Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/40"
(→List) |
(→List) |
||
Line 258: | Line 258: | ||
129. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040740/f04074029.png ; ${\bf R} ^ { q }$ ; confidence 1.000 | 129. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040740/f04074029.png ; ${\bf R} ^ { q }$ ; confidence 1.000 | ||
− | 130. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006073.png ; $\ | + | 130. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006073.png ; $\overset{\rightharpoonup} { P _ { i } P _ { j } }$ ; confidence 1.000 |
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805 | 131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805 | ||
Line 290: | Line 290: | ||
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012013.png ; $v \in T _ { p } M$ ; confidence 0.805 | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012013.png ; $v \in T _ { p } M$ ; confidence 0.805 | ||
− | 146. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050122.png ; $Y ( u , x ) v = \sum _ { n \in Z } ( u _ { n } v ) x ^ { - n - 1 }$ ; confidence | + | 146. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050122.png ; $Y ( u , x ) v = \sum _ { n \in \bf Z } ( u _ { n } v ) x ^ { - n - 1 }$ ; confidence 1.000 |
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008065.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804 | 147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008065.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804 | ||
Line 310: | Line 310: | ||
155. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201704.png ; $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ ; confidence 0.804 | 155. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201704.png ; $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ ; confidence 0.804 | ||
− | 156. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014099.png ; $\operatorname{R | + | 156. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014099.png ; $\operatorname{rad} R$ ; confidence 1.000 |
157. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009028.png ; $\Omega \times [ 0 , T$ ; confidence 0.804 NOTE: the parentesis should probably be closed | 157. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009028.png ; $\Omega \times [ 0 , T$ ; confidence 0.804 NOTE: the parentesis should probably be closed | ||
− | 158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200808.png ; $\varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0$ ; confidence 0.804 | + | 158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200808.png ; $\varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0,$ ; confidence 0.804 |
159. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002036.png ; $\tau _ { \rho }$ ; confidence 0.804 | 159. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002036.png ; $\tau _ { \rho }$ ; confidence 0.804 | ||
Line 332: | Line 332: | ||
166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090273.png ; ${\cal E}^l$ ; confidence 1.000 | 166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090273.png ; ${\cal E}^l$ ; confidence 1.000 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003024.png ; $\tilde { \cal M } _ { C }$ ; confidence 1.000 | + | 167. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003024.png ; $\tilde { \cal M } _ {\bf C }$ ; confidence 1.000 |
