Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/19"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 19 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015870/b01587013.png ; $G _ { \alpha } ( x )$ ; confidence 0.985
  
2. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201509.png ; $A ^ { 2 } \equiv \{ \xi \eta : \xi , \eta \in A \}$ ; confidence 0.997
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040142.png ; $x \in L ^ { 0 } ( \mu )$ ; confidence 0.985
  
3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020090.png ; $1 + \theta + \operatorname { log } \theta = 0$ ; confidence 0.999
+
3. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011030.png ; $\mathcal{H} ( u , v ) ( x , \xi ) =$ ; confidence 0.985
  
4. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202009.png ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503
+
4. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040109.png ; $z ( ( ( v ^ { - 1 } - v ) / z ) ^ { 2 } - 1 )$ ; confidence 0.985
  
5. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300503.png ; $V ^ { 4 } = \oplus _ { n } \geq - 1 V _ { n } ^ { \Perp }$ ; confidence 0.251
+
5. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013020.png ; $0 < b \leq 1$ ; confidence 0.985
  
6. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v1200207.png ; $f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$ ; confidence 0.997
+
6. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005083.png ; $[ L ( m ) , L ( n ) ] =$ ; confidence 0.985
  
7. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v1300703.png ; $\nabla P = - 12 \mu \frac { \vec { V } } { b ^ { 2 } }$ ; confidence 0.997
+
7. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006040.png ; $W _ { k } ^ { * } = 1 / D _ { k } ^ { * }$ ; confidence 0.985
  
8. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007067.png ; $\alpha = ( 2 \lambda - 1 ) / ( 1 - \lambda ) ^ { 2 }$ ; confidence 1.000
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022068.png ; $f ( \xi ) \in D _ { \xi }$ ; confidence 0.985
  
9. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004056.png ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698
+
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016047.png ; $x _ { 3 } ^ { \prime } = p _ { 2 } q _ { 1 } , x _ { 4 } ^ { \prime } = p _ { 2 } q _ { 2 }$ ; confidence 0.985
  
10. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011079.png ; $d M _ { 3 } = \rho \frac { \Gamma ^ { 2 } } { 2 \pi l }$ ; confidence 0.890
+
10. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015012.png ; $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$ ; confidence 0.985
  
11. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006010.png ; $\operatorname { gcd } ( N _ { 2 x } , D _ { 2 x } ) = 1$ ; confidence 0.455
+
11. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007049.png ; $= ( c z + d ) ^ { - k - 2 } F ^ { ( k + 1 ) } ( M z ),$ ; confidence 0.985
  
12. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004045.png ; $\sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 } \neq 0$ ; confidence 0.993
+
12. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596101.png ; $w _ { N } ( p , q ; t )$ ; confidence 0.985
  
13. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006013.png ; $T _ { A } f ( \varphi ) ( g ) = \varphi ( g \circ f )$ ; confidence 0.999
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419048.png ; $K \subset \Omega$ ; confidence 0.985
  
14. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110139.png ; $r _ { N } ( a , b ) \in S _ { sc } ^ { m _ { 1 } } + m _ { 2 } - N$ ; confidence 0.392
+
14. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120010/l12001040.png ; $T = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { 0 } \\ { 1 } & { - 1 } & { 0 } & { 1 } \end{array} \right)$ ; confidence 0.985
  
15. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080100.png ; $\partial d S / \partial \alpha j = d \omega j$ ; confidence 0.183
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002014.png ; $U \equiv V$ ; confidence 0.985
  
16. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080125.png ; $s _ { 1 } = - i \operatorname { log } ( \lambda )$ ; confidence 0.999
+
16. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080133.png ; $J _ { 1 } > 0$ ; confidence 0.985
  
17. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080215.png ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627
+
17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026068.png ; $u _ { t } = \mathcal{F} ( t , u ) , 0 < t , u ( x , 0 ) = u ^ { 0 } ( x ),$ ; confidence 0.985
  
18. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009032.png ; $L ^ { 2 } ( \mu ) = \sum _ { n = 0 } ^ { \infty } G _ { n }$ ; confidence 0.529
+
18. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011019.png ; $( 10 )$ ; confidence 0.985
  
19. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090110.png ; $\frac { 1 } { \sqrt { n _ { 1 } ! n _ { 2 } ! \ldots } }$ ; confidence 0.816
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202006.png ; $\sum _ { i } \lambda _ { i } = n$ ; confidence 0.985
  
20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018023.png ; $P \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ ; confidence 0.621
+
20. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026038.png ; $\pm 1 / 2$ ; confidence 0.985
  
21. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021056.png ; $( 1,1,1,1,1,1,1,1 , I _ { m } ) = ( 1,8 , I _ { m } )$ ; confidence 0.403
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150151.png ; $p _ { i } \neq 1 / 2$ ; confidence 0.985
  
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
+
22. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c1302609.png ; $\{ \phi _ { j } \in \mathcal{D} \}$ ; confidence 0.985
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200166.png ; $G _ { 2 } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } \phi ( z _ { j } ) z _ { j } ^ { k }$ ; confidence 0.985
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
+
24. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010024.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.985
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040221.png ; $E ( x , y ) = \{ \epsilon _ { i } ( x , y ) : i \in I \}$ ; confidence 0.985
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200208.png ; $\beta _ { n } ( t ) = n ^ { 1 / 2 } \left( \Gamma _ { n } ^ { - 1 } ( t ) - t \right) , \quad 0 \leq t \leq 1,$ ; confidence 0.985
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007073.png ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ]$ ; confidence 0.712
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240545.png ; $\Sigma$ ; confidence 0.985
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } )$ ; confidence 0.836
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050246.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.985
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018064.png ; $\| g _ { \operatorname { mod } e l s } ( L _ { n } )$ ; confidence 0.232
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051029.png ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0.$ ; confidence 0.985
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027079.png ; $\Gamma = \{ X _ { n } , P _ { n } ; Y _ { n } , Q _ { n } \}$ ; confidence 0.969
+
29. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; $\mathbf{E} ^ { \prime } = 0$ ; confidence 0.985
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a1302609.png ; $\operatorname { tcm } ( 1 , \ldots , n ) ^ { 3 }$ ; confidence 0.379
+
30. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005080.png ; $s > - \infty$ ; confidence 0.985
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026097.png ; $R _ { 1 } = R ^ { * } / \cap _ { i \in N } a ^ { i } R ^ { * }$ ; confidence 0.167
+
31. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570017.png ; $A _ { t } ^ { * }$ ; confidence 0.985
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260114.png ; $y _ { i } \in A ( X _ { 1 } , \dots , X _ { i } \rangle$ ; confidence 0.063
+
32. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017570/b0175706.png ; $\Delta t$ ; confidence 0.985
  
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021051.png ; $k = 1 , \ldots , r = \operatorname { dim } a / p$ ; confidence 0.264
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040221.png ; $E ( x , y ) = \{ \epsilon _ { i } ( x , y ) : i \in I \}$ ; confidence 0.985
  
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021026.png ; $D _ { k } = U ( a ) \otimes _ { C } \wedge ^ { k } ( a )$ ; confidence 0.442
+
34. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001012.png ; $R = \mathbf{F} _ { q } [ x ] / ( f )$ ; confidence 0.985
  
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002042.png ; $\alpha _ { n } , F \circ Q \equiv \alpha _ { n }$ ; confidence 0.545
+
35. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833606.png ; $J _ { n } = \frac { z ^ { n } } { 2 ^ { \pi + 1 } \pi i } \int _ { - \infty } ^ { ( 0 + ) } t ^ { - n - 1 } \operatorname { exp } \left( t - \frac { z ^ { 2 } } { 4 t } \right) d t.$ ; confidence 0.985
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010104.png ; $V _ { N } ^ { * } = V _ { N } \cup \ldots \cup V _ { 0 }$ ; confidence 0.727
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004026.png ; $( \Omega , \Sigma , \mu )$ ; confidence 0.985
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004018.png ; $\cap _ { \gamma = 0 } ^ { \infty } I _ { \gamma }$ ; confidence 0.243
+
37. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302002.png ; $( M , P )$ ; confidence 0.985
  
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200509.png ; $A : E \times \ldots \times E \rightarrow C$ ; confidence 0.884
+
38. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009080.png ; $( C ^ { \prime } , C )$ ; confidence 0.985
  
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007022.png ; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947
+
39. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { E } f _ { n } d \mu = \nu ( E )$ ; confidence 0.985
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009034.png ; $\operatorname { Re } p _ { 2 } ( \xi , \tau ) > 0$ ; confidence 0.971
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340201.png ; $( H _ { 3 } , J )$ ; confidence 0.985
  
41. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009036.png ; $\operatorname { Re } p _ { 3 } ( \xi , \tau ) > 0$ ; confidence 0.975
+
41. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520302.png ; $\mathcal{L} ^ { 2 } = \sum \oplus \mathcal{L} _ { \rho _ { \alpha } } ^ { 2 }$ ; confidence 0.985
  
42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022047.png ; $K ^ { ( j ) } i ( X ) \subset K _ { i } ( X ) \otimes Q$ ; confidence 0.880
+
42. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015037.png ; $\eta \in \mathcal{D} ( S ^ { * } )$ ; confidence 0.985
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220203.png ; $H _ { M } ^ { i + 1 } ( X , Q ( m ) ) _ { Z } ^ { 0 } < \infty$ ; confidence 0.836
+
43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510145.png ; $L _ { 1 } , L _ { 2 } \neq \mathbf{Z} ^ { 0 }$ ; confidence 0.985
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300901.png ; $u _ { t } + u _ { \lambda } + u u _ { X } - u _ { X x t } = 0$ ; confidence 0.280
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025043.png ; $( a , b ) = ( 0 , \infty )$ ; confidence 0.985
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014044.png ; $s _ { i } ( z ) a ( z ) + t _ { i } ( z ) b ( z ) = r _ { i } ( z )$ ; confidence 0.964
+
45. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754809.png ; $( p \supset q ) \supset ( ( p \supset \neg q ) \supset \neg p )$ ; confidence 0.985
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015093.png ; $\operatorname { Var } _ { P _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198
+
46. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016041.png ; $\lambda \in G$ ; confidence 0.985
  
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015033.png ; $d ^ { * } \in \cap P \in P L _ { 2 } ( \Omega , A , P )$ ; confidence 0.162
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004017.png ; $\Gamma , \Delta \subseteq \operatorname{Fm}$ ; confidence 0.985
  
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015050.png ; $a _ { 1 } d _ { 1 } ^ { * } + \alpha _ { 2 } d _ { 2 } ^ { * }$ ; confidence 0.534
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210502.png ; $n = \operatorname { dim } X$ ; confidence 0.985
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150155.png ; $( x _ { i } , \ldots , x _ { N } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202409.png ; $\psi [ 1 ] = \psi - \frac { \varphi \Omega ( \varphi , \psi ) } { \Omega ( \varphi , \varphi ) },$ ; confidence 0.985
  
50. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202004.png ; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.483
+
50. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602013.png ; $\Phi ( z ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - z } , \quad z \notin \Gamma,$ ; confidence 0.985
  
51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012025.png ; $\lambda ( x ) = \int _ { R } e ^ { - i x t } d \mu ( t )$ ; confidence 0.569
+
51. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041018.png ; $\mu _ { 0 } = \mu _ { 1 } =$ ; confidence 0.985
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022074.png ; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi$ ; confidence 0.947
+
52. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005022.png ; $d ^ { k } = - H _ { k } D ^ { T } f ( x ^ { k } )$ ; confidence 0.985
  
53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022034.png ; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947
+
53. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018040.png ; $H ^ { p } ( m )$ ; confidence 0.985
  
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b1202408.png ; $S = \overline { C } = D _ { + } \cup T \cup D _ { - }$ ; confidence 0.667
+
54. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011034.png ; $| x | > 1$ ; confidence 0.985
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203408.png ; $U _ { 1 } = \{ z : | z _ { j } | < 1 , j = 1 , \ldots , n \}$ ; confidence 0.479
+
55. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090109.png ; $A = T ^ { * } M$ ; confidence 0.985
  
56. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020033.png ; $\hat { \mathfrak { g } } = \mathfrak { g } ( A )$ ; confidence 0.614
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044067.png ; $T _ { H } ^ { G } : B ^ { H } \rightarrow B ^ { G }$ ; confidence 0.985
  
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200121.png ; $( \alpha _ { i } | \alpha _ { j } ) = d _ { i } a _ { j }$ ; confidence 0.266
+
57. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006030.png ; $h ^ { 1 } ( L )$ ; confidence 0.985
  
58. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042028.png ; $( C , \otimes , \Phi , \underline { 1 } , l , r )$ ; confidence 0.578
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240202.png ; $q \times m$ ; confidence 0.985
  
59. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043067.png ; $\Psi ( x \varnothing x ) = q ^ { 2 } x \otimes x$ ; confidence 0.259
+
59. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b130020108.png ; $x \circ ( y \circ x ^ { 2 } ) = ( x \circ y ) \circ x ^ { 2 }$ ; confidence 0.985
  
60. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022070.png ; $\rho = \operatorname { max } _ { T } \rho ( T )$ ; confidence 0.976
+
60. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030034.png ; $d Z ( t ) = g ( t , Z ( t ) ) d \tilde { B } ( t )$ ; confidence 0.985
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028048.png ; $\lambda _ { N } H \times \Omega ^ { \infty } X$ ; confidence 0.192
+
61. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080115.png ; $d E$ ; confidence 0.985
  
62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053020.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } \subset L _ { + }$ ; confidence 0.813
+
62. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160108.png ; $f ( w ) \notin B$ ; confidence 0.985
  
63. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001031.png ; $T : P ^ { m } \backslash X \rightarrow P ^ { n }$ ; confidence 0.824
+
63. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032078.png ; $h \in H ^ { \infty }$ ; confidence 0.985
  
64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004039.png ; $\gamma = ( \partial D ) \backslash \Gamma$ ; confidence 1.000
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016032.png ; $k + n$ ; confidence 0.985
  
65. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070216.png ; $\mathfrak { D } ( P , x ) T = M ( T ) ^ { \epsilon }$ ; confidence 0.903
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280158.png ; $\{ \alpha _ { t } \} _ { t \in G }$ ; confidence 0.985
  
66. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300807.png ; $\mathfrak { p } = A _ { K } \cap \mathfrak { P }$ ; confidence 0.543
+
66. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001046.png ; $( \theta f ) ( s ) : = f ( - s )$ ; confidence 0.985
  
67. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
+
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023060.png ; $L \in \Omega ^ { \text{l} + 1 } ( M , T M )$ ; confidence 0.985
  
68. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016087.png ; $NSPACE [ s ( n ) ] = \text { co } NSPACE [ s ( n ) ]$ ; confidence 0.283
+
68. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070149.png ; $( f , g ) _ { H } = ( L F , L G ) _ { H } =$ ; confidence 0.985
  
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180302.png ; $R ( \nabla ) : E \rightarrow \otimes ^ { 3 } E$ ; confidence 0.876
+
69. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010149.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.985
  
70. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026025.png ; $| \tau _ { j } ^ { n + 1 } | \leq C ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.956
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006097.png ; $q ( x ) = A ^ { 2 } ( x ) + A ^ { \prime } ( x )$ ; confidence 0.985
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027011.png ; $s = \operatorname { dist } ( p , \gamma ( s ) )$ ; confidence 0.983
+
71. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520445.png ; $f ( V )$ ; confidence 0.985
  
72. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006013.png ; $D ^ { \pm } f = f - \sigma ^ { \pm } T ^ { \pm 1 } ( f )$ ; confidence 0.999
+
72. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021049.png ; $A ( G _ { 1 } )$ ; confidence 0.985
  
73. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080105.png ; $F ^ { n } ( E _ { z } ( a , R ) ) \subset F _ { z } ( a , R )$ ; confidence 0.588
+
73. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006058.png ; $m = 2 ^ { E }$ ; confidence 0.985
  
74. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201909.png ; $( E ( f ) + \| f \| _ { L _ { 2 } ( \Omega ) } ) ^ { 1 / 2 }$ ; confidence 0.867
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029025.png ; $u ( 1 , t ) \in L _ { 1 }$ ; confidence 0.985
  
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230143.png ; $R - Z R Z ^ { * } = G J G ^ { * } , G \in C ^ { n \times r }$ ; confidence 0.474
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005036.png ; $\{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \ \text { uniformly continuous on } B _ { E } \}.$ ; confidence 0.985
  
76. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028058.png ; $\Phi ^ { m } \in C ^ { 2 } ( \overline { D } _ { m } )$ ; confidence 0.903
+
76. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027031.png ; $V _ { n , p } ( f , x ) =$ ; confidence 0.985
  
77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005021.png ; $( u , v ) \in \Omega ^ { * } \times \Omega ^ { * }$ ; confidence 0.995
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205307.png ; $T : L \rightarrow M$ ; confidence 0.985
  
78. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007031.png ; $f | _ { k } ^ { \vee } M = f , \forall M \in \Gamma$ ; confidence 0.611
+
78. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001038.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } . \alpha , k )$ ; confidence 0.985
  
79. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000106.png ; $\pi ( A \times X ) = \pi ( X \times A ) = \mu ( A )$ ; confidence 0.998
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029024.png ; $g ( x _ { i } ) = ( - 1 ) ^ { i } \| g \|$ ; confidence 0.985
  
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e1201405.png ; $\rho : \Phi \rightarrow \{ 0,1 , \ldots \}$ ; confidence 0.779
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004046.png ; $F _ { \mathcal{X} } ( T ) \in \mathcal{X}$ ; confidence 0.985
  
81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190196.png ; $\Phi _ { 1 } = ( h _ { 1 } , h _ { 3 } , p , W _ { 1 } ^ { + } )$ ; confidence 0.993
+
81. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009075.png ; $( \pi , T )$ ; confidence 0.985
  
82. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190197.png ; $\Phi _ { 2 } = ( h _ { 3 } , h _ { 2 } , p , W _ { 2 } ^ { + } )$ ; confidence 0.990
+
82. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011010.png ; $| C ( 30 ) | = 845480228069$ ; confidence 0.985
  
83. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202103.png ; $x ^ { m - 1 } p _ { m } ( \frac { 1 } { x } ) = p _ { m } ( x )$ ; confidence 0.847
+
83. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008032.png ; $\sigma _ { p } = \sum _ { k = 1 } ^ { p } \rho _ { p }$ ; confidence 0.985
  
84. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023049.png ; $f : ( - \epsilon , \epsilon ) \rightarrow R$ ; confidence 0.994
+
84. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030049.png ; $\sigma ( Y ( u ) , u \leq t )$ ; confidence 0.985
  
85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024024.png ; $\operatorname { Tr } _ { L \backslash l / L }$ ; confidence 0.085
+
85. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005038.png ; $T ^ { * } \subset \mathcal{A} ^ { * }$ ; confidence 0.985
  
86. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002015.png ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 0.188
+
86. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006014.png ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( M , \mathbf{R} ) , A )$ ; confidence 0.985
  
87. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009016.png ; $x _ { j } = 2 i \operatorname { cos } ( j \pi / n )$ ; confidence 0.780
+
87. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006088.png ; $T T _ { A } \rightarrow T T _ { A }$ ; confidence 0.985
  
88. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100125.png ; $\{ \square _ { \chi } u : \chi \in \hat { G } \}$ ; confidence 0.651
+
88. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s1203004.png ; $\operatorname{Map}( B _ { G } , X )$ ; confidence 0.985
  
89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010074.png ; $C V _ { p } ( G ) \neq \lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.988
+
89. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v1200303.png ; $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.985
  
90. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010083.png ; $\sigma ( A _ { p } ( G ) ^ { \prime } , A _ { p } ( G ) )$ ; confidence 0.988
+
90. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200201.png ; $f \in L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.985
  
91. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019014.png ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040278.png ; $\Gamma \cup \{ \varphi , \psi \} \subseteq \operatorname{Fm}$ ; confidence 0.985
  
92. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016092.png ; $\mathfrak { A } \equiv \ell \mathfrak { B }$ ; confidence 0.196
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040150.png ; $( X _ { 0 } ^ { 1 - \theta } X _ { 1 } ^ { \theta } ) ^ { \prime } = ( X _ { 0 } ^ { \prime } ) ^ { 1 - \theta } ( X _ { 1 } ^ { \prime } ) ^ { \theta }$ ; confidence 0.985
  
93. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
+
93. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015070.png ; $\mathcal{G} ^ { \infty } ( \Omega ) \cap \mathcal{D} ^ { \prime } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.985
  
94. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014041.png ; $\sum _ { k = 1 } ^ { \infty } | x _ { k } | ^ { 2 } / k = 1$ ; confidence 0.960
+
94. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690014.png ; $\delta _ { 2 }$ ; confidence 0.985
  
95. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150219.png ; $( B A ) ^ { \prime } = A ^ { \prime } B ^ { \prime }$ ; confidence 0.999
+
95. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002048.png ; $K ( ( X ) )$ ; confidence 0.985
  
96. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024028.png ; $U ( \varepsilon ) \oplus U ( \varepsilon )$ ; confidence 0.997
+
96. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005050.png ; $\int _ { - \infty } ^ { \infty } | g ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { - } ) ^ { - 2 }.$ ; confidence 0.985
  
97. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290162.png ; $( f , \phi ) : ( X , L , T ) \rightarrow ( Y , M , S )$ ; confidence 0.975
+
97. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012085.png ; $\phi _ { \infty }$ ; confidence 0.985
  
98. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001040.png ; $N _ { E } / F ( z ) = z z ^ { q } \ldots z ^ { q ^ { n - 1 } }$ ; confidence 0.087
+
98. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080101.png ; $E _ { z _ { 0 } } ( x , R ) = F _ { z _ { 0 } } ( x , R )$ ; confidence 0.985
  
99. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002049.png ; $e ^ { \beta _ { 1 } } , \ldots , e ^ { \beta _ { n } }$ ; confidence 0.462
+
99. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003027.png ; $( Z f ) ( t , w ) = ( 2 \gamma ) ^ { 1 / 4 } e ^ { - \pi \gamma t ^ { 2 } } \theta _ { 3 } ( w - i \gamma t , e ^ { - \pi \gamma } ),$ ; confidence 0.985
  
100. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002011.png ; $e ^ { z _ { 1 } + z _ { 2 } } = e ^ { z _ { 1 } } e ^ { z _ { 2 } }$ ; confidence 0.757
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031057.png ; $M _ { R } f ( x )$ ; confidence 0.985
  
101. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003052.png ; $\square ^ { * } C ^ { \infty } ( \Omega ) = B / I u$ ; confidence 0.848
+
101. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090124.png ; $d _ { A } *$ ; confidence 0.985
  
102. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004063.png ; $\Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.731
+
102. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050018.png ; $\mathcal{A} : = \mathcal{F} _ { l }$ ; confidence 0.985
  
103. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002041.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j } \in VMO$ ; confidence 0.807
+
103. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940805.png ; $A \cup B = X$ ; confidence 0.985
  
104. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002043.png ; $H _ { \phi } : H ^ { 2 } \rightarrow H _ { - } ^ { 2 }$ ; confidence 0.872
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023031.png ; $\| f _ { \text{l} } - P f \| \rightarrow 0$ ; confidence 0.984
  
105. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012029.png ; $\overline { \phi } = D ( \phi ) \phi D ( \phi )$ ; confidence 0.996
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300705.png ; $\sigma ( n ) < 2 n$ ; confidence 0.984
  
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012038.png ; $| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$ ; confidence 0.999
+
106. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013028.png ; $H ^ { * } ( W ; \mathbf{F} _ { 2 } )$ ; confidence 0.984
  
107. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200105.png ; $g _ { \Phi } ( t ) = \Phi ^ { - 1 } ( t ) t ^ { - 1 - 1 / n }$ ; confidence 0.918
+
107. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025088.png ; $\mathcal{M} _ { 3 }$ ; confidence 0.984
  
108. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005072.png ; $\beta ( m + k , \alpha _ { n } , \theta _ { n } ; V )$ ; confidence 0.893
+
108. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260131.png ; $( v , p ) \in E \times \mathbf{R}$ ; confidence 0.984
  
109. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050110.png ; $\epsilon _ { \mathscr { Y } } \rightarrow 0$ ; confidence 0.129
+
109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023079.png ; $X : = A U,$ ; confidence 0.984
  
110. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006060.png ; $P \rightarrow \operatorname { PrSu } ( P )$ ; confidence 0.651
+
110. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006011.png ; $m : 2 ^ { \Xi } \rightarrow [ 0,1 ]$ ; confidence 0.984
  
111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007094.png ; $A _ { \delta } ( \alpha ^ { \prime } , \alpha )$ ; confidence 0.997
+
111. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010095.png ; $( R \in R \leftrightarrow ( \neg R \in R ) )$ ; confidence 0.984
  
112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090200.png ; $G _ { \chi } ^ { * } ( T ) \in Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.968
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680209.png ; $n \geq 4$ ; confidence 0.984
  
113. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001056.png ; $\operatorname { deg } F ^ { - 1 } \leq C ( n , d )$ ; confidence 0.999
+
113. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003023.png ; $\alpha _ { \nu }$ ; confidence 0.984
  
114. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001025.png ; $f : \text { Edge } ( D ) \rightarrow \{ 1,2 \}$ ; confidence 0.767
+
114. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000184.png ; $f ( d ) = \cup \{ f ( \beta ) : \beta \subseteq d , \beta \ \Box \text{finite} \}$ ; confidence 0.984
  
115. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002080.png ; $\beta = P [ ( X - \hat { X } ) ( Y - \hat { Y } ) > 0 ] +$ ; confidence 0.462
+
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301705.png ; $u \in A _ { 2 } ( G )$ ; confidence 0.984
  
116. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584071.png ; $[ f , g ] = \int _ { - \infty } ^ { \infty } f g r d x$ ; confidence 0.999
+
116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006019.png ; $H ^ { ( 0 ) } = - D ^ { 2 } + u = Q ^ { - } Q ^ { + };$ ; confidence 0.984
  
117. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200308.png ; $\operatorname { Ric } ( \omega ) = - \omega$ ; confidence 0.994
+
117. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170100.png ; $\mathcal{A}$ ; confidence 0.984
  
118. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000148.png ; $\Gamma \cup \{ x : \sigma \} \vdash M : \tau$ ; confidence 0.957
+
118. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011029.png ; $X = t ( h )$ ; confidence 0.984
  
119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004069.png ; $w _ { 1 } = ( 1 + \operatorname { sign } ( c ) ) / 2$ ; confidence 0.970
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a0124507.png ; $\mathbf{R} ^ { 4 }$ ; confidence 0.984
  
120. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004070.png ; $w _ { 2 } = ( 1 - \operatorname { sign } ( c ) ) / 2$ ; confidence 0.919
+
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006010.png ; $\mathcal{E} ( \rho ) : =$ ; confidence 0.984
  
121. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004053.png ; $d _ { - 1 } - d _ { 1 } = - c , d _ { - 1 } + d _ { 1 } = c ^ { 2 }$ ; confidence 0.881
+
121. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060144.png ; $B \sim Z ^ { 3 }$ ; confidence 0.984
  
122. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004077.png ; $\hat { f } _ { i } ^ { + } = f ( \hat { u } _ { i } ^ { + } )$ ; confidence 0.353
+
122. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001021.png ; $B _ { 12 } B _ { 23 } B _ { 12 } = B _ { 23 } B _ { 12 } B _ { 23 }.$ ; confidence 0.984
  
123. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001030.png ; $| k | ^ { 2 } = k _ { 1 } ^ { 2 } + \ldots + k _ { x } ^ { 2 }$ ; confidence 0.326
+
123. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004034.png ; $( \overline { \mathbf{R} } , \leq )$ ; confidence 0.984
  
124. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006058.png ; $W ( \zeta ) = | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.864
+
124. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337012.png ; $f _ { G } ^ { \prime } ( x _ { 0 } )$ ; confidence 0.984
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010062.png ; $L _ { \gamma , n } > L _ { \gamma , \kappa } ^ { E }$ ; confidence 0.132
+
125. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211025.png ; $x _ { k } = + \infty$ ; confidence 0.984
  
126. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006026.png ; $\alpha \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.606
+
126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027093.png ; $C ( X ) \otimes \mathcal{K} ( H )$ ; confidence 0.984
  
127. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006015.png ; $\alpha \equiv 5 ( \operatorname { mod } 8 )$ ; confidence 0.657
+
127. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021075.png ; $1 \leq j \leq \nu$ ; confidence 0.984
  
128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130106.png ; $g _ { 1 } ( \alpha ) , \ldots , g _ { m } ( \alpha )$ ; confidence 0.275
+
128. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520282.png ; $\mathcal{L} _ { \rho } ^ { 2 }$ ; confidence 0.984
  
129. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023036.png ; $g ( y ) \geq g ( x ) + \langle y - x , \xi \rangle$ ; confidence 0.948
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240342.png ; $\mathbf{Y} , \mathbf{B} , \mathbf{E}$ ; confidence 0.984
  
130. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018040.png ; $\mu ( x , y ) = - C _ { 1 } + C _ { 2 } - C _ { 3 } + \ldots$ ; confidence 0.727
+
130. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001071.png ; $O _ { 1 } ( m ),$ ; confidence 0.984
  
131. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012010.png ; $\Sigma ^ { * } = \cup _ { n \geq 1 } \Sigma ^ { n }$ ; confidence 0.593
+
131. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820114.png ; $f ( Z )$ ; confidence 0.984
  
132. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002063.png ; $\hat { \theta } _ { n } = \psi _ { \mu } ( X _ { n } )$ ; confidence 0.994
+
132. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120146.png ; $H ( Y )$ ; confidence 0.984
  
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010058.png ; $Y _ { m } = ( y _ { m } + k - 1 , \ldots , y _ { m } ) ^ { T }$ ; confidence 0.392
+
133. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006056.png ; $R _ { 0 } ( X , D )$ ; confidence 0.984
  
134. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010024.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.985
+
134. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080189.png ; $\omega = \omega ^ { 0 } - ( 1 / \kappa ) \sum \delta H _ { \alpha } \delta t _ { \alpha }$ ; confidence 0.984
  
135. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011074.png ; $\{ \psi _ { X } ( . ) \cong f ^ { * } ( x ) : x \in M \}$ ; confidence 0.375
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029043.png ; $\mathcal{L} _ { 1 } \subset \mathcal{M} ( P )$ ; confidence 0.984
  
136. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520205.png ; $\epsilon _ { 1 } = \ldots = \epsilon _ { r } = 1$ ; confidence 0.857
+
136. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027013.png ; $w \in C ^ { ( 1 ) } ( \partial D )$ ; confidence 0.984
  
137. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520371.png ; $\| \partial \phi _ { i } / \partial x _ { j } \|$ ; confidence 0.939
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110020/c11002039.png ; $b \geq 0$ ; confidence 0.984
  
138. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520375.png ; $\| \partial \psi _ { i } / \partial y _ { j } \|$ ; confidence 0.986
+
138. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201706.png ; $C W$ ; confidence 0.984
  
139. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001029.png ; $\Lambda _ { 1 } = U C ( \theta _ { r } ) L / \kappa$ ; confidence 0.857
+
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013051.png ; $\tau ( K _ { \nu } ) = \nu ^ { \nu - 2 }$ ; confidence 0.984
  
140. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006044.png ; $H = H ^ { \prime } \oplus H ^ { \prime \prime }$ ; confidence 0.987
+
140. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011030.png ; $\overset{\rightharpoonup}{ G }$ ; confidence 0.984
  
141. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010040.png ; $\hat { K } = C \backslash \Omega _ { \infty }$ ; confidence 0.562
+
141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017039.png ; $| \xi | ^ { - \alpha }$ ; confidence 0.984
  
142. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017039.png ; $X \in \operatorname { ker } \delta _ { A , B }$ ; confidence 0.850
+
142. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520221.png ; $A \rightarrow C ^ { - 1 } A C$ ; confidence 0.984
  
143. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004044.png ; $\varphi : G ^ { \prime } \rightarrow R ^ { 2 }$ ; confidence 0.970
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138019.png ; $x = 1$ ; confidence 0.984
  
144. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300105.png ; $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ ; confidence 0.404
+
144. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015076.png ; $\varphi = \tau \psi$ ; confidence 0.984
  
145. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005016.png ; $( G , \Omega ) = \operatorname { order } ( G )$ ; confidence 0.547
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012064.png ; $\lambda ^ { * } = \lambda ( x ^ { * } , y ^ { * } )$ ; confidence 0.984
  
146. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014019.png ; $\lambda \in \sigma ( R ) \backslash \{ 0 \}$ ; confidence 0.999
+
146. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752059.png ; $\Delta j > 0$ ; confidence 0.984
  
147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300409.png ; $H ^ { * } = H \cup P ^ { 1 } ( Q ) \subset P ^ { 1 } ( C )$ ; confidence 0.959
+
147. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007083.png ; $C ( E , \Omega ) = \operatorname { sup } \{ C ( K ) : K \subset \Omega \}.$ ; confidence 0.984
  
148. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
+
148. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006018.png ; $\int _ { \mathbf{R} ^ { 3 } } \rho = N$ ; confidence 0.984
  
149. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021019.png ; $0 \neq \nu _ { 2 } \in E ( 0 , \Delta _ { S } ^ { 2 } )$ ; confidence 0.471
+
149. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015072.png ; $J \mathcal{L} ( \mathcal{A} ) J = \mathcal{L} ( \mathcal{A} ) ^ { \prime }$ ; confidence 0.984
  
150. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049023.png ; $d ( P ) = \operatorname { max } _ { k } | N _ { k } |$ ; confidence 0.849
+
150. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005048.png ; $- f ^ { \prime \prime } ( x , i k _ { j } ) + q ( x ) f ( x , i k _ { j } ) + k ^ { 2 _ j } f ( x , i k _ { j } ) = 0,$ ; confidence 0.984
  
151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230131.png ; $X \sim \operatorname { RS } _ { p , n } ( \phi )$ ; confidence 0.972
+
151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011029.png ; $\operatorname { mod} B$ ; confidence 0.984
  
152. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023042.png ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023010.png ; $Z _ { n , n - 1 } ^ { \infty } ( \overline { D } )$ ; confidence 0.984
  
153. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023022.png ; $X \sim \operatorname { LS } _ { p , n } ( \phi )$ ; confidence 0.919
+
153. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006059.png ; $| \Delta ( \mathcal{F} ) | \geq \left( \begin{array} { c } { x } \\ { k - 1 } \end{array} \right).$ ; confidence 0.984
  
154. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024055.png ; $d x _ { i } ^ { n + 1 } = z _ { i } ^ { n } - z _ { i + 1 } ^ { n }$ ; confidence 0.890
+
154. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304503.png ; $R _ { i } = \operatorname { rank } ( x _ { i } )$ ; confidence 0.984
  
155. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025052.png ; $E _ { n } + 1 ( \operatorname { cos } \theta ) =$ ; confidence 0.456
+
155. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049023.png ; $\nu _ { 1 } = m$ ; confidence 0.984
  
156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025054.png ; $\epsilon \leq \theta \leq \pi - \epsilon$ ; confidence 0.962
+
156. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080144.png ; $F B ( \Sigma _ { g } , G )$ ; confidence 0.984
  
157. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026030.png ; $D _ { t } : \Gamma ^ { + } \rightarrow ( L ^ { 2 } )$ ; confidence 0.995
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300408.png ; $[ x y z ] + [ y z x ] + [ z x y ] = 0,$ ; confidence 0.984
  
158. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059031.png ; $\langle P , Q \rangle \equiv M [ P ( z ) Q ( z ) ]$ ; confidence 0.959
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016024.png ; $\phi \equiv ( x _ { 1 } \vee x _ { 2 } ) \wedge ( \overline { x _ { 2 } } \vee \overline { x _ { 3 } } ) \wedge ( \overline { x _ { 1 } } \vee x _ { 3 } )$ ; confidence 0.984
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059018.png ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.492
+
159. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010084.png ; $P M _ { p } ( G )$ ; confidence 0.984
  
160. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062084.png ; $f ( \lambda ) = d \rho ( \lambda ) / d \lambda$ ; confidence 0.992
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017078.png ; $| F ( A , d ) | \geq k$ ; confidence 0.984
  
161. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620197.png ; $q ( x ) = \sum _ { x = 1 } ^ { \infty } f ( x - x _ { x } )$ ; confidence 0.653
+
161. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001074.png ; $x ^ { ( i ) }$ ; confidence 0.984
  
162. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034079.png ; $( x , u ) \equiv ( x ^ { \prime } , u ^ { \prime } )$ ; confidence 0.987
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022039.png ; $S < T$ ; confidence 0.984
  
163. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064039.png ; $H ( \alpha ) = ( \alpha _ { 1 } + j + k ) j _ { j } k = 0$ ; confidence 0.095
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004089.png ; $\operatorname {Mod} \mathcal{D}$ ; confidence 0.984
  
164. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050136.png ; $\sigma _ { 1 } ( A , H ) \cap \sigma _ { r } ( A , H )$ ; confidence 0.965
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003029.png ; $K _ { \infty }$ ; confidence 0.984
  
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050116.png ; $x \in \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.244
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984
  
166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005076.png ; $n \geq i _ { 1 } \geq \ldots \geq i _ { r } \geq 0$ ; confidence 0.769
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200179.png ; $\operatorname {max}_{r}\operatorname { Re } G _ { 1 } ( r ) \geq B$ ; confidence 0.984
  
167. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009019.png ; $\pi X \circ \pi Y ( \alpha ) = \pi X ( \alpha )$ ; confidence 0.245
+
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015032.png ; $S ^ { * } = J \Delta ^ { - 1 / 2 } = \Delta ^ { 1 / 2 } J$ ; confidence 0.984
  
168. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006030.png ; $\gamma \rho ( x ) ^ { 2 / 3 } = [ \Phi ( x ) - \mu ] +$ ; confidence 0.887
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b015400100.png ; $\Psi _ { 1 }$ ; confidence 0.984
  
169. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010058.png ; $T = H ( 1 - e ) \oplus \operatorname { Tr } D H e$ ; confidence 0.594
+
169. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007047.png ; $= c \sum _ { j = 1 } ^ { \infty } ( A \varphi _ { j } , \varphi _ { j } ) _ { 0 } = c \Lambda ^ { 2 } < \infty.$ ; confidence 0.984
  
170. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011023.png ; $X ( T _ { A } ) = \{ N _ { B } : N \otimes _ { B } T = 0 \}$ ; confidence 0.708
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013750/a0137505.png ; $x \rightarrow \infty$ ; confidence 0.984
  
171. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140155.png ; $( \operatorname { prin } K I ) \simeq Z ^ { I }$ ; confidence 0.538
+
171. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070108.png ; $\epsilon g = 1$ ; confidence 0.984
  
172. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014030.png ; $\phi _ { \beta } : X _ { i } \rightarrow X _ { j }$ ; confidence 0.994
+
172. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o13004016.png ; $L ( \dot { x } , x )$ ; confidence 0.984
  
173. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015032.png ; $S ^ { * } = J \Delta ^ { - 1 / 2 } = \Delta ^ { 1 / 2 } J$ ; confidence 0.984
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029093.png ; $\operatorname { dim } A = d$ ; confidence 0.984
  
174. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200119.png ; $0 = | z _ { 1 } - 1 | \leq \ldots \leq | z _ { n } - 1 |$ ; confidence 0.558
+
174. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280151.png ; $\omega ( \zeta ) \in C ( \partial D _ { m } )$ ; confidence 0.984
  
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200199.png ; $\geq | z _ { k } + 1 | \geq \ldots \geq | z _ { n } |$ ; confidence 0.741
+
175. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z1300702.png ; $\pm \zeta ^ { 2 }$ ; confidence 0.984
  
176. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900192.png ; $A = \int \oplus _ { A ( \zeta ) d \mu ( \zeta ) }$ ; confidence 0.421
+
176. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008060.png ; $T \in C ^ { * } ( G )$ ; confidence 0.984
  
177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006016.png ; $D _ { g , n } = \overline { M _ { g , n } } - M _ { g , n }$ ; confidence 0.883
+
177. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070116.png ; $f ( x ) = L F : = \int _ { T } F ( t ) \overline { h ( t , x ) } d m ( t ).$ ; confidence 0.984
  
178. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005036.png ; $A \subset \{ x ^ { 1 } , \ldots , x _ { n } \} ^ { 2 }$ ; confidence 0.211
+
178. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090196.png ; $g _ { \chi } ( T )$ ; confidence 0.984
  
179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005015.png ; $A _ { i } = A _ { . } e _ { i } = R _ { . e } \oplus N _ { i }$ ; confidence 0.079
+
179. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230106.png ; $\Omega ( M )$ ; confidence 0.984
  
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005059.png ; $f : R ^ { \mathfrak { W } } \rightarrow R ^ { k }$ ; confidence 0.351
+
180. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201602.png ; $\Omega G = \{ \gamma : S ^ { 1 } \rightarrow G : \gamma ( 1 ) = 1 \}$ ; confidence 0.984
  
181. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005018.png ; $F W = F ^ { 2 ( k + 1 ) } W ( G , K ) \subseteq W ( G , K )$ ; confidence 0.926
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174024.png ; $n \geq 2$ ; confidence 0.984
  
182. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007017.png ; $\rho ( h _ { i } ) = \frac { 1 } { 2 } \alpha _ { i l }$ ; confidence 0.262
+
182. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130110.png ; $\mu _ { 2 } = \gamma$ ; confidence 0.984
  
183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201008.png ; $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.905
+
183. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006068.png ; $e ^ { - i z t }$ ; confidence 0.984
  
184. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013021.png ; $\sigma _ { ess } ( - \Delta + V ) = [ 0 , \infty )$ ; confidence 0.817
+
184. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s1306202.png ; $- y ^ { \prime \prime } + q ( x ) y = \lambda y,$ ; confidence 0.984
  
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018074.png ; $| t | = \sqrt { \sum _ { k = 1 } ^ { N } t _ { k } ^ { 2 } }$ ; confidence 0.995
+
185. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070262.png ; $V = \nu _ { 1 } V _ { 1 } - \mathfrak { D } _ { 1 }$ ; confidence 0.984
  
186. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017026.png ; $\{ x _ { s } ^ { ( l ) } : s \leq t , i = 1 , \dots , n \}$ ; confidence 0.320
+
186. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008067.png ; $L _ { \infty } ( G )$ ; confidence 0.984
  
187. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010141.png ; $= R ( y , z ) _ { 23 } R ( x , z ) _ { 13 } R ( x , y ) _ { 12 }$ ; confidence 0.995
+
187. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005012.png ; $S ( t ) : = \int _ { 0 } ^ { t } w ( s ) d s < \infty.$ ; confidence 0.984
  
188. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010140.png ; $R ( x , y ) _ { 12 } R ( x , z ) _ { 13 } R ( y , z ) _ { 23 } =$ ; confidence 0.970
+
188. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007084.png ; $i \xi A$ ; confidence 0.984
  
189. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002014.png ; $L ( A ) = \int _ { M } \{ F _ { A } \wedge * F _ { A } \}$ ; confidence 0.346
+
189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015027.png ; $| \eta |$ ; confidence 0.984
  
190. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004020.png ; $\operatorname { inf } _ { \nu \in A } T ( \nu )$ ; confidence 0.935
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030022.png ; $\Omega X$ ; confidence 0.984
  
191. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001075.png ; $\{ ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.442
+
191. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017059.png ; $\operatorname { det } \Sigma = \operatorname { exp } \left\{ ( 2 \pi ) ^ { - 1 } \int _ { - \pi } ^ { \pi } \operatorname { log } \operatorname { det } 2 \pi f ( \lambda ) d \lambda \right\}.$ ; confidence 0.984
  
192. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003032.png ; $| f ( t ) | \leq C ( 1 + | t | ) ^ { - ( 1 + \epsilon ) }$ ; confidence 0.959
+
192. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090110.png ; $\nu _ { p } ( K / k )$ ; confidence 0.984
  
193. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011031.png ; $k f ( k , n ) \approx \mu _ { n } , k = 1,2 , \ldots$ ; confidence 0.567
+
193. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110050/o11005097.png ; $60$ ; confidence 0.984
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090990/s09099047.png ; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.828
+
194. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009071.png ; $a _ { i } \in ( \pi )$ ; confidence 0.984
  
