Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/15"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 15 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011069.png ; $T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } )$ ; confidence 0.665
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050117.png ; $f \in C ( [ 0 , T ] ; X ) \cap L ^ { 1 } ( 0 , T ; Y )$ ; confidence 0.992
  
2. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013077.png ; $\frac { d F } { d t } = - \varepsilon F ( 1 - \gamma F ^ { p } )$ ; confidence 0.995
+
2. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004089.png ; $0 \leq q \leq n$ ; confidence 0.992
  
3. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201701.png ; $x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n - 1 } x + a _ { n } = 0$ ; confidence 0.725
+
3. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520453.png ; $f = \sum _ { i = 1 } ^ { n } v _ { i } ^ { 2 }$ ; confidence 0.992
  
4. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201705.png ; $X ^ { n } + A _ { 1 } X ^ { n - 1 } + \ldots + A _ { n - 1 } X + A _ { n } = 0$ ; confidence 0.871
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202001.png ; $H ^ { 2 }$ ; confidence 0.992
  
5. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m1302206.png ; $V = V _ { - 1 } \oplus V _ { 1 } \oplus V _ { 2 } \oplus \ldots$ ; confidence 0.974
+
5. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080128.png ; $B ( G ) = M _ { 0 } A ( G )$ ; confidence 0.992
  
6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025012.png ; $H _ { 1 } ( U ^ { \prime } ) \subseteq U ^ { \prime \prime }$ ; confidence 0.997
+
6. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013042.png ; $( X , 1 / f ( X ) )$ ; confidence 0.992
  
7. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025016.png ; $f _ { \# } : \pi _ { k } ( X , * ) \rightarrow \pi _ { k } ( Y , * )$ ; confidence 0.859
+
7. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002039.png ; $l ( u ) = \infty$ ; confidence 0.992
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018010.png ; $\sum _ { z : x \leq z \leq y } \mu ( x , z ) = 0 \text { if } x < y$ ; confidence 0.924
+
8. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003015.png ; $( y ^ { \alpha } )$ ; confidence 0.992
  
9. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002072.png ; $\int _ { E } \operatorname { log } ( \alpha P / d \mu ) d P$ ; confidence 0.384
+
9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008018.png ; $M = \frac { \partial } { \partial x } + i x \frac { \partial } { \partial y }.$ ; confidence 0.992
  
10. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010055.png ; $\| Y _ { 1 } - Z _ { 1 } \| _ { G } \leq \| Y _ { 0 } - Z _ { 0 } \| _ { G }$ ; confidence 0.992
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003048.png ; $L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.992
  
11. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520403.png ; $\omega _ { k } = \operatorname { min } | ( Q , \Lambda ) |$ ; confidence 0.991
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006010.png ; $L ( \mathbf{R} ^ { p } )$ ; confidence 0.992
  
12. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520380.png ; $Y ^ { Q } \equiv y _ { 1 } ^ { q _ { 1 } } \dots y _ { n } ^ { q _ { n } }$ ; confidence 0.270
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460159.png ; $x ^ { 0 }$ ; confidence 0.992
  
13. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010116.png ; $\alpha ^ { \prime } \in S ^ { 2 } , \alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.837
+
13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070107.png ; $= \operatorname { lim } _ { n \rightarrow \infty } ( f _ { n } , f _ { n } ) = \| f \| ^ { 2 }.$ ; confidence 0.992
  
14. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013034.png ; $\operatorname { min } S ^ { ( n ) } \rightarrow \infty$ ; confidence 0.981
+
14. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010055.png ; $\| Y _ { 1 } - Z _ { 1 } \| _ { G } \leq \| Y _ { 0 } - Z _ { 0 } \| _ { G }$ ; confidence 0.992
  
15. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p1301005.png ; $\| P \| _ { K } = \operatorname { max } _ { z \in K } | P ( z ) |$ ; confidence 0.852
+
15. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006048.png ; $A _ { 1 } A _ { 2 } = A _ { 2 } A _ { 1 }$ ; confidence 0.992
  
16. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070113.png ; $c \alpha = q a c , b \alpha = q \alpha b , d b = q b d , d c = q c b$ ; confidence 0.333
+
16. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011014.png ; $5$ ; confidence 0.992
  
17. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005047.png ; $C _ { A } ( g ) = \{ \alpha \in A : \alpha ^ { g } = a \} = \{ 1 \}$ ; confidence 0.240
+
17. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001065.png ; $\operatorname { det } J F ( x ) \neq 0$ ; confidence 0.992
  
18. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005021.png ; $G = V _ { 4 } = \{ ( 1 ) , ( 12 ) ( 34 ) , ( 13 ) ( 24 ) , ( 14 ) ( 23 ) \}$ ; confidence 0.995
+
18. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026040.png ; $k = 2 m + 1$ ; confidence 0.992
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014032.png ; $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } }$ ; confidence 0.896
+
19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110159.png ; $[ \mathcal{F} f ] ( \xi ) = G ( \xi - i \Gamma 0 )$ ; confidence 0.992
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014017.png ; $Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } )$ ; confidence 0.377
+
20. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300103.png ; $\operatorname{Tait}( D )$ ; confidence 0.992
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045051.png ; $\rho _ { S } = 3 P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) > 0 ] +$ ; confidence 0.723
+
21. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007072.png ; $d ( d - 1 ) / 2$ ; confidence 0.992
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023065.png ; $K ^ { \prime } = ( K _ { 1 } ^ { \prime } , K _ { 2 } ^ { \prime } )$ ; confidence 0.988
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510143.png ; $\infty ( L _ { 2 } )$ ; confidence 0.992
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510104.png ; $\gamma ( F ( u ) ) = \{ \gamma ( v ) < \infty : v \in F ( u ) \}$ ; confidence 0.913
+
23. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202202.png ; $f ( t , x , v ) \geq 0$ ; confidence 0.992
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340190.png ; $u _ { 1 } \cup u _ { 2 } \cup \sigma : D ^ { 2 } \rightarrow M$ ; confidence 0.983
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012045.png ; $A G ( d , q )$ ; confidence 0.992
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064026.png ; $T ( \alpha ) = ( \alpha _ { j } - k ) j _ { j , k } ^ { \infty } = 0$ ; confidence 0.068
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095019.png ; $t \rightarrow 0$ ; confidence 0.992
  
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060128.png ; $- ( \text { const } ) \int _ { R ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 0.495
+
26. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003029.png ; $L = \operatorname { det } ( V _ { \pm } )$ ; confidence 0.992
  
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019012.png ; $T ( n , k , r ) \geq \lceil \frac { n } { n - r } T ( n - 1 , k , r ) ]$ ; confidence 0.556
+
27. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003065.png ; $f ( t ) = \int _ { 0 } ^ { 1 } ( Z f ) ( t , w ) d w , - \infty < t < \infty,$ ; confidence 0.992
  
28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200177.png ; $G _ { 1 } ( r ) = \sum _ { j = 1 } ^ { n } P _ { j } ( r ) z _ { j } ^ { \nu }$ ; confidence 0.264
+
28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007018.png ; $\Gamma _ { 0 } ( p ) +$ ; confidence 0.992
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200153.png ; $S = [ - m _ { 1 } - n , - m _ { 1 } - 1 ] \cup [ m _ { 2 } + 1 , m _ { 2 } + n ]$ ; confidence 0.968
+
29. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014021.png ; $j _ { n } ( \zeta ) - 1$ ; confidence 0.992
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200160.png ; $\kappa \leq | \operatorname { arc } z _ { j } | \leq \pi$ ; confidence 0.282
+
30. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060182.png ; $f ( k ) = 1 + \int _ { 0 } ^ { \infty } A ( y ) e ^ { i k y } d y$ ; confidence 0.992
  
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202005.png ; $M _ { 1 } ( k ) = \operatorname { min } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.653
+
31. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011027.png ; $K \times D ^ { 2 } \subset M$ ; confidence 0.992
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202006.png ; $M _ { 2 } ( k ) = \operatorname { max } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.974
+
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021034.png ; $p \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.992
  
33. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960306.png ; $\ddot { z } - \mu ( z - \frac { z \square ^ { 3 } } { 3 } ) + z = 0$ ; confidence 0.264
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040179.png ; $( r , 1 )$ ; confidence 0.992
  
34. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005059.png ; $( x _ { 1 } - x _ { 2 } ) ^ { k } [ Y ( u , x _ { 1 } ) , Y ( v , x _ { 2 } ) ] = 0$ ; confidence 0.978
+
34. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003028.png ; $\{ \mathcal{A} ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.992
  
35. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020185.png ; $S ^ { n } = \partial \overline { D } _ { \square } ^ { n + 1 }$ ; confidence 0.675
+
35. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015071.png ; $\mathcal{G} ^ { \infty } ( \Omega )$ ; confidence 0.992
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005048.png ; $D \otimes D = R [ x , y ] / \langle x ^ { 2 } , y ^ { 2 } \rangle$ ; confidence 0.518
+
36. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004055.png ; $K ( s )$ ; confidence 0.992
  
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006087.png ; $T _ { A } M \rightarrow T _ { A } T M \rightarrow T T _ { A } M$ ; confidence 0.978
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160169.png ; $M ( w )$ ; confidence 0.992
  
38. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007032.png ; $( \lambda | \alpha _ { k } ) = ( \lambda | \beta _ { l } ) = 0$ ; confidence 0.999
+
38. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017014.png ; $\{ \omega _ { \alpha } ( G ) \}$ ; confidence 0.992
  
39. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007027.png ; $( p , q , t ) ( p ^ { \prime } , q ^ { \prime } , t ^ { \prime } ) =$ ; confidence 1.000
+
39. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900161.png ; $H ( \zeta )$ ; confidence 0.992
  
40. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007044.png ; $\hat { f } ( \xi ) = \int _ { R ^ { 2 n } e ^ { - i x } \xi } f ( x ) d x$ ; confidence 0.157
+
40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090199.png ; $u _ { \chi } ( T )$ ; confidence 0.992
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011095.png ; $\operatorname { exp } ( i \pi \langle S x , x \rangle )$ ; confidence 0.698
+
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202003.png ; $L _ { \nu } [ f ] = f ( x _ { \nu } )$ ; confidence 0.992
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202005.png ; $( \alpha _ { 1 } , \dots , \alpha _ { N } ) \in C ^ { \gamma }$ ; confidence 0.132
+
42. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001033.png ; $R \in A \otimes _ { k } A$ ; confidence 0.992
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020016.png ; $R [ K _ { X } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1$ ; confidence 0.336
+
43. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007070.png ; $( f , f ) \geq 0$ ; confidence 0.992
  
44. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001093.png ; $R _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } , v$ ; confidence 0.465
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009028.png ; $\operatorname { Re } p ( f , \tau ) > 0$ ; confidence 0.992
  
45. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001037.png ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } x ( z ) z ^ { n - 1 } d z$ ; confidence 0.796
+
45. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002046.png ; $D ( \mu ) = \Theta ( \mu )$ ; confidence 0.992
  
46. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003045.png ; $( Z \overline { f } ) ( t , w ) = \overline { ( Z f ) } ( t , - w )$ ; confidence 0.991
+
46. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201004.png ; $R _ { C } ( x , t )$ ; confidence 0.992
  
47. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012028.png ; $\sigma > ( 1 / n ) \operatorname { tan } ^ { 2 } ( \pi / 2 n )$ ; confidence 1.000
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027022.png ; $\lambda \notin \sigma ( \pi ( T ) )$ ; confidence 0.992
  
48. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
+
48. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034280/d03428051.png ; $m > 3$ ; confidence 0.992
  
