

195. l12016015.png ; $L ^ { 2 } ( S ^ { 1 } , \mathbf{C} ^ { n } )$ ; confidence 0.962

196. a12010020.png ; $t \rightarrow S ( t ) x$ ; confidence 0.962

197. d12006026.png ; $H ^ { ( 1 ) } Q ^ { + } = Q ^ { + } H ^ { ( 0 ) }$ ; confidence 0.962

198. b11066023.png ; $L _ { p } ( \mathbf{R} )$ ; confidence 0.962

199. c1300407.png ; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t,$ ; confidence 0.962

200. a110010278.png ; $\hat{X}$ ; confidence 0.962

201. t120060116.png ; $E ^ { \text{Q} } ( N )$ ; confidence 0.962

202. t1201505.png ; $\eta \in \mathcal{A} \mapsto \xi \eta \in \mathcal{A}$ ; confidence 0.962

203. f120210105.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } p _ { i } ( \lambda + k ) z ^ { \lambda + k } =$ ; confidence 0.962

204. l11003044.png ; $L _ { 1 } ( \mathcal{E} ) = L _ { 2 } (\mathcal{E} ) = L _ { 3 } ( \mathcal{E} )$ ; confidence 0.962

205. f1302408.png ; $\langle x y z \rangle$ ; confidence 0.962

206. t12015031.png ; $S = J \Delta ^ { 1 / 2 } = \Delta ^ { - 1 / 2 } J$ ; confidence 0.962

207. t12015073.png ; $\Delta ^ { i t } \mathcal{L} ( \mathcal{A} ) \Delta ^ { - i t } = \mathcal{L} ( \mathcal{A} )$ ; confidence 0.962

208. a12017049.png ; $\beta ( a , x ) = \beta _ { 0 } ( a )$ ; confidence 0.962

209. b13020070.png ; $\mathfrak { g } = \mathfrak { g } _ { + } \oplus \mathfrak { h } \oplus \mathfrak { g } _ { - }$ ; confidence 0.962

210. n12012075.png ; $H C$ ; confidence 0.962

211. m12007066.png ; $c _ { 2 } ( s ) > 0$ ; confidence 0.962

212. t12021061.png ; $( - 1 ) ^ { r } q ^ { k ( n - r ) } t ( M ; 1 - q ^ { k } , 0 )$ ; confidence 0.962

213. v120020222.png ; $H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \cong \mathbf{Z}$ ; confidence 0.962

214. n13003037.png ; $B w$ ; confidence 0.962

215. m12003012.png ; $\sum _ { i = 1 } ^ { n } \rho ( x _ { i } , T _ { n } )$ ; confidence 0.962

216. s13053089.png ; $H _ { r - 1 } ( C )$ ; confidence 0.962

217. l12006018.png ; $e ^ { - i H t }$ ; confidence 0.962

218. f120230140.png ; $M \rightarrow B$ ; confidence 0.962

219. n067520434.png ; $X \rightarrow V$ ; confidence 0.962

220. m130260112.png ; $B (\mathcal{H} ) / K ( \mathcal{H} )$ ; confidence 0.962

221. h047390157.png ; $\alpha _ { 1 } , \alpha _ { 2 } \in \mathbf{C}$ ; confidence 0.962

222. l12006065.png ; $\operatorname{Im} z < 0$ ; confidence 0.962

223. m12012077.png ; $0 \neq A , B \lhd R$ ; confidence 0.962

224. a13030047.png ; $\mathfrak { S } ( T ) = \{ 0 \}$ ; confidence 0.962

225. b12027060.png ; $p _ { 0 } = 0$ ; confidence 0.962

226. s1306603.png ; $\mathbf{T} = \{ z \in \mathbf{C} : | z | = 1 \}$ ; confidence 0.962

227. l120100135.png ; $\rho \in C ^ { 0,1 / 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.962

228. f12005052.png ; $( 1,1 , T + T ^ { q / 2 } )$ ; confidence 0.962

229. a12008052.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.962

230. e12006051.png ; $[ \Gamma X _ { 1 } , \Gamma X _ { 2 } ] - \Gamma ( [ X _ { 1 } , X _ { 2 } ] )$ ; confidence 0.962

231. b12009070.png ; $\operatorname { Re } \left\{ \frac { z f ^ { \prime } ( z ) } { f ( z ) ^ { 1 - \beta } g ( z ) ^ { \beta } } \right\} > 0 ( z \in U ).$ ; confidence 0.962

232. o13008063.png ; $f _ { 1 } ( x , k )$ ; confidence 0.962

233. s12025054.png ; $\epsilon \leq \theta \leq \pi - \epsilon$ ; confidence 0.962

234. l13004012.png ; $L ( x , y )$ ; confidence 0.962

235. d03024036.png ; $f_{( r )} ( x _ { 0 } )$ ; confidence 0.962

236. w12018013.png ; $W ^ { ( N ) } ( t ) = W ( R _ { t } )$ ; confidence 0.962

237. n12012074.png ; $B \in \mathcal{N} \mathcal{P}$ ; confidence 0.962

238. b120210138.png ; $w _ { 1 } \in W ^ { ( k ) }$ ; confidence 0.962

239. c12029051.png ; $\langle S : R \rangle$ ; confidence 0.962

240. l11003083.png ; $[ L ^ { 1 } ( Q ) ]^*$ ; confidence 0.962

241. b12021019.png ; $\Delta ^ { + }$ ; confidence 0.961

242. a130240200.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \beta = 0$ ; confidence 0.961