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png ; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987
+
195. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005063.png ; $| \alpha | = | \beta | \Rightarrow \frac { | h ( \alpha ) | } { | h ( \beta ) | } \leq M.$ ; confidence 0.984
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
+
196. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050151.png ; $K ( A , \mathcal{X} )$ ; confidence 0.984
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
+
197. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040155.png ; $L = L _ { 2 }$ ; confidence 0.984
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a1200307.png ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I$ ; confidence 0.571
+
198. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008051.png ; $I ( k )$ ; confidence 0.984
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040606.png ; $\mathfrak { M } \vDash _ { S } _ { P } \varphi$ ; confidence 0.563
+
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001010.png ; $\frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } \partial x _ { 2 } ^ { \prime } } - \frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } \partial x _ { 1 } ^ { \prime } } = 0$ ; confidence 0.984
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040147.png ; $\square \varphi \rightarrow \psi \in T$ ; confidence 0.990
+
200. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200809.png ; $\rho _ { p } = \lambda _ { p } b _ { p }$ ; confidence 0.984
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040148.png ; $\square \psi \rightarrow \varphi \in T$ ; confidence 0.958
+
201. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004032.png ; $\Delta ( G ) \geq 8$ ; confidence 0.984
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( R ; X ) \}$ ; confidence 0.781
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031061.png ; $G _ { \delta } [ f _ { S } ^ { + } ( x _ { 0 } ) - f _ { S } ^ { - } ( x _ { 0 } ) ]$ ; confidence 0.984
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200804.png ; $( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.998
+
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006046.png ; $0 \leq t _ { 1 } \leq t _ { k } \leq T$ ; confidence 0.984
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070136.png ; $2 - 10 ^ { - 12 } < \sigma ( n ) / n < 2 + 10 ^ { - 12 }$ ; confidence 0.995
+
204. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011025.png ; $\gamma _ { i } ^ { 2 } = 1 , i = 1,2,3,4,$ ; confidence 0.984
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030039.png ; $\operatorname { deg } \alpha _ { i } = 2 i - 1$ ; confidence 0.933
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025021.png ; $[D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - D _ { 2 } D _ { 1 } \in \mathcal{D}$ ; confidence 0.984
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945
+
206. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n12001011.png ; $\pi ( \nu )$ ; confidence 0.984
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953
+
207. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020169.png ; $C [ X , \mathbf{R} ]$ ; confidence 0.984
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015040.png ; $( g ) Y = g Y g ^ { - 1 } , ( \text { ad } X ) Y = X Y - Y X$ ; confidence 0.890
+
208. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019021.png ; $F ( \tau ) = \int _ { 1 } ^ { \infty } P _ { i \tau - 1 / 2 } ( x ) f ( x ) d x$ ; confidence 0.984
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015024.png ; $( ad X ) ( Y ) = [ X , Y ] , X , Y \in \mathfrak { g }$ ; confidence 0.346
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200609.png ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } - i \frac { \partial } { \partial y } \right) , \frac { \partial } { \partial \overline{z} } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } \right),$ ; confidence 0.984
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017049.png ; $\beta ( \alpha , x ) = \beta _ { 0 } ( \alpha )$ ; confidence 0.962
+
210. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011025.png ; $F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.984
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018032.png ; $S _ { n + i } = T _ { n } + \alpha \lambda ^ { n + i }$ ; confidence 0.715
+
211. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200221.png ; $\operatorname {max}_{j} | z _ { j } | = 1$ ; confidence 0.984
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180128.png ; $c _ { i } ( R ) = \pi _ { i } ^ { - 1 } \pi _ { i } ( ( R ) )$ ; confidence 0.727
+
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022028.png ; $\operatorname { spec } ( M , \Delta ) = \operatorname { spec } ( M ^ { \prime } , \Delta ^ { \prime } )$ ; confidence 0.984
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201006.png ; $\frac { d } { d t } F ( t ) = - L F ( t ) + [ L , A ] F ( t )$ ; confidence 0.979
+
213. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000102.png ; $f ( k + 1 , x ) = f ( k , x ) + x$ ; confidence 0.984
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210140.png ; $\mathfrak { w } _ { 1 } , w _ { 2 } \in \{ \pm 1 \}$ ; confidence 0.860
+
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006063.png ; $\operatorname { Re } W ( z ) > 0$ ; confidence 0.984
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066011.png ; $f _ { Q } = \frac { 1 } { | Q | } \int _ { Q } f ( t ) d t$ ; confidence 0.938
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027012.png ; $\Omega _ { p } \subset T _ { p } M$ ; confidence 0.984
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007065.png ; $\langle a ^ { k } b a ^ { - k } | k \geq 1 \rangle$ ; confidence 0.532
+
216. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190146.png ; $g ( f ( a ) , f ( b ) )$ ; confidence 0.984
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009044.png ; $- \frac { 1 + \alpha ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052060.png ; $1 + v ^ { T } B ^ { - 1 } u \neq 0$ ; confidence 0.983
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150140.png ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562
+
218. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045012.png ; $T = \sum _ { t } t ( t ^ { 2 } - 1 ) / 12$ ; confidence 0.983
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015041.png ; $E _ { P } ( d _ { 1 } ^ { * } ) = E _ { P } ( d _ { 2 } ^ { * } )$ ; confidence 0.690
+
219. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100157.png ; $u \in A _ { p } ( G )$ ; confidence 0.983
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015021.png ; $( x _ { 1 } , \dots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010064.png ; $\int _ { \Omega } u \Delta u d x = \int _ { \partial \Omega } u \frac { \partial u } { \partial \eta } d \sigma - \int _ { \Omega } | \operatorname { grad } u | ^ { 2 } d x,$ ; confidence 0.983
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020047.png ; $H ( \theta ) = H ^ { 2 } \ominus \theta H ^ { 2 }$ ; confidence 0.964
+
221. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012034.png ; $6$ ; confidence 0.983
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016044.png ; $f | _ { K } \in A | _ { K } : = \{ f | _ { K } : f \in A \}$ ; confidence 0.929
+
222. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002093.png ; $C _ { X , Y }$ ; confidence 0.983
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017027.png ; $V _ { t } = \phi _ { t } S _ { t } + \psi _ { t } B _ { t }$ ; confidence 0.975
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025029.png ; $L ( V )$ ; confidence 0.983
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027012.png ; $A ( t ) = t - S _ { N } ( t ) , R ( t ) = S _ { N ( t ) + 1 } - t$ ; confidence 0.160
+
224. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003053.png ; $L ( N , g )$ ; confidence 0.983
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027068.png ; $R ^ { + } \equiv [ 0 , \infty ) \rightarrow R$ ; confidence 0.997
+
225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010061.png ; $j ( z ) = q ^ { - 1 } + 744 + 196884 q + 21493760 q ^ { 2 } +\dots .$ ; confidence 0.983
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027071.png ; $\alpha ( t ) = \int _ { ( 0 , t ] } b ( t - s ) U ( d s )$ ; confidence 0.465
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b01692064.png ; $2 ^ { n }$ ; confidence 0.983
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031089.png ; $R S _ { R } ^ { ( n - 1 ) / 2 } f ( x _ { 0 } ) = f ( x _ { 0 } )$ ; confidence 0.855
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026091.png ; $0 \notin f ( \partial \Omega )$ ; confidence 0.983
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203407.png ; $\sum _ { \alpha } c _ { \alpha } z ^ { \alpha }$ ; confidence 0.969
+
228. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015040.png ; $( H , Q )$ ; confidence 0.983
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203403.png ; $\sum _ { k = 0 } ^ { \infty } | c _ { k } z ^ { k } | < 1$ ; confidence 0.841
+
229. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300901.png ; $0 = \left[ - \left( \frac { \partial } { \partial t } - i \frac { q e } { \hbar } \phi \right) ^ { 2 } + \right.$ ; confidence 0.983
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019076.png ; $\zeta ( \frac { 1 } { 2 } + i t ) \ll t ^ { \beta }$ ; confidence 0.941
+
230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011048.png ; $\{ f _ { i n } \} _ { i = 1 } ^ { N }$ ; confidence 0.983
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037057.png ; $\operatorname { log } ( L _ { \Omega } ( f ) )$ ; confidence 0.996
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340190.png ; $u _ { 1 } \cup u _ { 2 } \cup \sigma : D ^ { 2 } \rightarrow M$ ; confidence 0.983
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020084.png ; $\alpha \in Z \alpha _ { 1 } + Z \alpha _ { 2 } +$ ; confidence 0.636
+
232. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007039.png ; $\mathbf{R} \pi$ ; confidence 0.983
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040052.png ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959
+
233. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200105.png ; $R _ { 12 } = R \otimes _ { k } 1$ ; confidence 0.983
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022019.png ; $| \alpha | = \sum _ { j = 1 } ^ { N } \alpha _ { j }$ ; confidence 0.975
+
234. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300509.png ; $N ^ { 6 }$ ; confidence 0.983
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026069.png ; $\Delta \supset f ( \overline { \Omega } )$ ; confidence 0.964
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300701.png ; $\sigma ( n )$ ; confidence 0.983
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026072.png ; $\Delta \backslash f ( \partial \Omega )$ ; confidence 0.950
+
236. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006015.png ; $T ( f ) ( x , t ) = f ( x + \delta , t ) , \quad x , \delta \in \mathbf{R},$ ; confidence 0.983
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205108.png ; $x _ { + } = x _ { c } - \lambda \nabla f ( x _ { c } )$ ; confidence 0.915
+
237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009029.png ; $P ( D ) u = 0$ ; confidence 0.983
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302909.png ; $\mathfrak { q } = ( a _ { 1 } , \ldots , a _ { s } )$ ; confidence 0.290
+
238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007037.png ; $m ( x + y + x y + x ^ { 2 } y + x y ^ { 2 } ) = L ^ { \prime } ( 0 , E _ { 15 } )$ ; confidence 0.983
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290177.png ; $a _ { 1 } ^ { n _ { 1 } } , \dots , a _ { d } ^ { n _ { d } }$ ; confidence 0.519
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a1302507.png ; $\{ x y z \} + \{ y z x \} + \{ z x y \} = 0,$ ; confidence 0.983
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290219.png ; $G ( I ) = \oplus _ { n } \geq 0 I ^ { n } / I ^ { n + 1 }$ ; confidence 0.357
+
240. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015088.png ; $A + T \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.983
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205301.png ; $T : L ^ { 1 } ( \mu ) \rightarrow L ^ { p } ( \nu )$ ; confidence 0.988
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201603.png ; $Z =$ ; confidence 0.983
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030034.png ; $3 ^ { C _ { 1 } ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.109
+
242. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003032.png ; $\Gamma \backslash G ( \mathbf{R} )$ ; confidence 0.983
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010182.png ; $f \mapsto \langle a , \partial \rangle f$ ; confidence 0.724
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027011.png ; $s = \operatorname { dist } ( p , \gamma ( s ) )$ ; confidence 0.983
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004038.png ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022017.png ; $0 \leq i \leq 2 n$ ; confidence 0.983
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005016.png ; $P : H ^ { p } ( T ) \rightarrow L ^ { p } ( \mu , D )$ ; confidence 0.966
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006065.png ; $f \in C ( [ 0 , T ] ; Y )$ ; confidence 0.983
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008061.png ; $\sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } E ^ { n - i } = 0$ ; confidence 0.838
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201201.png ; $( m \times n )$ ; confidence 0.983
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070250.png ; $T \cap k ( C _ { 2 } ) = \phi ( T \cap k ( C _ { 1 } ) )$ ; confidence 0.974
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027019.png ; $\mathcal{B} ( \mathcal{H} )$ ; confidence 0.983
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015056.png ; $G ( \Omega ) = E _ { M } ( \Omega ) / N ( \Omega )$ ; confidence 0.932
+
248. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015068.png ; $V > 0 , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 ).$ ; confidence 0.983
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015048.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 }$ ; confidence 0.991
+
249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260157.png ; $b ^ { * } b = b b ^ { * }$ ; confidence 0.983
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png ; $\overline { \overline { A } } = \vec { A }$ ; confidence 0.649
+
250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200608.png ; $R_{i} \in \mathbf{R} ^ { 3 }$ ; confidence 0.983
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201704.png ; $\gamma _ { i j } = \overline { \gamma } _ { i }$ ; confidence 0.490
+
251. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290213.png ; $R = k [ R _ { 1 }]$ ; confidence 0.983
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016090.png ; $f : \Sigma ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.976
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028043.png ; $n - 1$ ; confidence 0.983
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180261.png ; $\{ \otimes ^ { * } \varepsilon , \nabla \}$ ; confidence 0.439
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615019.png ; $n = 6$ ; confidence 0.983
  
254. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180334.png ; $C ( g ) + \tau _ { 3 } C ( g ) + \tau ^ { 2 } 3 C ( g ) = 0$ ; confidence 0.908
+
254. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013029.png ; $S ( H ^ { 1 } ( W ; \mathbf{F} _ { 2 } ) )$ ; confidence 0.983
  
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202105.png ; $P _ { N } ^ { \prime } ( A _ { N } ) \rightarrow 0$ ; confidence 0.146
+
255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016053.png ; $Q ( R / P )$ ; confidence 0.983
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021069.png ; $\int \operatorname { exp } \lambda d L = 1$ ; confidence 1.000
+
256. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027016.png ; $\gamma \leq - 1 / 2$ ; confidence 0.983
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021037.png ; $P _ { M } ^ { \prime } ( A _ { m } ) \rightarrow 1$ ; confidence 0.089
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180195.png ; $S ( g ) = g ^ { - 1 } \{ 1,2 \} \operatorname { Ric } ( g ) = g ^ { - 1 } \{ 1,4 ; 2,3 \} R ( g ) \in C ^ { \infty } ( M )$ ; confidence 0.983
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021015.png ; $\alpha 3 = 4 , \alpha _ { i } + 3 = \alpha _ { i }$ ; confidence 0.312
+
258. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202011.png ; $x _ { 0 } \in \Omega$ ; confidence 0.983
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026046.png ; $\Delta V _ { j } = h ^ { - 1 } ( V _ { j } - V _ { j - 1 } )$ ; confidence 0.996
+
259. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002058.png ; $H_{-} ^ { 2 }$ ; confidence 0.983
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202906.png ; $M \rightarrow \operatorname { Aut } ( M )$ ; confidence 0.584
+
260. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190182.png ; $W ^ { \prime }$ ; confidence 0.983
  
261. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020194.png ; $\underline { y } = g ( \overline { u } _ { 1 } )$ ; confidence 0.580
+
261. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011046.png ; $\operatorname { Re } ( 4 )$ ; confidence 0.983
  
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020193.png ; $g ( \overline { u } _ { 1 } ) > \underline { x }$ ; confidence 0.895
+
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002020.png ; $u _ { 2 } = u _ { 2 } ^ { * }$ ; confidence 0.983
  
263. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302805.png ; $+ \frac { n ! } { ( n + 1 ) \ldots 2 n } a _ { n } ] = S$ ; confidence 0.453
+
263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320116.png ; $U \subset \mathbf{C} ^ { p }$ ; confidence 0.983
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029021.png ; $\alpha \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447
+
264. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105086.png ; $P ( E ) < \delta \Rightarrow \lambda ( F ( E ) ) < \epsilon ).$ ; confidence 0.983
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d1201208.png ; $G : A G \stackrel { d o m } { \rightarrow } O G$ ; confidence 0.405
+
265. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l0600307.png ; $P Q \perp A ^ { \prime } A$ ; confidence 0.983
  
266. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014022.png ; $x = u + 1 / u = 2 \operatorname { cos } \alpha$ ; confidence 0.927
+
266. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015046.png ; $\alpha > 0$ ; confidence 0.983
  
267. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201907.png ; $E ( f ) = \int _ { \Omega } | \nabla f | ^ { 2 } d x$ ; confidence 0.995
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027067.png ; $\operatorname {trace}_{E/K} ( x ^ { 2 } )$ ; confidence 0.983
  
268. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026034.png ; $P \{ \operatorname { sup } _ { t } w ( t ) < z \}$ ; confidence 0.828
+
268. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023064.png ; $f _ { t , s } = f _ { t - s }$ ; confidence 0.983
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d1202909.png ; $\sum _ { q = 1 } ^ { \infty } \varphi ( q ) f ( q )$ ; confidence 0.516
+
269. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010028.png ; $V ( x ) = \lambda W ( x )$ ; confidence 0.983
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030050.png ; $r ( x , t | x _ { 0 } , \sigma ( Y ( u ) , u \leq t ) ) =$ ; confidence 0.920
+
270. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062110/m06211054.png ; $n \leq 5$ ; confidence 0.983
  
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012060.png ; $f ( \theta ) = \int f ( \theta , \phi ) d \phi$ ; confidence 0.999
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280166.png ; $( \pi , \{ U _ { t } \} _ { t \in G } )$ ; confidence 0.983
  
272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020132.png ; $X ^ { 1 } \vee S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.916
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024048.png ; $( Z , g ) = ( \operatorname { div } ( s ) , - \operatorname { log } ( h ( s , s ) ) )$ ; confidence 0.983
  
273. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005025.png ; $h : \Omega ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.968
+
273. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014052.png ; $\Delta = \{ ( x , x ) : x \in X \}$ ; confidence 0.983
  
274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019022.png ; $\sigma ( x , y ) = x _ { 1 } y _ { 1 } + x _ { 2 } y _ { 2 }$ ; confidence 0.966
+
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png ; $l \geq 1$ ; confidence 0.983
  
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230136.png ; $\pi _ { r } ^ { k } : E ^ { k } \rightarrow E ^ { r }$ ; confidence 0.528
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024046.png ; $m \times s$ ; confidence 0.983
  
276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240122.png ; $\overline { f } = f \otimes \overline { Q }$ ; confidence 0.929
+
276. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249024.png ; $s \in \mathbf{Z}$ ; confidence 0.983
  
277. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006038.png ; $C ( Z \times _ { S } Y , X ) \cong C ( Z , C ( Y , X ) )$ ; confidence 0.387
+
277. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006019.png ; $j \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.983
  
278. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007073.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \ll$ ; confidence 0.722
+
278. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110273.png ; $\{ | x | < 1 , | x | | \xi | > 1 \}$ ; confidence 0.983
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002016.png ; $\sum _ { \gamma = 0 } ^ { \infty } ( Q - 1 ) ^ { n }$ ; confidence 0.075
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700072.png ; $X \equiv W W$ ; confidence 0.983
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100116.png ; $f \mapsto ( \hat { f } \circ \varepsilon )$ ; confidence 0.891
+
280. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158019.png ; $m \times m$ ; confidence 0.983
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110108.png ; $H _ { K } ^ { X } ( D ^ { X } + i R ^ { X } , \tilde { O } )$ ; confidence 0.188
+
281. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301905.png ; $M _ { 1 } , M _ { 2 } \in [ M , 2 M ]$ ; confidence 0.983
  
282. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110130.png ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793
+
282. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001067.png ; $\operatorname { ln } ^ { 2 } N$ ; confidence 0.983
  
283. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016013.png ; $\mathfrak { A } = ( A , f _ { \mathfrak { A } } )$ ; confidence 0.921
+
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026015.png ; $L _ { \mu } ( \theta )$ ; confidence 0.983
  
284. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023061.png ; $[ K , L ] \wedge = i _ { K } L - ( - 1 ) ^ { k } i _ { L } K$ ; confidence 0.612
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040773.png ; $\mathfrak{N} \in \operatorname {Mod}_{\mathcal{S}_{P \cup R}} ( \Sigma ( P , R ) )$ ; confidence 0.983
  
285. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024063.png ; $\dot { x } ( t ) = f ( t , x _ { t } , \dot { x } _ { t } )$ ; confidence 0.956
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001014.png ; $u ^ { \prime } ( x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } )$ ; confidence 0.983
  
286. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290146.png ; $( f , \phi ) \rightarrow \dashv ( f , \phi )$ ; confidence 0.481
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005060.png ; $E \in \mathcal{Z}$ ; confidence 0.983
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001054.png ; $\operatorname { Tr } _ { E / F } ( \omega ) = a$ ; confidence 0.667
+
287. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130109.png ; $\frac { d L } { d t } = \gamma L ( F - \xi ) , \quad \xi = \frac { \nu } { \gamma },$ ; confidence 0.983
  
288. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003060.png ; $A ( \Omega ) = B / I 0 , \operatorname { loc }$ ; confidence 0.350
+
288. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002047.png ; $\mathcal{M} ( \mathbf{R} )$ ; confidence 0.983
  
289. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003036.png ; $( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.991
+
289. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601030.png ; $n \geq 6$ ; confidence 0.983
  
290. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003037.png ; $( v _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.992
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012055.png ; $1 / f \in \mathcal{A} ^ { * }$ ; confidence 0.983
  
291. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040129.png ; $M ( S ) = \int \theta ( x ) d H ^ { m } \| _ { R ( x ) }$ ; confidence 0.219
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303602.png ; $\mathbf{R} ^ { 1 } = ( - \infty , \infty )$ ; confidence 0.983
  
292. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040176.png ; $\mu ( B ) = \| \mu \| \{ x : ( x , T _ { x } ) \in B \}$ ; confidence 0.806
+
292. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001020.png ; $\varepsilon \ll 1$ ; confidence 0.983
  
293. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040162.png ; $\int f d \nu _ { i } \rightarrow \int f d \nu$ ; confidence 0.982
+
293. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003024.png ; $\beta _ { \mu }$ ; confidence 0.983
  
294. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010110.png ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012016.png ; $x = A v \text { and } y = B v.$ ; confidence 0.983
  
295. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300208.png ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { x } ^ { l } )$ ; confidence 0.569
+
295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150119.png ; $F ( x _ { 0 } ) = y _ { 0 }$ ; confidence 0.983
  
296. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300205.png ; $\{ w ^ { 1 } , \dots , w ^ { q } \} \subset A ^ { x }$ ; confidence 0.210
+
296. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140106.png ; $\lambda \notin \phi ( \mathbf{T} )$ ; confidence 0.983
  
297. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003059.png ; $r ( z ) = \sum _ { i = 1 } ^ { 2 n - 1 } s _ { i } z ^ { - i }$ ; confidence 0.992
+
297. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300801.png ; $A _ { 1 } A _ { 2 } A _ { 3 }$ ; confidence 0.983
  
298. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002082.png ; $H _ { \phi } = \operatorname { deg } P - \phi$ ; confidence 0.805
+
298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027080.png ; $K K ^ { 1 } ( A , B )$ ; confidence 0.983
  
299. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002069.png ; $\| \phi - f \| _ { L } \infty = \| H _ { \phi } \|$ ; confidence 0.947
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201007.png ; $y ^ { \prime } ( t ) = - A y ( t )$ ; confidence 0.983
  
300. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005052.png ; $\phi _ { x x } = [ u ( x ) - k ^ { 2 } \rho ( x ) ] \phi$ ; confidence 0.537
+
300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031056.png ; $n ^ { - 1 / 2 }$ ; confidence 0.983

Latest revision as of 18:14, 22 April 2020

List

1. b01587013.png ; $G _ { \alpha } ( x )$ ; confidence 0.985

2. b120040142.png ; $x \in L ^ { 0 } ( \mu )$ ; confidence 0.985

3. w12011030.png ; $\mathcal{H} ( u , v ) ( x , \xi ) =$ ; confidence 0.985

4. j130040109.png ; $z ( ( ( v ^ { - 1 } - v ) / z ) ^ { 2 } - 1 )$ ; confidence 0.985

5. m12013020.png ; $0 < b \leq 1$ ; confidence 0.985

6. v13005083.png ; $[ L ( m ) , L ( n ) ] =$ ; confidence 0.985

7. l13006040.png ; $W _ { k } ^ { * } = 1 / D _ { k } ^ { * }$ ; confidence 0.985

8. b12022068.png ; $f ( \xi ) \in D _ { \xi }$ ; confidence 0.985

9. b12016047.png ; $x _ { 3 } ^ { \prime } = p _ { 2 } q _ { 1 } , x _ { 4 } ^ { \prime } = p _ { 2 } q _ { 2 }$ ; confidence 0.985

10. t12015012.png ; $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$ ; confidence 0.985

11. e12007049.png ; $= ( c z + d ) ^ { - k - 2 } F ^ { ( k + 1 ) } ( M z ),$ ; confidence 0.985

12. l0596101.png ; $w _ { N } ( p , q ; t )$ ; confidence 0.985

13. a01419048.png ; $K \subset \Omega$ ; confidence 0.985

14. l12001040.png ; $T = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { 0 } \\ { 1 } & { - 1 } & { 0 } & { 1 } \end{array} \right)$ ; confidence 0.985

15. b11002014.png ; $U \equiv V$ ; confidence 0.985

16. i120080133.png ; $J _ { 1 } > 0$ ; confidence 0.985

17. c12026068.png ; $u _ { t } = \mathcal{F} ( t , u ) , 0 < t , u ( x , 0 ) = u ^ { 0 } ( x ),$ ; confidence 0.985

18. p12011019.png ; $( 10 )$ ; confidence 0.985

19. s1202006.png ; $\sum _ { i } \lambda _ { i } = n$ ; confidence 0.985

20. d12026038.png ; $\pm 1 / 2$ ; confidence 0.985

21. b120150151.png ; $p _ { i } \neq 1 / 2$ ; confidence 0.985

22. c1302609.png ; $\{ \phi _ { j } \in \mathcal{D} \}$ ; confidence 0.985

23. t120200166.png ; $G _ { 2 } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } \phi ( z _ { j } ) z _ { j } ^ { k }$ ; confidence 0.985

24. n12010024.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.985

25. b1200208.png ; $\beta _ { n } ( t ) = n ^ { 1 / 2 } \left( \Gamma _ { n } ^ { - 1 } ( t ) - t \right) , \quad 0 \leq t \leq 1,$ ; confidence 0.985

26. a130240545.png ; $\Sigma$ ; confidence 0.985

27. a130050246.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.985

28. b12051029.png ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0.$ ; confidence 0.985

29. e12010055.png ; $\mathbf{E} ^ { \prime } = 0$ ; confidence 0.985

30. i13005080.png ; $s > - \infty$ ; confidence 0.985

31. k05570017.png ; $A _ { t } ^ { * }$ ; confidence 0.985

32. b0175706.png ; $\Delta t$ ; confidence 0.985

33. a130040221.png ; $E ( x , y ) = \{ \epsilon _ { i } ( x , y ) : i \in I \}$ ; confidence 0.985

34. f13001012.png ; $R = \mathbf{F} _ { q } [ x ] / ( f )$ ; confidence 0.985

35. s0833606.png ; $J _ { n } = \frac { z ^ { n } } { 2 ^ { \pi + 1 } \pi i } \int _ { - \infty } ^ { ( 0 + ) } t ^ { - n - 1 } \operatorname { exp } \left( t - \frac { z ^ { 2 } } { 4 t } \right) d t.$ ; confidence 0.985

36. b12004026.png ; $( \Omega , \Sigma , \mu )$ ; confidence 0.985

37. m1302002.png ; $( M , P )$ ; confidence 0.985

38. w13009080.png ; $( C ^ { \prime } , C )$ ; confidence 0.985

39. v12003034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { E } f _ { n } d \mu = \nu ( E )$ ; confidence 0.985

40. s120340201.png ; $( H _ { 3 } , J )$ ; confidence 0.985

41. n067520302.png ; $\mathcal{L} ^ { 2 } = \sum \oplus \mathcal{L} _ { \rho _ { \alpha } } ^ { 2 }$ ; confidence 0.985

42. t12015037.png ; $\eta \in \mathcal{D} ( S ^ { * } )$ ; confidence 0.985

43. s130510145.png ; $L _ { 1 } , L _ { 2 } \neq \mathbf{Z} ^ { 0 }$ ; confidence 0.985

44. s12025043.png ; $( a , b ) = ( 0 , \infty )$ ; confidence 0.985

45. p0754809.png ; $( p \supset q ) \supset ( ( p \supset \neg q ) \supset \neg p )$ ; confidence 0.985

46. f12016041.png ; $\lambda \in G$ ; confidence 0.985

47. a13004017.png ; $\Gamma , \Delta \subseteq \operatorname{Fm}$ ; confidence 0.985

48. c0210502.png ; $n = \operatorname { dim } X$ ; confidence 0.985

49. m1202409.png ; $\psi [ 1 ] = \psi - \frac { \varphi \Omega ( \varphi , \psi ) } { \Omega ( \varphi , \varphi ) },$ ; confidence 0.985

50. s08602013.png ; $\Phi ( z ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - z } , \quad z \notin \Gamma,$ ; confidence 0.985

51. s13041018.png ; $\mu _ { 0 } = \mu _ { 1 } =$ ; confidence 0.985

52. q12005022.png ; $d ^ { k } = - H _ { k } D ^ { T } f ( x ^ { k } )$ ; confidence 0.985

53. d12018040.png ; $H ^ { p } ( m )$ ; confidence 0.985

54. m11011034.png ; $| x | > 1$ ; confidence 0.985

55. l120090109.png ; $A = T ^ { * } M$ ; confidence 0.985

56. b12044067.png ; $T _ { H } ^ { G } : B ^ { H } \rightarrow B ^ { G }$ ; confidence 0.985

57. k12006030.png ; $h ^ { 1 } ( L )$ ; confidence 0.985

58. a130240202.png ; $q \times m$ ; confidence 0.985

59. b130020108.png ; $x \circ ( y \circ x ^ { 2 } ) = ( x \circ y ) \circ x ^ { 2 }$ ; confidence 0.985

60. d12030034.png ; $d Z ( t ) = g ( t , Z ( t ) ) d \tilde { B } ( t )$ ; confidence 0.985

61. w130080115.png ; $d E$ ; confidence 0.985

62. c130160108.png ; $f ( w ) \notin B$ ; confidence 0.985

63. c11032078.png ; $h \in H ^ { \infty }$ ; confidence 0.985

64. f13016032.png ; $k + n$ ; confidence 0.985

65. a120280158.png ; $\{ \alpha _ { t } \} _ { t \in G }$ ; confidence 0.985

66. q12001046.png ; $( \theta f ) ( s ) : = f ( - s )$ ; confidence 0.985

67. f12023060.png ; $L \in \Omega ^ { \text{l} + 1 } ( M , T M )$ ; confidence 0.985

68. r130070149.png ; $( f , g ) _ { H } = ( L F , L G ) _ { H } =$ ; confidence 0.985

69. o130010149.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.985

70. i13006097.png ; $q ( x ) = A ^ { 2 } ( x ) + A ^ { \prime } ( x )$ ; confidence 0.985