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a1302907.png ; $P_Y \rightarrow Y$ ; confidence 1.000 | 168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a1302907.png ; $P_Y \rightarrow Y$ ; confidence 1.000 | ||
Line 346: | Line 346: | ||
173. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001035.png ; $f = m \circ e$ ; confidence 0.804 | 173. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001035.png ; $f = m \circ e$ ; confidence 0.804 | ||
− | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027023.png ; $T _ { n } ( x _ { n } ) = Q _ { n } f | + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027023.png ; $T _ { n } ( x _ { n } ) = Q _ { n } f,$ ; confidence 1.000 |
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019047.png ; $K ( T M )$ ; confidence 0.804 | 175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019047.png ; $K ( T M )$ ; confidence 0.804 | ||
Line 530: | Line 530: | ||
265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305807.png ; $\bf r \times l$ ; confidence 1.000 | 265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305807.png ; $\bf r \times l$ ; confidence 1.000 | ||
− | 266. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005094.png ; $\operatorname{QS} ( T ) \subset M$ ; confidence 1.000 | + | 266. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005094.png ; $\operatorname{QS} ( {\bf T} ) \subset M$ ; confidence 1.000 |
267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009057.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ),$ ; confidence 1.000 | 267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009057.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ),$ ; confidence 1.000 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005013.png ; $f \in L _ { 1 } ( R _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence | + | 268. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005013.png ; $f \in L _ { 1 } ( {\bf R} _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 1.000 |
269. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019016.png ; $c _ { N } = c _ { - N } = 1 , c _ { j } = 2 \text{ otherwise}$ ; confidence 1.000 | 269. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019016.png ; $c _ { N } = c _ { - N } = 1 , c _ { j } = 2 \text{ otherwise}$ ; confidence 1.000 | ||
Line 590: | Line 590: | ||
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420155.png ; $\bf Z (\cal C )$ ; confidence 1.000 | 295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420155.png ; $\bf Z (\cal C )$ ; confidence 1.000 | ||
− | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110237.png ; $r _ { N } ( | + | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110237.png ; $r _ { N } ( a , b ) \in S ( m _ { 1 } m _ { 2 } H ^ { N } , G )$ ; confidence 0.797 |
297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201607.png ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797 | 297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201607.png ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797 | ||
Line 598: | Line 598: | ||
299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006066.png ; $h ^ { I I } ( z ) ^ { - 1 }$ ; confidence 0.797 | 299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006066.png ; $h ^ { I I } ( z ) ^ { - 1 }$ ; confidence 0.797 | ||
− | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050044.png ; $ | + | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050044.png ; $\alpha _ { X } : = \operatorname { inf } \{ s : \operatorname{l} ( s , 0 ) > x \}$ ; confidence 1.000 |