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001070.png ; $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.999
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051070.png ; $D = \{ x : f ( x ) \leq f ( x _ { 0 } ) \}$ ; confidence 0.992
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240108.png ; $y _ { i } = \alpha + \beta t _ { i } + \gamma t ^ { 2 } + e _ { i }$ ; confidence 0.583
+
50. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h1201509.png ; $\operatorname { Re } C ( X )$ ; confidence 0.992
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240314.png ; $\hat { \beta } = ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } y$ ; confidence 0.148
+
51. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007036.png ; $H _ { + } \subset H _ { 0 }$ ; confidence 0.992
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040539.png ; $t _ { G } \theta _ { 0 } , \ldots , \theta _ { n - 1 } \gg \xi$ ; confidence 0.070
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016048.png ; $p _ { 1 } = x _ { 1 } + x _ { 2 } , \quad p _ { 2 } = x _ { 3 } + x _ { 4 },$ ; confidence 0.992
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040613.png ; $h : F m _ { P } \rightarrow M e _ { S _ { P } } \mathfrak { M }$ ; confidence 0.136
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050128.png ; $D ( S ) = Y$ ; confidence 0.992
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050104.png ; $( t , s ) \in \Delta = \{ ( t , s ) : 0 \leq s \leq t \leq T \}$ ; confidence 0.996
+
54. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003037.png ; $( v _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.992
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.948
+
55. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015027.png ; $\varphi : G \rightarrow H$ ; confidence 0.992
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.950
+
56. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019042.png ; $( P , L )$ ; confidence 0.992
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007018.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.965
+
57. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001055.png ; $\operatorname { deg } F \leq d$ ; confidence 0.992
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888
+
58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005044.png ; $1 \neq g \in G$ ; confidence 0.992
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062084.png ; $f ( \lambda ) = d \rho ( \lambda ) / d \lambda$ ; confidence 0.992
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070127.png ; $2 < \frac { \sigma ( n ) } { n } < 2 + \frac { 2 } { 10 ^ { 10 } }$ ; confidence 0.997
+
60. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066018.png ; $\lambda _ { n k } = \frac { 1 } { \sum _ { j = 0 } ^ { n - 1 } | \phi _ { j } ( \xi _ { n k } ) | ^ { 2 } } > 0.$ ; confidence 0.992
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
+
61. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100116.png ; $| i \nabla + A ( x ) | ^ { 2 }$ ; confidence 0.992
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946
+
62. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023026.png ; $d f _ { t }$ ; confidence 0.992
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015061.png ; $U ( n ) / ( U ( n _ { 1 } ) \times \ldots \times U ( n _ { k } ) )$ ; confidence 0.954
+
63. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029010.png ; $m , m ^ { \prime } \in M$ ; confidence 0.992
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017046.png ; $\beta ( \alpha , x ) = R \beta _ { 0 } ( \alpha ) \Phi ( x )$ ; confidence 0.938
+
64. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019012.png ; $Q ( x ) = \sigma ( x , x )$ ; confidence 0.992
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018045.png ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ \alpha , b ]$ ; confidence 0.713
+
65. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200502.png ; $\psi ( x , y , t ) : \mathbf{R} ^ { n } \times \Omega \times \mathbf{R} ^ { + } \rightarrow \mathbf{R} ^ { N },$ ; confidence 0.992
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018081.png ; $\operatorname { ln } ( 1 + t ) = t - t ^ { 2 } / 2 + t ^ { 3 } / 3 -$ ; confidence 0.993
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png ; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018055.png ; $Alg _ { + } ( L ) = Alg _ { \operatorname { mod } e l s } ( L )$ ; confidence 0.139
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010079.png ; $( I + \lambda A )$ ; confidence 0.992
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020074.png ; $Q ( \lambda ) = \operatorname { det } ( T - \lambda I )$ ; confidence 0.998
+
68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009080.png ; $| f ( z ) | < 1$ ; confidence 0.992
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027038.png ; $Q _ { n } y = \sum _ { i = 1 } ^ { n } ( y , \psi _ { i } ) \psi _ { i }$ ; confidence 0.513
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017045.png ; $S _ { T }$ ; confidence 0.992
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027037.png ; $P _ { N } x = \sum _ { i = 1 } ^ { n } ( x , \phi _ { i } ) \phi _ { i }$ ; confidence 0.723
+
70. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200102.png ; $\beta \neq - \alpha$ ; confidence 0.992
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026010.png ; $0 < | a _ { n } \zeta ( 3 ) - c _ { n } | < ( \sqrt { 2 } - 1 ) ^ { 4 n }$ ; confidence 0.989
+
71. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070146.png ; $k ( C ^ { * } )$ ; confidence 0.992
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040168.png ; $X = ( X _ { 0 } ) ^ { 1 - \theta } ( L _ { 2 } ( \mu ) ) ^ { \theta }$ ; confidence 0.998
+
72. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201904.png ; $C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$ ; confidence 0.992
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040141.png ; $X _ { \theta } = X _ { 0 } ^ { 1 - \theta } X _ { 1 } ^ { \theta }$ ; confidence 0.979
+
73. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017013.png ; $0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq \dots$ ; confidence 0.992
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b12008011.png ; $E _ { avg } ( \mu , m ) = \int | \epsilon ( p , m ) | d \mu ( p )$ ; confidence 0.631
+
74. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005039.png ; $h ^ { i } ( w ) = g ^ { i } ( w )$ ; confidence 0.992
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009030.png ; $p _ { 1 } ( f , \tau ) = p ( e ^ { i \alpha \| n \tau } f , \tau )$ ; confidence 0.060
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292035.png ; $s = 0$ ; confidence 0.992
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220245.png ; $\phi _ { i } : CH ^ { i } ( X ) ^ { 0 } \rightarrow J ^ { i } ( X )$ ; confidence 0.894
+
76. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } ),$ ; confidence 0.992
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013014.png ; $f ( z ) = \int _ { G } f ( w ) \overline { k _ { z } ( w ) } d A ( w )$ ; confidence 0.990
+
77. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003066.png ; $\operatorname { Re } ( \lambda )$ ; confidence 0.992
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015089.png ; $\operatorname { dim } D _ { s } ^ { \perp } = 2 ^ { n } - n - 1$ ; confidence 0.624
+
78. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009012.png ; $E = K ^ { n }$ ; confidence 0.992
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016044.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499
+
79. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021021.png ; $L _ { 0 } ( u ^ { \lambda } ) = \pi ( \lambda ) z ^ { \lambda }$ ; confidence 0.992
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220101.png ; $u ^ { n + 1 } ( x ) = \int f ( t _ { n } ^ { - } + 1 , x , \xi ) d \xi - k$ ; confidence 0.596
+
80. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520309.png ; $( M , \sigma )$ ; confidence 0.992
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027043.png ; $u _ { n } \equiv P ( S _ { k } = \text { nfor somek } \geq 0 )$ ; confidence 0.467
+
81. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e1300501.png ; $0 = L ( \alpha , \beta ) u = \left\{ \partial _ { x } \partial _ { y } - \frac { \alpha - \beta } { x - y } \partial _ { x } + \frac { \alpha ( \beta - 1 ) } { ( x - y ) ^ { 2 } } \right\} u = 0,$ ; confidence 0.992
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029014.png ; $\varepsilon _ { X } ^ { A } ( s ) = \hat { R } _ { s } ^ { A } ( x )$ ; confidence 0.515
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663026.png ; $\partial K$ ; confidence 0.992
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310102.png ; $\| S _ { R } ^ { \delta } f - f \| _ { \perp } \rightarrow 0$ ; confidence 0.242
+
83. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548010.png ; $\neg \neg p \supset p$ ; confidence 0.992
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031067.png ; $\hat { f } ( m ) = \int _ { T ^ { n } } f ( x ) e ^ { - 2 \pi i x m } d x$ ; confidence 0.589
+
84. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023026.png ; $\psi ( T T ^ { \prime } ) = \phi ( A ^ { \prime } T T ^ { \prime } A )$ ; confidence 0.992
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032036.png ; $\| x + y \| = \operatorname { max } \{ \| x \| , \| y \| \}$ ; confidence 0.767
+
85. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007036.png ; $I = ( N , N + M ]$ ; confidence 0.992
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019018.png ; $a \overline { a } \equiv 1 ( \operatorname { mod } q )$ ; confidence 0.965
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004038.png ; $\Gamma \subset T$ ; confidence 0.992
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020075.png ; $\mathfrak { h } = \operatorname { span } \{ h _ { i } \}$ ; confidence 0.890
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302701.png ; $T = T ^ { * }$ ; confidence 0.992
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020046.png ; $\operatorname { span } \{ e _ { i } , f _ { i } , h _ { i i } \}$ ; confidence 0.510
+
88. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001040.png ; $u ( x , \alpha , k )$ ; confidence 0.992
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430109.png ; $k \langle \alpha , \beta , \gamma , \delta \rangle$ ; confidence 0.779
+
89. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021043.png ; $t ( M _ { G } ; x , y )$ ; confidence 0.992
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026047.png ; $U _ { \lambda } = \{ x \in R ^ { n } : ( x , \lambda ) \in U \}$ ; confidence 0.480
+
90. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500063.png ; $M ( C , \epsilon )$ ; confidence 0.992
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026095.png ; $f ^ { * } : H ^ { * } ( S ^ { n } ) \rightarrow H ^ { * } ( S ^ { n } )$ ; confidence 0.994
+
91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002059.png ; $\gamma \in \operatorname{SO} ( n )$ ; confidence 0.992
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050038.png ; $\tau _ { X } : = \operatorname { inf } \{ s : M _ { S } > x \}$ ; confidence 0.892
+
92. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070198.png ; $r , s \in k ( C )$ ; confidence 0.992
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050014.png ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040180.png ; $1 / r = 1 / p ^ { \prime } + 1 / 2$ ; confidence 0.992
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029038.png ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]$ ; confidence 0.505
+
94. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010131.png ; $k = k _ { 0 } > 0$ ; confidence 0.992
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001014.png ; $u ^ { \prime } ( x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } )$ ; confidence 0.983
+
95. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014015.png ; $\operatorname { sinc } ( x ) = x ^ { - 1 } \operatorname { sin } x$ ; confidence 0.992
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004021.png ; $\operatorname { Re } s > 1 , a \in C \backslash Z _ { 0 }$ ; confidence 0.713
+
96. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120100.png ; $\operatorname { log } \int f ( \theta , \phi ) d \phi = \operatorname { log } f ( \theta , \phi ) - \operatorname { log } f ( \phi | \theta ) =$ ; confidence 0.992
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004011.png ; $G = - \frac { 1 } { 4 } \beta ^ { \prime } ( \frac { 1 } { 2 } )$ ; confidence 0.999
+
97. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009067.png ; $R_{l} ( p ; k , n ) = p ^ { - 1 } q ^ { n + 1 } F _ { n + 2 } \left( \frac { p } { q } \right),$ ; confidence 0.992
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008054.png ; $E = [ E \lambda - A ] ^ { - 1 } E , A = [ E \lambda - A ] ^ { - 1 } A$ ; confidence 0.545
+
98. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015034.png ; $\mathcal{P} _ { j } ^ { i } =$ ; confidence 0.992
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070217.png ; $\epsilon = \operatorname { ord } _ { T } ( d x / d \tau )$ ; confidence 0.829
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040231.png ; $E ( \Gamma , \Delta ) = \{ \epsilon _ { i } ( \gamma , \delta ) : \gamma \approx \delta \in \Gamma \approx \Delta , i \in I \}$ ; confidence 0.992
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016014.png ; $j > i : \alpha _ { j } = \sum _ { k = 1 } ^ { i } r _ { k l } r _ { k j }$ ; confidence 0.431
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025098.png ; $k = ( n - 1 ) q + n$ ; confidence 0.992
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014026.png ; $A _ { i } A _ { j } = \sum _ { k = 1 } ^ { r } p _ { i , j } ^ { k } A _ { k }$ ; confidence 0.407
+
101. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080174.png ; $\varphi \in B _ { p } ( G )$ ; confidence 0.992
  
102. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170168.png ; $\langle M _ { p } ( n ) \hat { f } , g \rangle = \tau ( p f g )$ ; confidence 0.149
+
102. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584021.png ; $\kappa = \operatorname { min } ( \operatorname { dim } \mathcal{K} _ { + } , \operatorname { dim } \mathcal{K} _ { - } ) < \infty$ ; confidence 0.992
  
103. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180315.png ; $( \tau _ { 2 } - \tau _ { 1 } ) \circ \nabla \circ \nabla$ ; confidence 0.939
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022044.png ; $D ^ { \gamma } q = 0$ ; confidence 0.992
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180217.png ; $h \otimes k \in S ^ { 2 } \varepsilon \otimes S ^ { 2 } E$ ; confidence 0.257
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180177.png ; $\square ^ { \alpha } U$ ; confidence 0.992
  
105. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019057.png ; $( B ^ { k } \times B ^ { n - k } , S ^ { k - 1 } \times B ^ { n - k } )$ ; confidence 0.855
+
105. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019021.png ; $L ^ { 2 } ( M )$ ; confidence 0.992
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028035.png ; $B ( CRS ( \pi ( X \times ) , C ) ) \rightarrow ( B C ) ^ { X }$ ; confidence 0.062
+
106. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001098.png ; $Y \in C$ ; confidence 0.992
  
107. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030068.png ; $B \times _ { \alpha } Z \simeq O _ { \aleph } \otimes K$ ; confidence 0.223
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023042.png ; $\Gamma \in C ^ { 2 }$ ; confidence 0.992
  
108. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006018.png ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \}$ ; confidence 0.712
+
108. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w1300408.png ; $\omega _ { j } = 2 \frac { \partial X _ { j } } { \partial z } d z$ ; confidence 0.992
  
109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006015.png ; $T ( f ) ( x , t ) = f ( x + \delta , t ) , \quad x , \delta \in R$ ; confidence 0.983
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070108.png ; $\alpha \geq 2$ ; confidence 0.992
  
110. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302502.png ; $y ^ { ( n ) } = f ( x , y , y ^ { \prime } , \dots , y ^ { ( n - 1 ) } )$ ; confidence 0.727
+
110. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015042.png ; $B \in \Phi ( Y , Z )$ ; confidence 0.992
  
111. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008065.png ; $[ L : K ] = \sum _ { l = 1 } ^ { m } [ L ^ { H _ { i } } : K ^ { H _ { i } } ]$ ; confidence 0.298
+
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400112.png ; $H ^ { k } ( G / B , \xi ) = 0$ ; confidence 0.992
  
112. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060102.png ; $m Y _ { 1 } , o b s ( \{ y _ { 1 } , 1 , y _ { 1 } , 3 , y _ { 1 } , s \} ) = 1$ ; confidence 0.345
+
112. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025053.png ; $\overline { N } = \sum _ { k } N _ { k }$ ; confidence 0.992
  
113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012046.png ; $d \alpha = d a _ { N } \circ \ldots \circ d \alpha _ { 1 }$ ; confidence 0.410
+
113. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003019.png ; $\mu \perp \nu$ ; confidence 0.992
  
114. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022053.png ; $\int _ { \alpha } ^ { \phi } ( p y ^ { \prime 2 } - q y ^ { 2 } )$ ; confidence 0.697
+
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016044.png ; $\Phi _ { 11 }$ ; confidence 0.992
  
115. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022055.png ; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163
+
115. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009052.png ; $| f ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( \epsilon | \zeta | )$ ; confidence 0.992
  
116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230155.png ; $R _ { i } - Z _ { i } R _ { i } Z _ { i } ^ { * } = G _ { i } J G _ { i } ^ { * }$ ; confidence 0.954
+
116. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003026.png ; $0 \mapsto 01$ ; confidence 0.992
  
117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280123.png ; $A ( D ) ^ { * } \simeq H ^ { n , n - 1 } ( C ^ { n } \backslash D )$ ; confidence 0.855
+
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012056.png ; $R C$ ; confidence 0.992
  
118. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029058.png ; $\sum _ { n = 1 } ^ { \infty } \varphi ( q _ { n } ) f ( q _ { n } )$ ; confidence 0.827
+
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584078.png ; $\int _ { - \infty } ^ { \infty } | f | ^ { 2 } d | \sigma | < \infty$ ; confidence 0.992
  
119. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029041.png ; $\operatorname { gcd } ( p _ { 1 } , \dots , p _ { k } , q ) = 1$ ; confidence 0.591
+
119. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006098.png ; $q ( x ) = 2 \frac { d } { d x } [ \Gamma _ { 2 x } ( 2 x , 0 ) - \Gamma _ { 2 x } ( 0,0 ) ].$ ; confidence 0.992
  
120. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001012.png ; $E \subseteq \operatorname { Epi } ( \mathscr { M } )$ ; confidence 0.117
+
120. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030103.png ; $f ^ { * } ( x , \varepsilon )$ ; confidence 0.992
  
121. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012022.png ; $L ( \theta | Y _ { 0 b s } ) = \int L ( \theta | Y _ { com } ) d Y$ ; confidence 0.334
+
121. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200206.png ; $h : \mathbf{R} ^ { N } \times \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.992
  
122. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000128.png ; $\lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0$ ; confidence 0.918
+
122. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006090.png ; $\overline { \mathcal{H} } \supset \mathcal{H} \supset \mathcal{D}$ ; confidence 0.992
  
123. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190125.png ; $\{ x \in g ( a , b ) : d ( a , x ) \leq d ( a , b ) \geq d ( b , x ) \}$ ; confidence 0.968
+
123. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017020.png ; $X = \{ a , b \}$ ; confidence 0.992
  
124. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230156.png ; $= \int _ { M } \sigma ^ { k ^ { * } } L _ { Z ^ { k } } ( L \Delta )$ ; confidence 0.927
+
124. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020129.png ; $H _ { 0 } ^ { 1 } = \{ f \in H ^ { 1 } : f ( 0 ) = 0 \}$ ; confidence 0.992
  
125. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027015.png ; $\gamma = \operatorname { max } \{ \alpha , \beta \}$ ; confidence 0.999
+
125. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104705.png ; $T M$ ; confidence 0.992
  
126. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300107.png ; $\operatorname { gcd } ( f , \partial f / \partial x )$ ; confidence 0.993
+
126. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015026.png ; $( v , k , \lambda , n ) =$ ; confidence 0.992
  
127. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009018.png ; $F \mu ( \zeta ) = \mu ( \operatorname { exp } \zeta z )$ ; confidence 0.992
+
127. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050134.png ; $\sigma _ { \mathcal{B} } ( A )$ ; confidence 0.992
  
128. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110118.png ; $S ^ { \prime } ( D ^ { N } ) \subset D ^ { \prime } ( R ^ { N } )$ ; confidence 0.245
+
128. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007028.png ; $[ m , s ]$ ; confidence 0.992
  
129. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014062.png ; $\lambda \geq \frac { r ^ { 2 } + R ^ { 2 } } { 1 + ( r R ) ^ { 2 } }$ ; confidence 0.998
+
129. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520289.png ; $A \simeq K _ { \rho }$ ; confidence 0.992
  
130. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015033.png ; $i ( A + T ) = i ( A ) , \quad \alpha ( A + T ) \leq \alpha ( A )$ ; confidence 0.998
+
130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200194.png ; $1 > \delta _ { 1 } > \delta _ { 2 } \geq \rho$ ; confidence 0.992
  
131. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016021.png ; $\sigma ( T ) \backslash \sigma _ { \text { Tre } } ( T )$ ; confidence 0.161
+
131. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230131.png ; $\{ F _ { i } \}$ ; confidence 0.992
  
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210107.png ; $= \mathfrak { c } _ { 0 } z ^ { \lambda } \pi ( \lambda ) +$ ; confidence 0.663
+
132. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002041.png ; $B ( L )$ ; confidence 0.992
  
133. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230102.png ; $[ L _ { K } , i _ { L } ] = i ( [ K , L ] ) - ( - 1 ) ^ { k ] } L ( i _ { L } K )$ ; confidence 0.928
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008071.png ; $f \in L ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.992
  
134. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230118.png ; $+ ( - 1 ) ^ { q + k _ { 1 } } d \omega \wedge i ( K _ { 1 } ) K _ { 2 }$ ; confidence 0.834
+
134. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014021.png ; $u = e ^ { i \alpha }$ ; confidence 0.992
  
135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024021.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} = m$ ; confidence 0.652
+
135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009018.png ; $\mathcal{F} \mu ( \zeta ) = \mu ( \operatorname { exp } \zeta z ),$ ; confidence 0.992
  
136. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024022.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} > m$ ; confidence 0.547
+
136. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029044.png ; $I ( A ) = d - 1$ ; confidence 0.992
  
137. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024020.png ; $\operatorname { max } \{ m _ { 1 } , \dots , m _ { k } \} < m$ ; confidence 0.549
+
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051090.png ; $\mathcal{P} = \{ \mathbf{u} \in \mathbf{V} : \sigma ( \mathbf{u} ) = 0 \},$ ; confidence 0.992
  
138. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029063.png ; $f _ { L } ^ { \rightarrow } : L ^ { X } \rightarrow L ^ { Y }$ ; confidence 0.593
+
138. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004023.png ; $2_{1}$ ; confidence 0.992
  
139. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040184.png ; $\delta \nu ( X ) = \int \{ X ( x ) , V \rangle d \nu ( x , V )$ ; confidence 0.900
+
139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002016.png ; $X \rightarrow X \vee X$ ; confidence 0.992
  
140. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006036.png ; $\operatorname { max } _ { 1 \leq j \leq n } | x _ { j } | > 0$ ; confidence 0.832
+
140. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001061.png ; $L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.992
  
141. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006020.png ; $G _ { i } ( A ) : = \Delta _ { i _ { i } } ( A ) ( \alpha _ { i } , i )$ ; confidence 0.430
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070133.png ; $k [ C ] = k [ x , y ]$ ; confidence 0.992
  
142. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004055.png ; $\hat { f } ( \xi ) = \int _ { R ^ { n } e } ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194
+
142. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006035.png ; $A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 }$ ; confidence 0.992
  
143. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601078.png ; $\tau ( W , M _ { 0 } ) = ( - 1 ) ^ { n - 1 } \tau ^ { * } ( W , M _ { 1 } )$ ; confidence 0.988
+
143. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005016.png ; $\Omega = \{ ( x , y ) \in \mathbf{R} ^ { 2 } : 0 < x < y < 1 \}$ ; confidence 0.992
  
144. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005018.png ; $\{ \lambda _ { n } = - \kappa _ { n } ^ { 2 } \} _ { n = 1 } ^ { N }$ ; confidence 0.280
+
144. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005061.png ; $k ( z )$ ; confidence 0.992
  
145. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201106.png ; $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$ ; confidence 0.757
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007092.png ; $\left. - A ( s ) ( \lambda - A ( s ) ) ^ { - 1 } \frac { d A ( s ) ^ { - 1 } } { d s } \right\| \leq$ ; confidence 0.992
  
146. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004082.png ; $h _ { \zeta } ( z ) = \langle s , \zeta - z \rangle ^ { - 1 }$ ; confidence 0.859
+
146. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530120.png ; $B N$ ; confidence 0.992
  
147. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050112.png ; $P _ { \theta } ( \| T _ { N } - \theta \| > \epsilon _ { N } )$ ; confidence 0.755
+
147. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003062.png ; $\varphi \in \operatorname{Hom}_{\mathcal{K}}( R ^ { * } , H ^ { * } B E )$ ; confidence 0.992
  
148. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006063.png ; $+ \| x F ^ { \prime } ( x ) \| _ { L ^ { 1 } ( R _ { + } ) } < \infty$ ; confidence 0.606
+
148. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009051.png ; $N > n / 2$ ; confidence 0.992
  
149. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007072.png ; $\forall \alpha , \alpha ^ { \prime } \in S _ { + } ^ { 2 }$ ; confidence 0.966
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017015.png ; $\mathcal{G} _ { \alpha } \mathcal{G} _ { \beta } = \mathcal{G} _ { \alpha + \beta }$ ; confidence 0.992
  
150. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080136.png ; $w ( \{ S _ { i } \} \rightarrow \{ S _ { i } ^ { \prime } \} )$ ; confidence 0.398
+
150. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602011.png ; $y ( t ) = \int _ { 0 } ^ { t } g ( t - \tau ) x ( \tau ) d \tau.$ ; confidence 0.992
  
151. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009047.png ; $E _ { 1 } ( k ) = \operatorname { rank } _ { Z p } E _ { 1 } ( k )$ ; confidence 0.346
+
151. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001044.png ; $\chi _ { \mu }$ ; confidence 0.992
  
152. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002067.png ; $\operatorname { sup } _ { t > 0 } E [ | ( A ^ { * } X ) _ { t } | ]$ ; confidence 0.593
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030050.png ; $f ( m , n )$ ; confidence 0.992
  
153. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002024.png ; $\varphi _ { I } = \int _ { I } \varphi d \vartheta / | I |$ ; confidence 0.246
+
153. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012019.png ; $K \geq ( 5,2 )$ ; confidence 0.992
  
154. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004011.png ; $P _ { T _ { n } } ( v , z ) = ( \frac { v ^ { - 1 } - v } { z } ) ^ { n - 1 }$ ; confidence 0.725
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110530/a11053020.png ; $F G$ ; confidence 0.992
  
155. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007052.png ; $F ( E ( k , \omega ) ) \subseteq E ( d ( \omega ) k , \eta )$ ; confidence 0.979
+
155. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006059.png ; $\xi \in X$ ; confidence 0.992
  
156. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007082.png ; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994
+
156. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004092.png ; $\rho _ { R } = 0.125$ ; confidence 0.992
  
157. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300106.png ; $\langle T _ { n } \rangle = ( - A ^ { 2 } - A ^ { - 2 } ) ^ { n - 1 }$ ; confidence 0.589
+
157. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008038.png ; $Q \sim \infty$ ; confidence 0.992
  
158. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002092.png ; $\beta = 4 C _ { X , Y } ( \frac { 1 } { 2 } , \frac { 1 } { 2 } ) - 1$ ; confidence 0.536
+
158. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001014.png ; $W _ { p } ^ { k } ( \Omega )$ ; confidence 0.992
  
159. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201309.png ; $\xi _ { 1 } ^ { i } , \ldots , \xi _ { 2 ^ { i - 1 } } ^ { i } ( n + 1 )$ ; confidence 0.116
+
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210101.png ; $( \mathcal{X} , \mathcal{A} )$ ; confidence 0.992
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000184.png ; $f ( d ) = \cup \{ f ( \beta ) : \beta \subseteq d , \beta$ ; confidence 0.984
+
160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011057.png ; $\mathbf{H} = - \nabla \varphi$ ; confidence 0.992
  
161. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120020/l1200203.png ; $\phi _ { i } : U _ { i } \rightarrow T _ { i } \times D _ { i }$ ; confidence 0.983
+
161. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020062.png ; $M _ { 2 } ( k ) = 1$ ; confidence 0.992
  
162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004079.png ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689
+
162. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006014.png ; $0 = \mu _ { 1 } ( \Omega ) \leq \mu _ { 2 } ( \Omega ) \leq \dots$ ; confidence 0.992
  
163. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005015.png ; $L _ { 2 } ( R _ { + } ; \operatorname { cosh } ( \pi \tau ) )$ ; confidence 0.971
+
163. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681703.png ; $\omega ^ { 2 } = \int _ { 0 } ^ { 1 } Z ^ { 2 } ( t ) d t,$ ; confidence 0.992
  
164. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012026.png ; $\{ x \in \hat { R } _ { p } : | x - a | _ { p } \leq \epsilon \}$ ; confidence 0.176
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139025.png ; $M ( G )$ ; confidence 0.992
  
165. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170123.png ; $K ^ { 2 } / K ^ { 2 } \cup _ { B ^ { 2 } } B ^ { 3 } \searrow L ^ { 2 }$ ; confidence 0.838
+
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007031.png ; $= \frac { 1 } { q } + 196884 q + 21493760 q ^ { 2 } + 864299970 q ^ { 3 } +$ ; confidence 0.992
  
166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011088.png ; $\zeta : \overline { M } \rightarrow \overline { M }$ ; confidence 0.994
+
166. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013013.png ; $E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.992
  
167. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013089.png ; $[ \delta _ { i j } \alpha _ { i } - k j ] _ { \nu \times \nu }$ ; confidence 0.475
+
167. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007084.png ; $\alpha ^ { \prime } , \alpha \in M$ ; confidence 0.992
  
168. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015068.png ; $V > 0 , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 )$ ; confidence 0.983
+
168. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900156.png ; $f _ { p } \in L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.992
  
169. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140121.png ; $q _ { p s , i l } = d _ { t s } ^ { p } \overline { d } _ { l s } ^ { p }$ ; confidence 0.858
+
169. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001054.png ; $\operatorname { det } J F = 1$ ; confidence 0.992
  
170. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026040.png ; $( \lambda , \rho ) ^ { * } = ( \rho ^ { * } , \lambda ^ { * } )$ ; confidence 0.998
+
170. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020104.png ; $Y , Z$ ; confidence 0.992
  
171. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006042.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots$ ; confidence 0.794
+
171. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001053.png ; $y ^ { ( 2 ) } = x$ ; confidence 0.992
  
172. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520439.png ; $x _ { i } = \tilde { \xi } _ { i } ( U ) , \quad i = 1 , \dots , n$ ; confidence 0.428
+
172. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060103.png ; $A = F \mathbf{R}$ ; confidence 0.992
  
173. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001037.png ; $\theta . w : = \sum ^ { 3 } j = 1 \quad \theta _ { j } w _ { j }$ ; confidence 0.197
+
173. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008057.png ; $\alpha \in \mathbf{N} _ { 0 }$ ; confidence 0.992
  
174. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006026.png ; $\| D ^ { \alpha } f \| _ { \Phi _ { \alpha } } ( \Omega ) \|$ ; confidence 0.547
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025027.png ; $\mathcal{L} = \mathcal{D} \oplus V$ ; confidence 0.992
  
175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201406.png ; $\alpha _ { N } = N ( \frac { a _ { n } ^ { 2 } - 1 } { a _ { n } - 2 } )$ ; confidence 0.093
+
175. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023060.png ; $f _ { t , s } \rightarrow f$ ; confidence 0.992
  
176. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010061.png ; $\pi _ { k } ( C ^ { n } \backslash K ) = 0,1 \leq k \leq n - 1$ ; confidence 0.866
+
176. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011026.png ; $\gamma _ { i } \gamma _ { j } + \gamma _ { j } \gamma _ { i } = 0 , i \neq j , i , j = 1,2,3,4.$ ; confidence 0.992
  
177. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010060.png ; $H _ { k } ( C ^ { n } \backslash K ; G ) = 0,1 \leq k \leq n - 1$ ; confidence 0.891
+
177. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i1300307.png ; $Y \rightarrow B$ ; confidence 0.992
  
178. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200205.png ; $| T _ { i _ { 1 } , \ldots , i _ { k } } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.239
+
178. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011038.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \left| \int _ { \Gamma } \frac { f ( \xi ) } { \xi ^ { k + 1 } } d \xi \right| ^ { 1 / k } \leq 1.$ ; confidence 0.992
  
179. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004047.png ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A }$ ; confidence 0.981
+
179. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016050.png ; $c = - 2 \psi ^ { \prime } ( 0 )$ ; confidence 0.992
  
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020081.png ; $\{ S ^ { \lambda } : \lambda \text { a partition of } n$ ; confidence 0.696
+
180. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l05705023.png ; $S \rightarrow S$ ; confidence 0.992
  
181. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022021.png ; $0 \leq \lambda _ { 0 } \leq \lambda _ { 1 } \leq \ldots$ ; confidence 0.807
+
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120104.png ; $\theta ^ { ( t + 1 ) }$ ; confidence 0.992
  
182. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048031.png ; $D = d : C ^ { \infty } ( M ) \rightarrow \Omega ^ { 1 } ( M )$ ; confidence 0.987
+
182. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001065.png ; $\Gamma u = u _ { N } + h u$ ; confidence 0.992
  
183. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230103.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { p } \geq 0$ ; confidence 0.935
+
183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018029.png ; $f J _ { E }$ ; confidence 0.992
  
184. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024012.png ; $Cl _ { l = 1 } ^ { \infty } ( X _ { i } , x _ { i 0 } ) = ( X , x _ { 0 } )$ ; confidence 0.246
+
184. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022059.png ; $( m , m )$ ; confidence 0.992
  
185. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054036.png ; $\{ \alpha , b \} = h ( a b ) h ( \alpha ) ^ { - 1 } h ( b ) ^ { - 1 }$ ; confidence 0.214
+
185. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019030.png ; $C _ { H } ( n ) = \{ 1 \}$ ; confidence 0.991
  
186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027027.png ; $| R - n [ f ] | \leq \gamma | Q _ { l } ^ { B } [ f ] - Q _ { n } [ f ] |$ ; confidence 0.729
+
186. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003063.png ; $T ^ { 0 } E$ ; confidence 0.991
  
187. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059055.png ; $c _ { N } = q ^ { - x - x ^ { 2 } / 2 } , n = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.098
+
187. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200189.png ; $0 < \kappa < \pi / 2$ ; confidence 0.991
  
188. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059029.png ; $H _ { k } ^ { ( m ) } > 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,$ ; confidence 0.623
+
188. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029058.png ; $Q \rightarrow P$ ; confidence 0.991
  
189. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028013.png ; $E ^ { n } ( X ) = [ \Sigma ^ { k } X , E _ { n + k } ] , \quad n \in Z$ ; confidence 0.532
+
189. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019010.png ; $C ( n , k , r )$ ; confidence 0.991
  
190. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067088.png ; $\theta = j _ { X } ^ { 1 } ( u ) = ( d u ^ { 1 } , \dots , d u ^ { n } )$ ; confidence 0.462
+
190. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722033.png ; $K ( X )$ ; confidence 0.991
  
191. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620194.png ; $- d ^ { 2 } / d x ^ { 2 } + g \operatorname { cos } \sqrt { x }$ ; confidence 0.955
+
191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018018.png ; $( \alpha \beta ) ^ { * } = \beta ^ { * } \alpha ^ { * }$ ; confidence 0.991
  
192. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032071.png ; $A ^ { p } | q = A ^ { \oplus p } \oplus \Pi ( A ) ^ { \oplus q }$ ; confidence 0.426
+
192. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170115.png ; $\operatorname { rank } M = \operatorname { rank } M ( n ) = r$ ; confidence 0.991
  
193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035012.png ; $Z ^ { t - 1 } = \{ y ( t - 1 ) , u ( t - 1 ) , \dots , y ( 0 ) , u ( 0 ) \}$ ; confidence 0.756
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025018.png ; $L _ { 1 } = V$ ; confidence 0.991
  
194. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005024.png ; $E _ { i } ^ { * } E _ { j } + E _ { j } E _ { i } ^ { * } = \delta _ { i j }$ ; confidence 0.891
+
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015032.png ; $( T V , d )$ ; confidence 0.991
  
195. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007021.png ; $t \mapsto \operatorname { log } \rho ( \theta ( t ) )$ ; confidence 0.991
+
195. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003078.png ; $\sigma ( M ( \mathcal{E} ) , L ( \mathcal{E} ) )$ ; confidence 0.991
  
196. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010032.png ; $Y = \{ Y : \operatorname { Tor } _ { 1 } ^ { B } ( T , Y ) = 0 \}$ ; confidence 0.869
+
196. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003050.png ; $H ( \rho ) = \operatorname { Tr } \rho \operatorname { log } _ { 2 } ( \rho )$ ; confidence 0.991
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013050.png ; $( T , ) : \operatorname { mod } \Lambda \rightarrow$ ; confidence 0.816
+
197. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004041.png ; $( g , \eta )$ ; confidence 0.991
  
198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940
+
198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007011.png ; $g ( e ^ { i t } ) = \rho ( \theta ( t ) ) e ^ { i \theta ( t ) } ( \forall t \in \mathbf{R} ),$ ; confidence 0.991
  
199. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013068.png ; $[ \Lambda ^ { l } , L _ { 1 } ] = [ \Lambda ^ { l } , L _ { 2 } ] = 0$ ; confidence 0.986
+
199. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023096.png ; $X : = A Q \Rightarrow U : = Q$ ; confidence 0.991
  
200. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021016.png ; $R ( x ; a _ { 0 } , \dots , a _ { N } ) \equiv L [ u _ { N } ( x ) ] - f$ ; confidence 0.416
+
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017063.png ; $d \leq ( 5 l + 2 ) / 3$ ; confidence 0.991
  
201. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005030.png ; $H ^ { \infty } + C = \{ f + g : f \in H ^ { \infty } , g \in C \}$ ; confidence 0.951
+
201. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014061.png ; $( v _ { i } \times v _ { j } )$ ; confidence 0.991
  
202. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002088.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { H } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205
+
202. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007021.png ; $t \mapsto \operatorname { log } \rho ( \theta ( t ) )$ ; confidence 0.991
  
203. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011020.png ; $w ( z ) = U _ { x } - i U _ { y } = \frac { d \Phi } { d z } , z = x + i y$ ; confidence 0.974
+
203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018015.png ; $R ( K )$ ; confidence 0.991
  
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070264.png ; $F = \nu _ { 1 } F _ { 1 }$ ; confidence 0.991
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005056.png ; $h = ( h _ { 1 } , \dots , h _ { w } ) \in N ^ { w } \subset A ^ { w }$ ; confidence 0.190
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090114.png ; $\mu : A _ { 1 } \rightarrow A _ { 2 }$ ; confidence 0.991
  
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006041.png ; $h \mapsto [ h \circ f ] \in C ^ { \infty } ( R ^ { n } , R ) / A$ ; confidence 0.908
+
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052070.png ; $G ( x ) = F ^ { \prime } ( x _ { 0 } ) ^ { - 1 } F ( x )$ ; confidence 0.991
  
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006017.png ; $\varphi _ { i } : U _ { i } \subset R ^ { m } \rightarrow M$ ; confidence 0.826
+
207. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520403.png ; $\omega _ { k } = \operatorname { min } | ( Q , \Lambda ) |$ ; confidence 0.991
  
208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011054.png ; $HS = \| \alpha \| _ { L } 2 _ { \langle R ^ { 2 n } } \rangle$ ; confidence 0.295
+
208. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002015.png ; $\mu \in \mathcal{M} ( E )$ ; confidence 0.991
  
209. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001040.png ; $G _ { \text { inn } } = G \cap \operatorname { ln } n ( R )$ ; confidence 0.233
+
209. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017049.png ; $f ( d ) = 3 | \{ i : d _ { i } = 1 \} | - 2 n$ ; confidence 0.991
  
210. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003041.png ; $Z [ e ^ { 2 \pi i m t } f ] ( t , w ) = e ^ { 2 \pi i m t } ( Z f ) ( t , w )$ ; confidence 0.155
+
210. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001065.png ; $> 3$ ; confidence 0.991
  
211. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011025.png ; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623
+
211. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020119.png ; $( p ^ { * } , q ^ { * } )$ ; confidence 0.991
  
212. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012030.png ; $Z _ { n } ( x ; - \sigma ) = ( - 1 ) ^ { n } Z _ { n } ( - x ; \sigma )$ ; confidence 0.951
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200605.png ; $\Delta u + \epsilon \frac { 4 n ( n + 1 ) } { ( 1 + \epsilon ( x ^ { 2 } + y ^ { 2 } ) ) ^ { 2 } } u = 0,$ ; confidence 0.991
  
213. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013027.png ; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946
+
213. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007059.png ; $q ^ { H \otimes H / 2 }$ ; confidence 0.991
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
+
214. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006022.png ; $e ( f ) ( z ) ( y ) = f ( z , y )$ ; confidence 0.991
  
215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
+
215. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201903.png ; $\mathcal{H} = L ^ { 2 } ( \mathbf{R} ^ { 3 N } )$ ; confidence 0.991
  
216. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240361.png ; $\mathcal{H} : \Theta = 0$ ; confidence 0.991
  
217. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001032.png ; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290173.png ; $i \neq \operatorname { dim } A$ ; confidence 0.991
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050262.png ; $N _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { C } ^ { \# } ( n )$ ; confidence 0.466
+
218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016056.png ; $k , \text{l} \geq 1$ ; confidence 0.991
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050122.png ; $\frac { d u ( t ) } { d t } + A ( t , u ( t ) ) u ( t ) = f ( t , u ( t ) )$ ; confidence 0.994
+
219. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006060.png ; $T _ { A } M \times T _ { A } M ^ { \prime }$ ; confidence 0.991
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007048.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.665
+
220. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017091.png ; $c d = d c$ ; confidence 0.991
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783
+
221. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005018.png ; $\mu : Y \rightarrow X$ ; confidence 0.991
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185
+
222. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700053.png ; $\lambda z ( ( z z ) z )$ ; confidence 0.991
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018026.png ; $\frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda \neq 0,1$ ; confidence 0.465
+
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022046.png ; $M ( u , \xi )$ ; confidence 0.991
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180111.png ; $\exists v _ { i } \varphi ( v _ { 0 } , \dots , v _ { m } - 1 )$ ; confidence 0.113
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076031.png ; $t \rightarrow \pm \infty$ ; confidence 0.991
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025012.png ; $\{ ( 1 , t , t ^ { 2 } ) : t \in G F ( q ) \} \cup \{ ( 0,0,1 ) \}$ ; confidence 0.403
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076044.png ; $d x$ ; confidence 0.991
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029058.png ; $HF _ { * } ^ { symp } ( M , \text { id } ) \cong QH ^ { * } ( M )$ ; confidence 0.318
+
226. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030102.png ; $( x , \varepsilon ) \in \mathbf{R} \times ( 0 , \infty )$ ; confidence 0.991
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004029.png ; $L _ { \infty } ( \mu ) \subset X \subset L _ { 1 } ( \mu )$ ; confidence 0.979
+
227. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021027.png ; $B ( G )$ ; confidence 0.991
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009023.png ; $\frac { d \tau } { \tau } = p ( f , \tau ) \frac { d f } { f }$ ; confidence 0.988
+
228. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007090.png ; $0 = ( f , K ( x , y ) ) _ { H _ { 1 } } = f ( y )$ ; confidence 0.991
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009047.png ; $f e ^ { i x \operatorname { ln } \tau } = f e ^ { i t } = \xi$ ; confidence 0.370
+
229. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004015.png ; $\Delta ( G ) \leq \chi ^ { \prime } ( G ) \leq \Delta ( G ) + \mu ( G ).$ ; confidence 0.991
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022014.png ; $h ( X ) = h ^ { 0 } ( X ) \oplus \ldots \oplus h ^ { 2 n } ( X )$ ; confidence 0.925
+
230. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026055.png ; $F ( t , \nu )$ ; confidence 0.991
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022055.png ; $H _ { M } ^ { 2 j } ( X , Q ( j ) ) \cong CH ^ { j } ( X ) \otimes Q$ ; confidence 0.778
+
231. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014037.png ; $f \in \Phi$ ; confidence 0.991
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009039.png ; $u _ { t } + a ( t ) u _ { X } + b ( t ) u ^ { p } u _ { X } - u _ { X x t } = 0$ ; confidence 0.114
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066029.png ; $f g$ ; confidence 0.991
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014032.png ; $\omega ( \beta ) \nmid \sigma ^ { \prime } ( \beta )$ ; confidence 0.750
+
233. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050110.png ; $u _ { n } ( w ) = 0$ ; confidence 0.991
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015046.png ; $d _ { j } ^ { * } \in \cap _ { \in P } L _ { 2 } ( \Omega , A , P )$ ; confidence 0.092
+
234. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003042.png ; $L ( f ) = 1 \otimes f$ ; confidence 0.991
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016048.png ; $p _ { 1 } = x _ { 1 } + x _ { 2 } , \quad p _ { 2 } = x _ { 3 } + x _ { 4 }$ ; confidence 0.992
+
235. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330606.png ; $A \subset \Omega$ ; confidence 0.991
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016049.png ; $q _ { 1 } = x _ { 1 } + x _ { 3 } , \quad q _ { 2 } = x _ { 2 } + x _ { 4 }$ ; confidence 0.874
+
236. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190173.png ; $( h _ { 1 } , h _ { 2 } , p , W )$ ; confidence 0.991
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270102.png ; $b ( t ) = \operatorname { Eh } ( \{ Z ( t ) : T _ { 1 } > t \} )$ ; confidence 0.715
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010091.png ; $\gamma + n / 2$ ; confidence 0.991
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204209.png ; $\Psi _ { V , W } : V \otimes W \rightarrow W \otimes V$ ; confidence 0.732
+
238. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302801.png ; $( V P )$ ; confidence 0.991
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042018.png ; $\otimes \mathfrak { p } : C \times C \rightarrow C$ ; confidence 0.366
+
239. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002066.png ; $Q \subset M _ { k }$ ; confidence 0.991
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022026.png ; $\| u \| _ { p , T } = ( \int _ { T } | u ( x ) | ^ { p } d x ) ^ { 1 / p }$ ; confidence 0.901
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020010.png ; $\sigma \geq \sigma _ { 0 } > 0$ ; confidence 0.991
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052021.png ; $\| x _ { n } + 1 - x ^ { * } \| = O ( \| x _ { n } - x ^ { * } \| ^ { 2 } )$ ; confidence 0.566
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096054.png ; $\alpha ( x )$ ; confidence 0.991
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109209.png ; $( f ) = \{ ( x , r ) \in E \times R : x \in E , r \geq f ( x ) \}$ ; confidence 0.763
+
242. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620217.png ; $\beta > 1 / 2$ ; confidence 0.991
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290167.png ; $h _ { i } = \operatorname { l } _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.287
+
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001093.png ; $( E , \mathfrak { M } )$ ; confidence 0.991
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002033.png ; $\mu _ { t } = t \frac { \partial } { \partial t } k _ { t }$ ; confidence 0.604
+
244. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507032.png ; $( \sqrt { - 5 } , \sqrt { - 7 } )$ ; confidence 0.991
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300409.png ; $= \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k }$ ; confidence 0.831
+
245. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021048.png ; $B ( G_{2} )$ ; confidence 0.991
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009033.png ; $d ( P _ { N } u ) / d x = \sum _ { n = 0 } ^ { N } b _ { n } T _ { N } ( x )$ ; confidence 0.797
+
246. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c13013016.png ; $\frac { d K ( t ) } { d t } = F ( K ( t ) , L ( t ) ) - \lambda K ( t ) - C ( t ),$ ; confidence 0.991
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014043.png ; $\mathfrak { M } = ( X , \{ R _ { i } \} _ { 1 \leq i \leq r } )$ ; confidence 0.527
+
247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017090.png ; $ \operatorname { rank }  M ( n + 1 ) = \operatorname { rank } M ( n )$ ; confidence 0.991
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c1301408.png ; $A ^ { * } = ( a _ { i , j } ) ^ { * } = ( \overline { a _ { j , i } } )$ ; confidence 0.344
+
248. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005072.png ; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ),$ ; confidence 0.991
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170104.png ; $( p , q ) _ { M } = \langle M \hat { p } , \hat { q } \rangle$ ; confidence 0.366
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b1102604.png ; $( - \lambda , \rho \pm i \omega )$ ; confidence 0.991
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180493.png ; $+ 2 r d t \otimes d t + t d t \otimes d r + t d r \otimes d t$ ; confidence 0.052
+
250. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011032.png ; $w ( m , l ) = \frac { d \Phi } { d z } = - \frac { i \Gamma } { 2 \pi } \left[ \operatorname { cotan } \frac { \pi z } { l } - \frac { 1 } { z - m l } \right] \equiv 0.$ ; confidence 0.991
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180507.png ; $\tilde { N } = N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.586
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070105.png ; $\sigma ^ { * } ( d ) < \alpha d$ ; confidence 0.991
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180494.png ; $( x , t , r ) \in N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.994
+
252. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012019.png ; $x \in ( - \infty , \infty )$ ; confidence 0.991
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019019.png ; $( D ) \in K _ { 0 } ^ { alg } ( C _ { 1 } \otimes C [ \Gamma ] )$ ; confidence 0.571
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003035.png ; $h _ { K } \in L ^ { p } ( J )$ ; confidence 0.991
  
254. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210124.png ; $\| P _ { n } , \theta _ { n } - R _ { n } , k \| \rightarrow 0$ ; confidence 0.085
+
254. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070203.png ; $\tau T = M ( T )$ ; confidence 0.991
  