71. n067520445.png ; $f ( V )$ ; confidence 0.985

72. f13021049.png ; $A ( G _ { 1 } )$ ; confidence 0.985

73. l13006058.png ; $m = 2 ^ { E }$ ; confidence 0.985

74. a13029025.png ; $u ( 1 , t ) \in L _ { 1 }$ ; confidence 0.985

75. b12005036.png ; $\{ f \in \mathcal{H} ^ { \infty } ( B _ { E } ) : f \ \text { uniformly continuous on } B _ { E } \}.$ ; confidence 0.985

76. d03027031.png ; $V _ { n , p } ( f , x ) =$ ; confidence 0.985

77. b1205307.png ; $T : L \rightarrow M$ ; confidence 0.985

78. o13001038.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } . \alpha , k )$ ; confidence 0.985

79. d03029024.png ; $g ( x _ { i } ) = ( - 1 ) ^ { i } \| g \|$ ; confidence 0.985

80. l11004046.png ; $F _ { \mathcal{X} } ( T ) \in \mathcal{X}$ ; confidence 0.985

81. i13009075.png ; $( \pi , T )$ ; confidence 0.985

82. p12011010.png ; $| C ( 30 ) | = 845480228069$ ; confidence 0.985

83. q12008032.png ; $\sigma _ { p } = \sum _ { k = 1 } ^ { p } \rho _ { p }$ ; confidence 0.985

84. d12030049.png ; $\sigma ( Y ( u ) , u \leq t )$ ; confidence 0.985

85. o13005038.png ; $T ^ { * } \subset \mathcal{A} ^ { * }$ ; confidence 0.985

86. w12006014.png ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( M , \mathbf{R} ) , A )$ ; confidence 0.985

87. w12006088.png ; $T T _ { A } \rightarrow T T _ { A }$ ; confidence 0.985

88. s1203004.png ; $\operatorname{Map}( B _ { G } , X )$ ; confidence 0.985

89. v1200303.png ; $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.985

90. c1200201.png ; $f \in L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.985

91. a130040278.png ; $\Gamma \cup \{ \varphi , \psi \} \subseteq \operatorname{Fm}$ ; confidence 0.985

92. b120040150.png ; $( X _ { 0 } ^ { 1 - \theta } X _ { 1 } ^ { \theta } ) ^ { \prime } = ( X _ { 0 } ^ { \prime } ) ^ { 1 - \theta } ( X _ { 1 } ^ { \prime } ) ^ { \theta }$ ; confidence 0.985

93. c13015070.png ; $\mathcal{G} ^ { \infty } ( \Omega ) \cap \mathcal{D} ^ { \prime } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.985

94. h04690014.png ; $\delta _ { 2 }$ ; confidence 0.985

95. f12002048.png ; $K ( ( X ) )$ ; confidence 0.985

96. i13005050.png ; $\int _ { - \infty } ^ { \infty } | g ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { - } ) ^ { - 2 }.$ ; confidence 0.985

97. h12012085.png ; $\phi _ { \infty }$ ; confidence 0.985

98. d130080101.png ; $E _ { z _ { 0 } } ( x , R ) = F _ { z _ { 0 } } ( x , R )$ ; confidence 0.985

99. z13003027.png ; $( Z f ) ( t , w ) = ( 2 \gamma ) ^ { 1 / 4 } e ^ { - \pi \gamma t ^ { 2 } } \theta _ { 3 } ( w - i \gamma t , e ^ { - \pi \gamma } ),$ ; confidence 0.985

100. b12031057.png ; $M _ { R } f ( x )$ ; confidence 0.985

101. l120090124.png ; $d _ { A } *$ ; confidence 0.985

102. s13050018.png ; $\mathcal{A} : = \mathcal{F} _ { l }$ ; confidence 0.985

103. t0940805.png ; $A \cup B = X$ ; confidence 0.985

104. a13023031.png ; $\| f _ { \text{l} } - P f \| \rightarrow 0$ ; confidence 0.984

105. a1300705.png ; $\sigma ( n ) < 2 n$ ; confidence 0.984

106. d12013028.png ; $H ^ { * } ( W ; \mathbf{F} _ { 2 } )$ ; confidence 0.984

107. m13025088.png ; $\mathcal{M} _ { 3 }$ ; confidence 0.984

108. e120260131.png ; $( v , p ) \in E \times \mathbf{R}$ ; confidence 0.984

109. s12023079.png ; $X : = A U,$ ; confidence 0.984

110. d13006011.png ; $m : 2 ^ { \Xi } \rightarrow [ 0,1 ]$ ; confidence 0.984

111. z13010095.png ; $( R \in R \leftrightarrow ( \neg R \in R ) )$ ; confidence 0.984

112. a110680209.png ; $n \geq 4$ ; confidence 0.984

113. g12003023.png ; $\alpha _ { \nu }$ ; confidence 0.984

114. l057000184.png ; $f ( d ) = \cup \{ f ( \beta ) : \beta \subseteq d , \beta \ \Box \text{finite} \}$ ; confidence 0.984

115. f1301705.png ; $u \in A _ { 2 } ( G )$ ; confidence 0.984

116. d12006019.png ; $H ^ { ( 0 ) } = - D ^ { 2 } + u = Q ^ { - } Q ^ { + };$ ; confidence 0.984

117. p120170100.png ; $\mathcal{A}$ ; confidence 0.984

118. m12011029.png ; $X = t ( h )$ ; confidence 0.984

119. a0124507.png ; $\mathbf{R} ^ { 4 }$ ; confidence 0.984

120. t12006010.png ; $\mathcal{E} ( \rho ) : =$ ; confidence 0.984

121. t120060144.png ; $B \sim Z ^ { 3 }$ ; confidence 0.984

122. y12001021.png ; $B _ { 12 } B _ { 23 } B _ { 12 } = B _ { 23 } B _ { 12 } B _ { 23 }.$ ; confidence 0.984

123. f12004034.png ; $( \overline { \mathbf{R} } , \leq )$ ; confidence 0.984

124. g04337012.png ; $f _ { G } ^ { \prime } ( x _ { 0 } )$ ; confidence 0.984

125. c02211025.png ; $x _ { k } = + \infty$ ; confidence 0.984

126. b13027093.png ; $C ( X ) \otimes \mathcal{K} ( H )$ ; confidence 0.984

127. f12021075.png ; $1 \leq j \leq \nu$ ; confidence 0.984

128. n067520282.png ; $\mathcal{L} _ { \rho } ^ { 2 }$ ; confidence 0.984

129. a130240342.png ; $\mathbf{Y} , \mathbf{B} , \mathbf{E}$ ; confidence 0.984

130. z12001071.png ; $O _ { 1 } ( m ),$ ; confidence 0.984

131. f040820114.png ; $f ( Z )$ ; confidence 0.984

132. h120120146.png ; $H ( Y )$ ; confidence 0.984

133. h13006056.png ; $R _ { 0 } ( X , D )$ ; confidence 0.984

134. w130080189.png ; $\omega = \omega ^ { 0 } - ( 1 / \kappa ) \sum \delta H _ { \alpha } \delta t _ { \alpha }$ ; confidence 0.984

135. a13029043.png ; $\mathcal{L} _ { 1 } \subset \mathcal{M} ( P )$ ; confidence 0.984

136. m12027013.png ; $w \in C ^ { ( 1 ) } ( \partial D )$ ; confidence 0.984

137. c11002039.png ; $b \geq 0$ ; confidence 0.984

138. l1201706.png ; $C W$ ; confidence 0.984

139. m13013051.png ; $\tau ( K _ { \nu } ) = \nu ^ { \nu - 2 }$ ; confidence 0.984

140. p12011030.png ; $\overset{\rightharpoonup}{ G }$ ; confidence 0.984

141. b12017039.png ; $| \xi | ^ { - \alpha }$ ; confidence 0.984

142. n067520221.png ; $A \rightarrow C ^ { - 1 } A C$ ; confidence 0.984

143. a01138019.png ; $x = 1$ ; confidence 0.984

144. p11015076.png ; $\varphi = \tau \psi$ ; confidence 0.984

145. a12012064.png ; $\lambda ^ { * } = \lambda ( x ^ { * } , y ^ { * } )$ ; confidence 0.984

146. n06752059.png ; $\Delta j > 0$ ; confidence 0.984

147. p13007083.png ; $C ( E , \Omega ) = \operatorname { sup } \{ C ( K ) : K \subset \Omega \}.$ ; confidence 0.984

148. t12006018.png ; $\int _ { \mathbf{R} ^ { 3 } } \rho = N$ ; confidence 0.984

149. t12015072.png ; $J \mathcal{L} ( \mathcal{A} ) J = \mathcal{L} ( \mathcal{A} ) ^ { \prime }$ ; confidence 0.984

150. i13005048.png ; $- f ^ { \prime \prime } ( x , i k _ { j } ) + q ( x ) f ( x , i k _ { j } ) + k ^ { 2 _ j } f ( x , i k _ { j } ) = 0,$ ; confidence 0.984

151. t13011029.png ; $\operatorname { mod} B$ ; confidence 0.984

152. a12023010.png ; $Z _ { n , n - 1 } ^ { \infty } ( \overline { D } )$ ; confidence 0.984

153. k13006059.png ; $| \Delta ( \mathcal{F} ) | \geq \left( \begin{array} { c } { x } \\ { k - 1 } \end{array} \right).$ ; confidence 0.984

154. s1304503.png ; $R _ { i } = \operatorname { rank } ( x _ { i } )$ ; confidence 0.984

155. f04049023.png ; $\nu _ { 1 } = m$ ; confidence 0.984

156. w130080144.png ; $F B ( \Sigma _ { g } , G )$ ; confidence 0.984

157. l1300408.png ; $[ x y z ] + [ y z x ] + [ z x y ] = 0,$ ; confidence 0.984

158. c13016024.png ; $\phi \equiv ( x _ { 1 } \vee x _ { 2 } ) \wedge ( \overline { x _ { 2 } } \vee \overline { x _ { 3 } } ) \wedge ( \overline { x _ { 1 } } \vee x _ { 3 } )$ ; confidence 0.984

159. f13010084.png ; $P M _ { p } ( G )$ ; confidence 0.984

160. s12017078.png ; $| F ( A , d ) | \geq k$ ; confidence 0.984

161. z12001074.png ; $x ^ { ( i ) }$ ; confidence 0.984

162. a12022039.png ; $S < T$ ; confidence 0.984

163. a13004089.png ; $\operatorname {Mod} \mathcal{D}$ ; confidence 0.984

164. e13003029.png ; $K _ { \infty }$ ; confidence 0.984

165. a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984

166. t120200179.png ; $\operatorname {max}_{r}\operatorname { Re } G _ { 1 } ( r ) \geq B$ ; confidence 0.984

167. t12015032.png ; $S ^ { * } = J \Delta ^ { - 1 / 2 } = \Delta ^ { 1 / 2 } J$ ; confidence 0.984

168. b015400100.png ; $\Psi _ { 1 }$ ; confidence 0.984

169. r13007047.png ; $= c \sum _ { j = 1 } ^ { \infty } ( A \varphi _ { j } , \varphi _ { j } ) _ { 0 } = c \Lambda ^ { 2 } < \infty.$ ; confidence 0.984

170. a0137505.png ; $x \rightarrow \infty$ ; confidence 0.984

171. q120070108.png ; $\epsilon g = 1$ ; confidence 0.984

172. o13004016.png ; $L ( \dot { x } , x )$ ; confidence 0.984

173. b13029093.png ; $\operatorname { dim } A = d$ ; confidence 0.984

174. d120280151.png ; $\omega ( \zeta ) \in C ( \partial D _ { m } )$ ; confidence 0.984

175. z1300702.png ; $\pm \zeta ^ { 2 }$ ; confidence 0.984

176. f12008060.png ; $T \in C ^ { * } ( G )$ ; confidence 0.984

177. r130070116.png ; $f ( x ) = L F : = \int _ { T } F ( t ) \overline { h ( t , x ) } d m ( t ).$ ; confidence 0.984

178. i130090196.png ; $g _ { \chi } ( T )$ ; confidence 0.984

179. f120230106.png ; $\Omega ( M )$ ; confidence 0.984

180. l1201602.png ; $\Omega G = \{ \gamma : S ^ { 1 } \rightarrow G : \gamma ( 1 ) = 1 \}$ ; confidence 0.984

181. a01174024.png ; $n \geq 2$ ; confidence 0.984

182. m120130110.png ; $\mu _ { 2 } = \gamma$ ; confidence 0.984

183. l12006068.png ; $e ^ { - i z t }$ ; confidence 0.984

184. s1306202.png ; $- y ^ { \prime \prime } + q ( x ) y = \lambda y,$ ; confidence 0.984

185. c130070262.png ; $V = \nu _ { 1 } V _ { 1 } - \mathfrak { D } _ { 1 }$ ; confidence 0.984