Revision as of 17:51, 26 April 2020
List
1. ; $D = \{ z : | z | < 1 \}$ ; confidence 0.812
2. ; $ { i } = 1$ ; confidence 1.000
3. ; $\alpha : X _ { .. } \rightarrow X ^ { \prime }$ ; confidence 1.000
4. ; ${\cal M} _ { 0 } = {\cal M} _ { 1 } \supset \ldots \supset {\cal M}_ { 5 }$ ; confidence 1.000
5. ; $K \supset H$ ; confidence 0.812
6. ; $\operatorname{dens} (X )$ ; confidence 1.000
7. ; $\{ r_+ ( k ) : \forall k > 0 \}$ ; confidence 1.000
8. ; $T _ { g ^ { i } }$ ; confidence 0.812
9. ; $a > 0$ ; confidence 0.812
10. ; $2 ^ { S }$ ; confidence 1.000
11. ; $\operatorname{l}$ ; confidence 1.000
12. ; $\forall ( x , y ) \in R _ { k }$ ; confidence 0.812
13. ; $u \in L ^ { 2 } ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap H ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.811
14. ; $\square _ { H } \cal M$ ; confidence 1.000
15. ; $| L | = 1$ ; confidence 0.811
16. ; $Q _ { 0 } = \{ 1 , \ldots , n \}$ ; confidence 0.811
17. ; $\lambda A : = \{ \lambda a : a \in A \}$ ; confidence 1.000
18. ; $X ^ { * } = \operatorname { sup } _ { t \geq 0 } | X _ { t } |$ ; confidence 0.811
19. ; $v _ { 1 } , v _ { 2 } \in \overline { N E } ( X / S )$ ; confidence 0.811
20. ; $\operatorname { gcd } \{ j : p_j > 0 \} = 1$ ; confidence 1.000
21. ; $\operatorname{SU} ( 2 )$ ; confidence 1.000
22. ; ${\cal R }_ { q ^ { 2 } }$ ; confidence 1.000
23. ; $\langle \rho ^ { \prime } ( \xi ) , \xi - p \rangle ^ { \alpha } = \prod _ { j = 0 } ^ { m } \langle \rho ^ { \prime } ( \xi ) , \xi - p _ { j } \rangle ^ { \alpha_j } $ ; confidence 1.000
24. ; $u _ { i } ^ { n + 1 }$ ; confidence 0.811
25. ; $\overline { \square } = \square$ ; confidence 0.811
26. ; $\operatorname{E} [ W ]$ ; confidence 0.811
27. ; $\beta = \operatorname{P} _ { q } ( S _ { N } = - J )$ ; confidence 1.000
28. ; $Z _ { n } ( x ; \sigma )$ ; confidence 0.810
29. ; $X = Y = Z = \bf R$ ; confidence 1.000
30. ; $B = ( b _ { i j } )$ ; confidence 0.810
31. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { t ( n ) } { s ( n ) } = 0,$ ; confidence 1.000
32. ; $\operatorname { Eis } ( \omega ) = \sum _ { \gamma \in \Gamma / \Gamma _ { P } } \gamma \,\omega,$ ; confidence 1.000
33. ; $\operatorname{BV}$ ; confidence 1.000
34. ; $z ^ { \prime } + q + z ^ { 2 } / p = 0$ ; confidence 0.810
35. ; ${\cal C} ( X )$ ; confidence 1.000
36. ; $M [ x : = N ]$ ; confidence 0.810
37. ; $| \alpha x _ { 0 } - p | < \rho$ ; confidence 0.810
38. ; $R _ { B }$ ; confidence 0.810
39. ; $\frac { \partial w _ { N } } { \partial t } = \{ H , w _ { N } \} _ { \text{cl.} } \equiv \sum _ { i = 1 } ^ { N } ( \frac { \partial H } { \partial {\bf r} _ { i } } \frac { \partial w _ { N } } { \partial {\bf p} _ { i } } - \frac { \partial w _ { N } } { \partial {\bf r} _ { i } } \frac { \partial H } { \partial {\bf p} _ { i } } ),$ ; confidence 1.000
40. ; $J_2$ ; confidence 1.000
41. ; ${\cal A} ( u , v ) ( \xi , x ) = \int u ( z - \frac { x } { 2 } ) \bar{v} ( z + \frac { x } { 2 } ) e ^ { - 2 i \pi z . \xi } d z.$ ; confidence 0.810
42. ; $m_+ ( \lambda )$ ; confidence 1.000
43. ; $e ^ { - 1 / \varepsilon ^ { \sigma } }$ ; confidence 0.810
44. ; $\Sigma ^ { i } ( g ) = \emptyset$ ; confidence 0.810
45. ; $E ^ { \prime }$ ; confidence 0.810
46. ; $\emptyset \in \cal D$ ; confidence 1.000
47. ; $T : X \rightarrow X$ ; confidence 1.000