243. f130100149.png ; $\operatorname { Res } _ { H } A _ { p } ( G ) = A _ { p } ( H )$ ; confidence 0.961

244. m12019017.png ; $x = \operatorname { cosh } \alpha$ ; confidence 0.961

245. b12021065.png ; $M _ { \theta }$ ; confidence 0.961

246. s1304105.png ; $p , q \in \mathcal{P}$ ; confidence 0.961

247. s13004012.png ; $\mathbf{P} ^ { 1 } ( \mathbf{Q} )$ ; confidence 0.961

248. c02211047.png ; $\| \partial p _ { i } ( \theta ) / \partial \theta _ { j } \|$ ; confidence 0.961

249. f0407606.png ; $n p$ ; confidence 0.961

250. c12026011.png ; $\delta ^ { 2 } U _ { j } = h ^ { - 2 } ( U _ { j + 1 } - 2 U _ { j } + U _ { j - 1 } )$ ; confidence 0.961

251. a13007042.png ; $\sigma ( n ) / n \geq \alpha$ ; confidence 0.961

252. i120080105.png ; $= \operatorname { tanh } [ \frac { H + 2 m J } { k _ { B } T } ],$ ; confidence 0.961

253. h120120121.png ; $H ( A )$ ; confidence 0.961

254. a12027034.png ; $W ( \rho )$ ; confidence 0.961

255. w12013017.png ; $S ( T + i ) ^ { - 1 }$ ; confidence 0.961

256. w13011040.png ; $H \geq 4$ ; confidence 0.961

257. g04302010.png ; $\operatorname {GL} ^ { k } ( n )$ ; confidence 0.961

258. i12001024.png ; $\Phi _ { 1 }$ ; confidence 0.961

259. m130110128.png ; $\phi = v _ { i }$ ; confidence 0.961

260. b12030015.png ; $Y ^ { \prime } = [ 0,1 [ ^ { N }$ ; confidence 0.961

261. l11004055.png ; $F _ { \mathcal{X} } ( Y )$ ; confidence 0.961

262. a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961

263. k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961

264. b12034057.png ; $K \subset M$ ; confidence 0.961

265. s09067054.png ; $\pi_{\text{W}} : W ( M ) \rightarrow M$ ; confidence 0.961

266. t13015012.png ; $P : L ^ { 2 } ( \mathbf{T} ) \rightarrow H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.961

267. r1301104.png ; $\zeta ( s ) : = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } } = \prod _ { p } \frac { 1 } { 1 - \frac { 1 } { p ^ { s } } }$ ; confidence 0.961

268. b12037080.png ; $\{ 0,1 , \neg , \vee , \wedge \}$ ; confidence 0.961

269. c022660332.png ; $M ( f )$ ; confidence 0.961

270. a130040380.png ; $\Omega h ^ { - 1 } ( F ) = h ^ { - 1 } ( \Omega F )$ ; confidence 0.961

271. p12011038.png ; $\sum f ( \overset{\rightharpoonup } { e } ) = 0$ ; confidence 0.961

272. b13001064.png ; $0 \leq i \leq t$ ; confidence 0.961

273. v120020209.png ; $\operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.961

274. a130240105.png ; $y$ ; confidence 0.961

275. l12014030.png ; $T A - A T = I$ ; confidence 0.961

276. a1200507.png ; $f ( . )$ ; confidence 0.961

277. s12023064.png ; $X _ { 2 } ( p \times m )$ ; confidence 0.961

278. c1302605.png ; $\mathcal{D} ^ { j }$ ; confidence 0.961

279. b13028030.png ; $[ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z$ ; confidence 0.961

280. i13006053.png ; $\overline { S ( k ) } = S ( - k ) = S ^ { - 1 } ( k )$ ; confidence 0.961

281. a01209056.png ; $R / J ( R )$ ; confidence 0.961

282. o12006051.png ; $W ^ { k } E _ { \Phi } ( \Omega )$ ; confidence 0.961

283. t13014062.png ; $\beta : j \rightarrow i$ ; confidence 0.961

284. a01110055.png ; $A _ { 2 }$ ; confidence 0.961

285. b11002045.png ; $u = B ^ { - 1 } l$ ; confidence 0.961

286. c02210014.png ; $\sqrt { \chi _ { n } ^ { 2 } }$ ; confidence 0.961

287. t1200801.png ; $F ( X , Y ) \in \mathbf{Z} [ X , Y ]$ ; confidence 0.961

288. q13004017.png ; $J _ { f } ( x )$ ; confidence 0.961

289. d0340302.png ; $\overset{\rightharpoonup }{ E }$ ; confidence 0.961

290. a12007029.png ; $f \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.961

291. a01080011.png ; $\nabla$ ; confidence 0.961

292. n066630121.png ; $u |_{ \partial \Omega}$ ; confidence 0.961

293. k055840118.png ; $[ x , y ] = 0$ ; confidence 0.961

294. w12011087.png ; $( x , \xi ) \mapsto ( x , \xi + S x )$ ; confidence 0.960

295. j120020203.png ; $w ( z ) \leq c ^ { 2 }$ ; confidence 0.960

296. i13005026.png ; $| t ( k ) | ^ { 2 } + | r ( k ) | ^ { 2 } = 1$ ; confidence 0.960

297. c13010045.png ; $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ ; confidence 0.960

298. d120280127.png ; $U \supset \mathbf{C} ^ { n } \backslash D$ ; confidence 0.960

299. p07101038.png ; $p _ { i } \in \pi$ ; confidence 0.960

300. t12020029.png ; $g _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } \phi _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.960

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/25. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/25&oldid=44435