186. f12008067.png ; $L _ { \infty } ( G )$ ; confidence 0.984

187. o12005012.png ; $S ( t ) : = \int _ { 0 } ^ { t } w ( s ) d s < \infty.$ ; confidence 0.984

188. w12007084.png ; $i \xi A$ ; confidence 0.984

189. e12015027.png ; $| \eta |$ ; confidence 0.984

190. a11030022.png ; $\Omega X$ ; confidence 0.984

191. w13017059.png ; $\operatorname { det } \Sigma = \operatorname { exp } \left\{ ( 2 \pi ) ^ { - 1 } \int _ { - \pi } ^ { \pi } \operatorname { log } \operatorname { det } 2 \pi f ( \lambda ) d \lambda \right\}.$ ; confidence 0.984

192. i130090110.png ; $\nu _ { p } ( K / k )$ ; confidence 0.984

193. o11005097.png ; $60$ ; confidence 0.984

194. i13009071.png ; $a _ { i } \in ( \pi )$ ; confidence 0.984

195. q13005063.png ; $| \alpha | = | \beta | \Rightarrow \frac { | h ( \alpha ) | } { | h ( \beta ) | } \leq M.$ ; confidence 0.984

196. t130050151.png ; $K ( A , \mathcal{X} )$ ; confidence 0.984

197. g120040155.png ; $L = L _ { 2 }$ ; confidence 0.984

198. o13008051.png ; $I ( k )$ ; confidence 0.984

199. b12001010.png ; $\frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } \partial x _ { 2 } ^ { \prime } } - \frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } \partial x _ { 1 } ^ { \prime } } = 0$ ; confidence 0.984

200. q1200809.png ; $\rho _ { p } = \lambda _ { p } b _ { p }$ ; confidence 0.984

201. v12004032.png ; $\Delta ( G ) \geq 8$ ; confidence 0.984

202. b12031061.png ; $G _ { \delta } [ f _ { S } ^ { + } ( x _ { 0 } ) - f _ { S } ^ { - } ( x _ { 0 } ) ]$ ; confidence 0.984

203. a12006046.png ; $0 \leq t _ { 1 } \leq t _ { k } \leq T$ ; confidence 0.984

204. d13011025.png ; $\gamma _ { i } ^ { 2 } = 1 , i = 1,2,3,4,$ ; confidence 0.984

205. a13025021.png ; $[D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - D _ { 2 } D _ { 1 } \in \mathcal{D}$ ; confidence 0.984

206. n12001011.png ; $\pi ( \nu )$ ; confidence 0.984

207. l110020169.png ; $C [ X , \mathbf{R} ]$ ; confidence 0.984

208. m12019021.png ; $F ( \tau ) = \int _ { 1 } ^ { \infty } P _ { i \tau - 1 / 2 } ( x ) f ( x ) d x$ ; confidence 0.984

209. b1200609.png ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } - i \frac { \partial } { \partial y } \right) , \frac { \partial } { \partial \overline{z} } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } \right),$ ; confidence 0.984

210. f12011025.png ; $F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.984

211. t120200221.png ; $\operatorname {max}_{j} | z _ { j } | = 1$ ; confidence 0.984

212. s12022028.png ; $\operatorname { spec } ( M , \Delta ) = \operatorname { spec } ( M ^ { \prime } , \Delta ^ { \prime } )$ ; confidence 0.984

213. l057000102.png ; $f ( k + 1 , x ) = f ( k , x ) + x$ ; confidence 0.984

214. l12006063.png ; $\operatorname { Re } W ( z ) > 0$ ; confidence 0.984

215. c12027012.png ; $\Omega _ { p } \subset T _ { p } M$ ; confidence 0.984

216. e120190146.png ; $g ( f ( a ) , f ( b ) )$ ; confidence 0.984

217. b12052060.png ; $1 + v ^ { T } B ^ { - 1 } u \neq 0$ ; confidence 0.983

218. s13045012.png ; $T = \sum _ { t } t ( t ^ { 2 } - 1 ) / 12$ ; confidence 0.983

219. f130100157.png ; $u \in A _ { p } ( G )$ ; confidence 0.983

220. a12010064.png ; $\int _ { \Omega } u \Delta u d x = \int _ { \partial \Omega } u \frac { \partial u } { \partial \eta } d \sigma - \int _ { \Omega } | \operatorname { grad } u | ^ { 2 } d x,$ ; confidence 0.983

221. p12012034.png ; $6$ ; confidence 0.983

222. k13002093.png ; $C _ { X , Y }$ ; confidence 0.983

223. a13025029.png ; $L ( V )$ ; confidence 0.983

224. i13003053.png ; $L ( N , g )$ ; confidence 0.983

225. f12010061.png ; $j ( z ) = q ^ { - 1 } + 744 + 196884 q + 21493760 q ^ { 2 } +\dots .$ ; confidence 0.983

226. b01692064.png ; $2 ^ { n }$ ; confidence 0.983

227. b13026091.png ; $0 \notin f ( \partial \Omega )$ ; confidence 0.983

228. p11015040.png ; $( H , Q )$ ; confidence 0.983

229. m1300901.png ; $0 = \left[ - \left( \frac { \partial } { \partial t } - i \frac { q e } { \hbar } \phi \right) ^ { 2 } + \right.$ ; confidence 0.983

230. z13011048.png ; $\{ f _ { i n } \} _ { i = 1 } ^ { N }$ ; confidence 0.983

231. s120340190.png ; $u _ { 1 } \cup u _ { 2 } \cup \sigma : D ^ { 2 } \rightarrow M$ ; confidence 0.983

232. g12007039.png ; $\mathbf{R} \pi$ ; confidence 0.983

233. y1200105.png ; $R _ { 12 } = R \otimes _ { k } 1$ ; confidence 0.983

234. k1300509.png ; $N ^ { 6 }$ ; confidence 0.983

235. a1300701.png ; $\sigma ( n )$ ; confidence 0.983

236. d12006015.png ; $T ( f ) ( x , t ) = f ( x + \delta , t ) , \quad x , \delta \in \mathbf{R},$ ; confidence 0.983

237. m12009029.png ; $P ( D ) u = 0$ ; confidence 0.983

238. m12007037.png ; $m ( x + y + x y + x ^ { 2 } y + x y ^ { 2 } ) = L ^ { \prime } ( 0 , E _ { 15 } )$ ; confidence 0.983

239. a1302507.png ; $\{ x y z \} + \{ y z x \} + \{ z x y \} = 0,$ ; confidence 0.983

240. f12015088.png ; $A + T \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.983

241. a1201603.png ; $Z =$ ; confidence 0.983

242. e13003032.png ; $\Gamma \backslash G ( \mathbf{R} )$ ; confidence 0.983

243. c12027011.png ; $s = \operatorname { dist } ( p , \gamma ( s ) )$ ; confidence 0.983

244. b11022017.png ; $0 \leq i \leq 2 n$ ; confidence 0.983

245. a12006065.png ; $f \in C ( [ 0 , T ] ; Y )$ ; confidence 0.983

246. a1201201.png ; $( m \times n )$ ; confidence 0.983

247. b13027019.png ; $\mathcal{B} ( \mathcal{H} )$ ; confidence 0.983

248. m12015068.png ; $V > 0 , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 ).$ ; confidence 0.983

249. m130260157.png ; $b ^ { * } b = b b ^ { * }$ ; confidence 0.983

250. t1200608.png ; $R_{i} \in \mathbf{R} ^ { 3 }$ ; confidence 0.983

251. b130290213.png ; $R = k [ R _ { 1 }]$ ; confidence 0.983

252. a11028043.png ; $n - 1$ ; confidence 0.983

253. b01615019.png ; $n = 6$ ; confidence 0.983

254. d12013029.png ; $S ( H ^ { 1 } ( W ; \mathbf{F} _ { 2 } ) )$ ; confidence 0.983

255. f13016053.png ; $Q ( R / P )$ ; confidence 0.983

256. e12027016.png ; $\gamma \leq - 1 / 2$ ; confidence 0.983

257. c120180195.png ; $S ( g ) = g ^ { - 1 } \{ 1,2 \} \operatorname { Ric } ( g ) = g ^ { - 1 } \{ 1,4 ; 2,3 \} R ( g ) \in C ^ { \infty } ( M )$ ; confidence 0.983

258. d03202011.png ; $x _ { 0 } \in \Omega$ ; confidence 0.983

259. h12002058.png ; $H_{-} ^ { 2 }$ ; confidence 0.983

260. e120190182.png ; $W ^ { \prime }$ ; confidence 0.983

261. d13011046.png ; $\operatorname { Re } ( 4 )$ ; confidence 0.983

262. d12002020.png ; $u _ { 2 } = u _ { 2 } ^ { * }$ ; confidence 0.983

263. s120320116.png ; $U \subset \mathbf{C} ^ { p }$ ; confidence 0.983

264. l06105086.png ; $P ( E ) < \delta \Rightarrow \lambda ( F ( E ) ) < \epsilon ).$ ; confidence 0.983

265. l0600307.png ; $P Q \perp A ^ { \prime } A$ ; confidence 0.983

266. p12015046.png ; $\alpha > 0$ ; confidence 0.983

267. a12027067.png ; $\operatorname {trace}_{E/K} ( x ^ { 2 } )$ ; confidence 0.983

268. m12023064.png ; $f _ { t , s } = f _ { t - s }$ ; confidence 0.983

269. l12010028.png ; $V ( x ) = \lambda W ( x )$ ; confidence 0.983

270. m06211054.png ; $n \leq 5$ ; confidence 0.983

271. a120280166.png ; $( \pi , \{ U _ { t } \} _ { t \in G } )$ ; confidence 0.983

272. a12024048.png ; $( Z , g ) = ( \operatorname { div } ( s ) , - \operatorname { log } ( h ( s , s ) ) )$ ; confidence 0.983

273. c13014052.png ; $\Delta = \{ ( x , x ) : x \in X \}$ ; confidence 0.983

274. t1200108.png ; $l \geq 1$ ; confidence 0.983

275. a13024046.png ; $m \times s$ ; confidence 0.983

276. d03249024.png ; $s \in \mathbf{Z}$ ; confidence 0.983

277. v13006019.png ; $j \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.983

278. w120110273.png ; $\{ | x | < 1 , | x | | \xi | > 1 \}$ ; confidence 0.983

279. l05700072.png ; $X \equiv W W$ ; confidence 0.983

280. f04158019.png ; $m \times m$ ; confidence 0.983

281. b1301905.png ; $M _ { 1 } , M _ { 2 } \in [ M , 2 M ]$ ; confidence 0.983

282. l13001067.png ; $\operatorname { ln } ^ { 2 } N$ ; confidence 0.983

283. e12026015.png ; $L _ { \mu } ( \theta )$ ; confidence 0.983

284. a130040773.png ; $\mathfrak{N} \in \operatorname {Mod}_{\mathcal{S}_{P \cup R}} ( \Sigma ( P , R ) )$ ; confidence 0.983

285. b12001014.png ; $u ^ { \prime } ( x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } )$ ; confidence 0.983

286. d12005060.png ; $E \in \mathcal{Z}$ ; confidence 0.983

287. m120130109.png ; $\frac { d L } { d t } = \gamma L ( F - \xi ) , \quad \xi = \frac { \nu } { \gamma },$ ; confidence 0.983

288. n12002047.png ; $\mathcal{M} ( \mathbf{R} )$ ; confidence 0.983

289. h04601030.png ; $n \geq 6$ ; confidence 0.983

290. b13012055.png ; $1 / f \in \mathcal{A} ^ { * }$ ; confidence 0.983

291. s1303602.png ; $\mathbf{R} ^ { 1 } = ( - \infty , \infty )$ ; confidence 0.983

292. o12001020.png ; $\varepsilon \ll 1$ ; confidence 0.983

293. g12003024.png ; $\beta _ { \mu }$ ; confidence 0.983

294. a12012016.png ; $x = A v \text { and } y = B v.$ ; confidence 0.983

295. f120150119.png ; $F ( x _ { 0 } ) = y _ { 0 }$ ; confidence 0.983

296. t120140106.png ; $\lambda \notin \phi ( \mathbf{T} )$ ; confidence 0.983

297. i1300801.png ; $A _ { 1 } A _ { 2 } A _ { 3 }$ ; confidence 0.983

298. b13027080.png ; $K K ^ { 1 } ( A , B )$ ; confidence 0.983

299. a1201007.png ; $y ^ { \prime } ( t ) = - A y ( t )$ ; confidence 0.983

300. c12031056.png ; $n ^ { - 1 / 2 }$ ; confidence 0.983

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/19. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/19&oldid=44429