48. ; $K ^ { \prime 2 } \searrow K ^ { 2 }$ ; confidence 0.809
49. ; $M ^ { V } ( E + \omega )$ ; confidence 0.809
50. ; $d_Y ^ { \prime }$ ; confidence 1.000
51. ; $r \in \bf N$ ; confidence 1.000
52. ; $- \infty,$ ; confidence 1.000
53. ; $k = 1 , \ldots , K$ ; confidence 0.809
54. ; $V ^ { \pm } \times V ^ { \mp } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 1.000
55. ; $b$ ; confidence 0.809
56. ; $X \in \bf K$ ; confidence 1.000
57. ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) [ \operatorname{CF} ( \zeta - z , w ) +$ ; confidence 1.000 NOTE: it looks like the end of the formula is missing
58. ; ${\cal L} ( A )$ ; confidence 1.000
59. ; $u | _ { \partial D ^ { 2 } } = x$ ; confidence 0.809
60. ; $L | L ^ { \prime }$ ; confidence 0.809
61. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \| x _ { n + 1} - x ^ { * } \| } { \| x _ { n } - x ^ { * } \| } = 0.$ ; confidence 1.000
62. ; $H _ { i } ( t , m ) = H ( \varphi _ { i } ( s , t ) , m )$ ; confidence 1.000
63. ; $\beta_2$ ; confidence 1.000
64. ; $\cal N P$ ; confidence 1.000
65. ; $\operatorname{Fi} _ {\cal D } \bf A$ ; confidence 1.000
66. ; $x = \alpha$ ; confidence 0.808
67. ; $\mu ( a , x ) = \mu _ { 0 } ( a ),$ ; confidence 1.000
68. ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , i + 1 - s )$ ; confidence 0.808
69. ; $p _ { j } ( \lambda )$ ; confidence 0.808
70. ; $\operatorname { lnn } ( F ) = \langle 1 \rangle$ ; confidence 1.000
71. ; $x \in \partial D$ ; confidence 0.808
72. ; $B _ { p }$ ; confidence 1.000
73. ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { {\cal A} ( t ) } & { 0 } \end{array} \right), $ ; confidence 1.000
74. ; $\chi \lambda$ ; confidence 0.808
75. ; $= L _ { \gamma , n } ^ { c } \int _ { {\bf R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x,$ ; confidence 1.000
76. ; $\{ \mu _ { n } \}$ ; confidence 0.808
77. ; $g \in L ^ { 2 } ( {\bf R} ^ { N } )$ ; confidence 1.000
78. ; $D _ { A } : = \sum _ { i = 1 } ^ { n } A _ { i } \otimes E _ { i }$ ; confidence 0.808
79. ; $\lambda _ { m }$ ; confidence 0.808
80. ; $C > 1$ ; confidence 0.808
81. ; $u , v \in V$ ; confidence 0.808
82. ; $g ( \overline { u } _ { 1 } ) \leq v ^ { * } \leq \overline { q }$ ; confidence 0.808
83. ; $m = \operatorname { max } ( m _ { 1 } , m _ { 2 } )$ ; confidence 0.808
84. ; $\hat { H } = H \oplus H$ ; confidence 0.808
85. ; $f _ { j } ( \bar{x} ) \in \tilde{\bf Z} ^ { n }$ ; confidence 1.000
86. ; $L _ { 2 , r }$ ; confidence 0.807
87. ; $0 \rightarrow \square _ { R } \operatorname { Mod } ( ? , A ) \rightarrow \square _ { R } \operatorname { Mod } ( ? , B ) \rightarrow$ ; confidence 0.807
88. ; ${\bf R} ^ { n }$ ; confidence 1.000
89. ; $0 \leq \lambda _ { 0 } \leq \lambda _ { 1 } \leq \ldots$ ; confidence 0.807
90. ; $E _ { c } ^ { * } ( M )$ ; confidence 0.807
91. ; $R _ { 11 }$ ; confidence 0.807
92. ; $\varphi \in {\cal D} ( {\bf R} ^ { n } ) \}$ ; confidence 1.000
93. ; $| x | + r_j < R$ ; confidence 1.000
94. ; $\bf Y = X B + E$ ; confidence 1.000
95. ; $E ( a _ { 0 } , c _ { 1 } + a _ { 0 } ^ { 2 } m )$ ; confidence 0.807
96. ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j } \in \operatorname{VMO}$ ; confidence 1.000
97. ; $\cal E * = \operatorname { Hom } _ { R } ( E , R )$ ; confidence 1.000
98. ; $\Pi ( \phi ) \equiv \phi | _ { E } * \subset E ^ { * * }$ ; confidence 0.806
99. ; $( \lambda | g )$ ; confidence 0.806
100. ; $\in C_i$ ; confidence 1.000
101. ; $V _ { i } = \{ x : \forall j \neq i , d ( x , p _ { i } ) \leq d ( x , p _ { j } ) \},$ ; confidence 1.000
102. ; $\partial \phi / \partial t$ ; confidence 1.000
103. ; $A ^ { 1 }$ ; confidence 0.806
104. ; $T _ { m }$ ; confidence 0.806
105. ; $i > n$ ; confidence 0.806
106. ; $I _ { \alpha } ( x ) = c _ { \alpha } | x | ^ { \alpha - n }$ ; confidence 1.000
107. ; $\Omega \cup {\cal F} = \cup _ { F \in {\cal F} } \Omega F$ ; confidence 1.000
108. ; $\{ R_{ij} \}$ ; confidence 1.000
109. ; $V ^ { \pm }$ ; confidence 0.806
110. ; $- H M$ ; confidence 0.806
111. ; $p _ { m } ( x , \xi ) = \sum _ { | \alpha | = m } p _ { \alpha } ( x ) \xi ^ { \alpha }$ ; confidence 0.806
112. ; $w ( m , l )$ ; confidence 0.806
113. ; ${\cal A} _ { 2 }$ ; confidence 1.000
114. ; $\operatorname { cov } ( X ) = c \Sigma \otimes \Phi$ ; confidence 0.806
115. ; $\operatorname{add} T$ ; confidence 1.000
116. ; $A _ { 1 } x \leq b _ { 1 }$ ; confidence 0.806
117. ; $\mu ( B ) = \| \mu \| \{ x : ( x , T _ { x } ) \in B \}$ ; confidence 0.806
118. ; $q \geq 3$ ; confidence 0.806
119. ; $= \operatorname{E} _ { \mu _ { X } } [ \psi ( t ) | X ( t ) = x ] p _ { X } ( 0 , x _ { 0 } ; t , x )$ ; confidence 1.000
120. ; ${\cal L} _ { 0 } = \langle e _ { i } : i \geq 0 \rangle$ ; confidence 1.000
121. ; ${\cal C} \rightarrow {\bf Z} {\cal C}$ ; confidence 1.000
122. ; $\operatorname { Im } \zeta \in \Delta _ { k }$ ; confidence 0.805
123. ; $f ( 2 \pi t ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i x t } ( Z \hat { f } ) ( x , t ) d x, $ ; confidence 1.000
124. ; $P ^ { \prime } H$ ; confidence 0.805
125. ; $\theta \in S ^ { 2 }$ ; confidence 0.805
126. ; $x _ { k + 1 } = A x _ { k }$ ; confidence 0.805
127. ; $e\notin S ( x )$ ; confidence 0.805
128. ; $\operatorname{Cl} ( f , \zeta )$ ; confidence 1.000
129. ; ${\bf R} ^ { q }$ ; confidence 1.000
130. ; $\overset{\rightharpoonup} { P _ { i } P _ { j } }$ ; confidence 1.000
131. ; $\alpha , b , c , d \in A$ ; confidence 0.805
132. ; $v _ { 0 } = i A ( t ) ^ { 1 / 2 } u$ ; confidence 0.805
133. ; $\left( \begin{array} { c c c c } { 0 } & { 1 } & { \square } & { \square } \\ { \square } & { \ddots } & { \ddots } & { \square } \\ { \square } & { \square } & { 0 } & { 1 } \\ { - a _ { 0 } } & { \cdots } & { \cdots } & { - a _ { n - 1 } } \end{array} \right).$ ; confidence 1.000
134. ; $h * ( . ) = \operatorname{E} * ( . )$ ; confidence 1.000
135. ; $\Delta ( {\cal F} ) | \geq \partial _ { k } ( m ).$ ; confidence 1.000
136. ; $\langle A f , g \rangle = \langle f , A g \rangle$ ; confidence 0.805
137. ; $Q _ { \emptyset } ( v , z ) = 1$ ; confidence 0.805
138. ; $a , b \in A$ ; confidence 0.805
139. ; $F \in \operatorname{Hol} ( {\cal D} )$ ; confidence 1.000
140. ; $\operatorname { Im } z > 1$ ; confidence 0.805
141. ; $\operatorname{rank} H _ { \phi } = \operatorname { deg } {\cal P} - \phi$ ; confidence 1.000
142. ; $a _ { 2 } + 2 a_ { 1 } = 0$ ; confidence 1.000
143. ; $t \in {\bf R} ^ { 1 }$ ; confidence 1.000
144. ; $\sum _ { n = 0 } ^ { \infty } D _ { n } ( x , a ) z ^ { n } = \frac { 2 - x z } { 1 - x z + a z ^ { 2 } }.$ ; confidence 1.000
145. ; $v \in T _ { p } M$ ; confidence 0.805
146. ; $Y ( u , x ) v = \sum _ { n \in \bf Z } ( u _ { n } v ) x ^ { - n - 1 }$ ; confidence 1.000
147. ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804
148. ; $g ^ { - 1 }$ ; confidence 0.804
149. ; $x _ { m , j } = \alpha _ { j } e ^ { i m \theta } , y _ { m , j } = \beta _ { j } e ^ { i m \theta }$ ; confidence 0.804
150. ; $P G _ { d -1} ( d , q )$ ; confidence 1.000
151. ; $d _ { 1 } ^ { * }$ ; confidence 0.804
152. ; $\{ ., . \}$ ; confidence 1.000
153. ; $t ( \omega )$ ; confidence 0.804
154. ; $\leq B \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T.$ ; confidence 1.000
155. ; $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ ; confidence 0.804
156. ; $\operatorname{rad} R$ ; confidence 1.000
157. ; $\Omega \times [ 0 , T$ ; confidence 0.804 NOTE: the parentesis should probably be closed
158. ; $\varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0,$ ; confidence 0.804
159. ; $\tau _ { \rho }$ ; confidence 0.804
160. ; $p , q \in S$ ; confidence 0.804
161. ; $\Delta \otimes \Delta \cong K _ { X }$ ; confidence 0.804
162. ; $K _ { I } ( f )$ ; confidence 0.804
163. ; ${\cal F} ^ { \# } ( n )$ ; confidence 1.000
164. ; $\frak g$ ; confidence 1.000
165. ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
166. ; ${\cal E}^l$ ; confidence 1.000
167. ; $\tilde { \cal M } _ {\bf C }$ ; confidence 1.000
168. ; $P_Y \rightarrow Y$ ; confidence 1.000
169. ; $A _ { i } \cap ( - A _ { i } ) \neq \emptyset$ ; confidence 0.804
170. ; $1 + a _ { 1 } ^ { 2 } + \ldots + a _ { k } ^ { 2 }$ ; confidence 0.804
171. ; $\operatorname{Ran}( a )$ ; confidence 1.000
172. ; $3 ^ { 3 } .5 .7,3 ^ { 2 } .5 ^ { 2 } .7,3 ^ { 2 } .5 .7 ^ { 2 }$ ; confidence 0.804
173. ; $f = m \circ e$ ; confidence 0.804
174. ; $T _ { n } ( x _ { n } ) = Q _ { n } f,$ ; confidence 1.000
175. ; $K ( T M )$ ; confidence 0.804
176. ; ${\bf C} ( \mu )$ ; confidence 1.000
177. ; $M u = 0$ ; confidence 0.804
178. ; $( f ( z ^ { n } ) )^ { m / n }$ ; confidence 0.804
179. ; $\|S_{NB}\| /\operatorname { ln } ^ { 2 } N$ ; confidence 1.000
180. ; ${\cal A} = Ab$ ; confidence 1.000
181. ; $g = \lambda \mu ( d \rho \otimes d \sigma + d \sigma \otimes d \rho ) / 2$ ; confidence 0.803
182. ; $a ( G )$ ; confidence 0.803
183. ; $\operatorname{rank} ( \Sigma ) = p _ { 1 }$ ; confidence 1.000
184. ; ${\bf E} _ { 6 }$ ; confidence 1.000
185. ; $C _ { 2 }$ ; confidence 0.803
186. ; $C \Gamma : Y \rightarrow V Y \otimes \wedge ^ { 2 } T ^ { * } M$ ; confidence 0.803
187. ; $Q \neq 0$ ; confidence 1.000
188. ; $\operatorname { lim }_\lambda$ ; confidence 1.000
189. ; $\frak p$ ; confidence 1.000 NOTE: it is very hard to read the original image
190. ; $p _ { i k , j } \geq 0$ ; confidence 0.803
191. ; $h = h _ { \beta } \in \frak h$ ; confidence 1.000
192. ; $1.5$ ; confidence 0.803
193. ; $a ( . )$ ; confidence 1.000
194. ; $( f ^ { * } d \mu ) _ { N } ( x )$ ; confidence 0.803
195. ; $| K ( x , y ^ { \prime } ) - K ( x , y ) | \leq C | y ^ { \prime } - y | ^ { \gamma } | x - y | ^ { - n - \gamma }.$ ; confidence 1.000
196. ; $e ^ { i \eta . y}$ ; confidence 1.000
197. ; $| \mu ( 0,1 ) |$ ; confidence 0.802
198. ; $\alpha , b \in F ^ { * }$ ; confidence 0.802
199. ; $\epsilon > r$ ; confidence 0.802
200. ; $\operatorname{ch} : R \rightarrow \Lambda$ ; confidence 1.000
201. ; $a \in L ^ { 1 } ( {\bf T} )$ ; confidence 1.000
202. ; $( \Omega f ) _ { W } = f$ ; confidence 0.802
203. ; $B ( t , \omega ) = \omega ( t )$ ; confidence 0.802
204. ; $X \in U ( a )$ ; confidence 0.802
205. ; $\Omega A _ { W } = A$ ; confidence 0.802
206. ; ${\cal D} = ( G , \{ D g : g \in G \} , \in )$ ; confidence 1.000
207. ; $F _ { n } ( x ; \lambda ) = \sum _ { m = 0 } ^ { \infty } \sum _ { k = m + n / 2 } ^ { \infty } \frac { ( \lambda / 2 ) ^ { m } ( x / 2 ) ^ { k } } { m ! k ! } e ^ { - ( \lambda + x ) / 2 }.$ ; confidence 0.801
208. ; $Z _ { n } ( x ; \sigma ) = ( 1 + \sigma ) ^ { n } T _ { n } ( \frac { x - \sigma } { 1 + \sigma } )$ ; confidence 0.801
209. ; $l = 1,2$ ; confidence 0.801
210. ; $D^{( i )}$ ; confidence 1.000
211. ; $\{ 0,1 , \vee , \wedge \}$ ; confidence 0.801
212. ; $\dot { x } \square ^ { i }$ ; confidence 1.000
213. ; $\hat { f } ( \omega ) = \int _ { - \infty } ^ { \infty } e ^ { - i \omega t } f ( t ) d t$ ; confidence 0.801
214. ; $[ a ]$ ; confidence 0.801
215. ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
216. ; $K ( . , . )$ ; confidence 0.801
217. ; ${\cal P M} ^ { * }$ ; confidence 1.000
218. ; $\operatorname{VMO}(\bf R )$ ; confidence 1.000
219. ; $a ( z ) : = \prod _ { j = 1 } ^ { J } \frac { z - i k _ { j } } { z + i k _ { j } } \operatorname { exp } \{ - \frac { 1 } { 2 \pi i } \int _ { - \infty } ^ { \infty } \frac { \operatorname { ln } ( 1 - | r _ { + } ( k ) | ^ { 2 } ) } { k - z } d k \}.$ ; confidence 1.000
220. ; ${\cal D} ^ { \prime }$ ; confidence 1.000
221. ; ${\bf Z} ^ { 0 }$ ; confidence 1.000
222. ; $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] \in C ^ { ( m n + p ) \times m }$ ; confidence 0.801
223. ; $\overline { U M } = U M$ ; confidence 0.801
224. ; $L : {\cal H} \rightarrow H$ ; confidence 1.000
225. ; $F ( f ) = F _ { g } ( f ) = \int _ { \partial D _ { m } } f g,$ ; confidence 1.000
226. ; $f : [ 0,1 ] ^ { d } \rightarrow \bf R$ ; confidence 1.000
227. ; $a_n ( g )$ ; confidence 1.000
228. ; $u \in T x , v \in T y$ ; confidence 0.800
229. ; ${\cal T} ^ { + }$ ; confidence 1.000
230. ; $u - \Delta u = f$ ; confidence 0.800
231. ; $M ^ { \perp } \bigcap N ^ { \perp } = ( M \bigcup N ) ^ { \perp }$ ; confidence 1.000
232. ; $\xi ^ { * \prime } : X \rightarrow B _ { n }$ ; confidence 0.800
233. ; $\operatorname { Ric } \geq - ( n - 1 ) \delta ^ { 2 } , \quad \delta \geq 0$ ; confidence 0.800
234. ; $X = \{ X _ { 1 } , \dots , X _ { n } \}$ ; confidence 0.800
235. ; $\times | I _ { p } + \Sigma ^ { - 1 } ( X - M ) \Omega ^ { - 1 } ( X - M ) ^ { \prime } | ^ { - ( n + m + p - 1 ) / 2 } , X \in {\bf R} ^ { p \times n } , M \in {\bf R} ^ { p \times n } , \Sigma > 0 , \Omega > 0.$ ; confidence 1.000
236. ; $a \neq b$ ; confidence 0.800
237. ; $\operatorname { Re } \mu _ { j } ( k , R ) < \operatorname { Re } \mu _ { 0 } ( k , R )$ ; confidence 0.800
238. ; $Z_n$ ; confidence 1.000
239. ; $\lfloor x \rfloor$ ; confidence 1.000
240. ; $\{ x y \{ z u v \} \} = \{ x y z \} u v \} + \{ z \{ x y u \} v \} + \{ z u \{ x y v \} \}$ ; confidence 0.800
241. ; $w_i$ ; confidence 1.000
242. ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.800
243. ; $y \in E$ ; confidence 0.800
244. ; $\sim_l$ ; confidence 1.000
245. ; $[ \alpha ] = ( \alpha , \alpha ^ { 2 } / 2 , \alpha ^ { 2 } / 3 , \ldots )$ ; confidence 0.800
246. ; $f : X \times Y \rightarrow \bf R$ ; confidence 1.000
247. ; $F ( z ) = ( 1 / k ! ) \int _ { i } ^ { z } f ( \tau ) ( z - \tau ) ^ { k } d \tau$ ; confidence 0.799
248. ; $\xi \in \Xi$ ; confidence 1.000
249. ; $\operatorname { gcd } ( a ^ { ( q ^ { i } - 1 ) / 2 } - 1 , f _ { i } )$ ; confidence 1.000
250. ; $x ^ { 1 } = \operatorname { sinh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.799
251. ; $( \alpha \supset ^ { * } b ) \in D$ ; confidence 0.799
252. ; $= \sum _ { \alpha \in Z _ { f } } \varphi ( \alpha )$ ; confidence 0.799
253. ; $\operatorname { dim } ( {\cal S} ) = 7$ ; confidence 1.000
254. ; $P _ { 8 }$ ; confidence 0.799
255. ; $n/100$ ; confidence 1.000
256. ; ${\bf D} \in \operatorname{K}_0$ ; confidence 1.000
257. ; $\{ ( x _ { j } , t _ { n } ) : x _ { j } = j h , t _ { n } = n k , 0 \leq j \leq J , 0 \leq n \leq N \},$ ; confidence 0.799
258. ; $u [ 1 ] = u - 2 ( \operatorname { log } \varphi ) _ { x y } = - u + \frac { \varphi _ { x } \varphi_y } { \varphi ^ { 2 } };$ ; confidence 1.000
259. ; $U _ { n } ^ { ( k ) }$ ; confidence 0.799
260. ; $m _ { i } : \Sigma \rightarrow X$ ; confidence 0.799
261. ; $X _ { 0 }$ ; confidence 0.798
262. ; $I = [ \xi _ { l } ^ { 0 } ] ^ { 2 } + [ \xi _ { r } ^ { 0 } ] ^ { 2 }$ ; confidence 0.798
263. ; $\pi ( \lambda ) = \sum _ { n = 0 } ^ { N } ( \lambda + n ) ( \lambda + n - 1 ) \ldots ( \lambda + 1 ) a ^ { n _0} =$ ; confidence 1.000
264. ; $M ( 1 )$ ; confidence 0.798
265. ; $\bf r \times l$ ; confidence 1.000
266. ; $\operatorname{QS} ( {\bf T} ) \subset M$ ; confidence 1.000
267. ; $\varphi = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ),$ ; confidence 1.000
268. ; $f \in L _ { 1 } ( {\bf R} _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 1.000
269. ; $c _ { N } = c _ { - N } = 1 , c _ { j } = 2 \text{ otherwise}$ ; confidence 1.000
270. ; $S , Y , Z \rightarrow U , V , W$ ; confidence 0.798
271. ; $\tau _ { n } ( x , y + [ z ] )$ ; confidence 1.000
272. ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
273. ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
274. ; $H _ { \phi } = H _ { \phi + \psi }$ ; confidence 0.798
275. ; $S _ { B }$ ; confidence 0.798
276. ; $M _ { p }$ ; confidence 0.798
277. ; $\operatorname { deg } r _ { j } = 2 k _ { j }$ ; confidence 0.798
278. ; $C _ { D }$ ; confidence 0.798
279. ; $1 \leq m \leq l$ ; confidence 0.798
280. ; $( v _ { i } , u _ { i } )$ ; confidence 0.797
281. ; $\bf A \in Q$ ; confidence 1.000
282. ; $d ( P _ { N } u ) / d x = \sum _ { n = 0 } ^ { N } b _ { n } T _ { N } ( x )$ ; confidence 0.797
283. ; $\operatorname{WC} ( A , k ) = 0$ ; confidence 1.000
284. ; $.d Y _ { 1 } \ldots d Y _ { 2 k }$ ; confidence 1.000
285. ; $\tilde{\bf E} _ { 6 }$ ; confidence 1.000
286. ; $\tau ^ { 2 } = \operatorname{id}$ ; confidence 1.000
287. ; $E ( \varphi ) = \frac { 1 } { 2 } \int _ { M } | d \varphi | ^ { 2 } v _ { g }$ ; confidence 0.797
288. ; $\operatorname{min}_j | z _ { j } | = \operatorname { min } _ { j } | w _ { j } | = 1$ ; confidence 1.000
289. ; $\sum _ { j \geq 1 } | e | ^ { \gamma } \approx$ ; confidence 0.797
290. ; $( \bar{x} )$ ; confidence 1.000
291. ; $( \phi _ { 1 } \& \ldots \& \phi _ { n } )$ ; confidence 0.797
292. ; $\alpha _ { i i } \neq 0$ ; confidence 1.000
293. ; $a b = 1$ ; confidence 0.797
294. ; $\tilde { \gamma } = \gamma _ { \tilde{\omega} }$ ; confidence 1.000
295. ; $\bf Z (\cal C )$ ; confidence 1.000
296. ; $r _ { N } ( a , b ) \in S ( m _ { 1 } m _ { 2 } H ^ { N } , G )$ ; confidence 0.797
297. ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797
298. ; $\{ \xi_r\}$ ; confidence 1.000
299. ; $h ^ { I I } ( z ) ^ { - 1 }$ ; confidence 0.797
300. ; $\alpha _ { X } : = \operatorname { inf } \{ s : \operatorname{l} ( s , 0 ) > x \}$ ; confidence 1.000
Maximilian Janisch/latexlist/latex/NoNroff/40. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/40&oldid=45573