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021083.png ; $d L ^ { \prime } / d L = \operatorname { exp } \lambda$ ; confidence 0.967
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015048.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 }$ ; confidence 0.991
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021080.png ; $L [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ] \Rightarrow L$ ; confidence 0.919
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030067.png ; $( \eta , Y )$ ; confidence 0.991
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025029.png ; $N _ { k } ( t ) = 1 _ { ( X _ { k } \leq t , I _ { k } ( X _ { k } ) = 1 ) }$ ; confidence 0.528
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009079.png ; $f \in B ( \beta )$ ; confidence 0.991
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028044.png ; $\rho : F T \circ p \rightarrow \omega \square Gpd$ ; confidence 0.433
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a1106304.png ; $m > 0$ ; confidence 0.991
  
259. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130010/d1300108.png ; $h ( x , y ) = F ( \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y ) )$ ; confidence 0.979
+
259. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010051.png ; $| \tau ( p ) | \leq 2 p ^ { 11 / 2 }$ ; confidence 0.991
  
260. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020133.png ; $\vec { \mathfrak { c } } \frac { 1 } { \vec { k } } \leq 0$ ; confidence 0.252
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070100.png ; $< 2 m$ ; confidence 0.991
  
261. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200605.png ; $- \psi [ 1 ] _ { xx } + u [ 1 ] \psi [ 1 ] = \lambda \psi [ 1 ]$ ; confidence 0.764
+
261. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300407.png ; $K \in [ 1 , \infty )$ ; confidence 0.991
  
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201104.png ; $f ( x ) - f ( y ) \leq f ( x + y ) \leq f ( x ) + f ( y ) , x , y \in S$ ; confidence 0.995
+
262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004041.png ; $b _ { - 1 } = \frac { 1 } { 2 } c ( 1 + c ),$ ; confidence 0.991
  
263. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026033.png ; $| X _ { N } | = \operatorname { sup } _ { t } | X _ { N } ( t ) |$ ; confidence 0.199
+
263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001024.png ; $d _ { i } = c ( x _ { i } )$ ; confidence 0.991
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029036.png ; $\operatorname { gcd } ( p _ { 1 } \ldots p _ { k } , q ) = 1$ ; confidence 0.638
+
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b1201707.png ; $- \infty < \alpha < \infty$ ; confidence 0.991
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031014.png ; $\alpha f ( T ) + \beta g ( T ) = ( \alpha f + \beta g ) ( T )$ ; confidence 0.998
+
265. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026028.png ; $( L ^ { 2 } ) ^ { - } \supset ( L ^ { 2 } ) \supset ( L ^ { 2 } ) ^ { + }$ ; confidence 0.991
  
266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006079.png ; $[ Q , [ \Gamma , \Gamma ] ] = 2 [ [ Q , \Gamma ] , \Gamma ]$ ; confidence 0.996
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016029.png ; $\| A \| _ { 2 } = \| R ^ { T } R \| _ { 2 } = \| R \| _ { 2 } ^ { 2 }$ ; confidence 0.991
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070105.png ; $\hat { H } ^ { 1 } = \hat { H } ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.187
+
267. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004094.png ; $u \in G ^ { s } ( U )$ ; confidence 0.991
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009020.png ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu }$ ; confidence 0.929
+
268. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067037.png ; $x = u ^ { - 1 } ( 0 )$ ; confidence 0.991
  
269. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003016.png ; $H ^ { \bullet } ( \Gamma \backslash X , \tilde { M } )$ ; confidence 0.962
+
269. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080136.png ; $\sigma ( F ^ { \prime } ( c ) )$ ; confidence 0.991
  
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230118.png ; $\omega ^ { i t } = d y ^ { i t } - y _ { e _ { i } } ^ { i t } d x _ { i }$ ; confidence 0.100
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a01295056.png ; $p = 2$ ; confidence 0.991
  
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240110.png ; $H ^ { 1 } ( G ( \overline { Q } / Q ( \xi _ { L } ) ) ; T ( k - r ) )$ ; confidence 0.952
+
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010112.png ; $\partial E$ ; confidence 0.991
  
272. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007080.png ; $\zeta ( 1 / 2 + i t ) \ll t ^ { p } \operatorname { log } t$ ; confidence 0.970
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001039.png ; $T - C$ ; confidence 0.991
  
273. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010012.png ; $N _ { p } ( f ) = ( \int _ { G } | f ( x ) | ^ { p } d m ( x ) ) ^ { 1 / p }$ ; confidence 0.990
+
273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006020.png ; $H ^ { ( 1 ) } = Q ^ { + } Q ^ { - } = - D ^ { 2 } + u [ 1 ].$ ; confidence 0.991
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100154.png ; $\langle G \rangle \leq \| u \| _ { H } ( H ) + \epsilon$ ; confidence 0.190
+
274. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022011.png ; $T _ { g } ( z ) = \sum _ { k = - 1 } ^ { \infty } \chi _ { k } ( g ) q ^ { k }$ ; confidence 0.991
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008058.png ; $\langle \varphi , T \rangle = ( \pi ( T ) \xi , \eta )$ ; confidence 0.986
+
275. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023088.png ; $T ^ { - 1 } = L ( x ) L ^ { * } ( x ) - L ( y ) L ^ { * } ( y )$ ; confidence 0.991
  
276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010044.png ; $\Delta ( z ) = ( 60 G _ { 4 } ) ^ { 3 } - 27 ( 140 G _ { 6 } ) ^ { 2 }$ ; confidence 0.998
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008098.png ; $T _ { p q } = T _ { 10 } T _ { p - 1 , q } + T _ { 01 } T _ { p , q - 1 }$ ; confidence 0.991
  
277. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011020.png ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.980
+
277. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002037.png ; $\{ A ^ { \alpha } \}$ ; confidence 0.991
  
278. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019011.png ; $P _ { N } u = \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) C _ { j } ( x )$ ; confidence 0.987
+
278. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070126.png ; $\delta ( z , w ) = \operatorname { inf } _ { f \in \mathcal{F} } \{ \operatorname { log } | \xi | : f ( \xi ) = z , f ( 0 ) = w \},$ ; confidence 0.991
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f1201509.png ; $\alpha ( A ) : = \operatorname { dim } N ( A ) < \infty$ ; confidence 0.996
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013040.png ; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }.$ ; confidence 0.991
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024010.png ; $K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0$ ; confidence 0.743
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029031.png ; $P \rightarrow \Sigma$ ; confidence 0.991
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029064.png ; $f _ { L } ^ { \leftarrow } : L ^ { Y } \rightarrow L ^ { X }$ ; confidence 0.977
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032030.png ; $Y _ { i } = 2 X _ { i } - 1$ ; confidence 0.991
  
282. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006029.png ; $\sigma ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.917
+
282. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100140.png ; $G = \mathbf{T}$ ; confidence 0.991
  
283. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005040.png ; $A ( \xi , \tau ) : R ^ { n } \times R ^ { + } \rightarrow C$ ; confidence 0.990
+
283. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019010.png ; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991
  
284. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460108.png ; $( M \times [ 0,1 ] ; M \times \{ 0 \} , M \times \{ 1 \} )$ ; confidence 0.999
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016052.png ; $s \mapsto ( \mathcal{M} _ { s } f ) ( t )$ ; confidence 0.991
  
285. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003041.png ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981
+
285. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262079.png ; $( x , y ) \in Z$ ; confidence 0.991
  
286. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003010.png ; $\tau ( \varphi ) = \text { trace } \nabla d \varphi$ ; confidence 0.924
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240461.png ; $f ( t ) = \beta _ { 0 } + \beta _ { 1 } t + \ldots + \beta _ { k } t ^ { k }$ ; confidence 0.991
  
287. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005016.png ; $\beta ( \phi , \rho ) ( t ) = \int _ { N } u _ { \Phi } \rho$ ; confidence 0.636
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004056.png ; $s > 0$ ; confidence 0.991
  
288. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120144.png ; $\hat { \pi } : \overline { B } ( H ( Y ) ) \rightarrow Y$ ; confidence 0.863
+
288. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000107.png ; $F = \lambda k x$ ; confidence 0.991
  
289. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005030.png ; $g ( x , k ) = e ^ { - i k x } + o ( 1 ) , x \rightarrow - \infty$ ; confidence 0.970
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240437.png ; $( p \times q )$ ; confidence 0.991
  
290. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060146.png ; $\int _ { 0 } ^ { \infty } x ^ { n } | q ( x ) | d x = o ( n ^ { b x } )$ ; confidence 0.714
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001017.png ; $\frac { d ^ { 2 } u } { d t ^ { 2 } } = \operatorname { sin } ( u ) , \quad \frac { d ^ { 2 } v } { d t ^ { 2 } } = \operatorname { sinh } ( v ),$ ; confidence 0.991
  
291. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008021.png ; $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$ ; confidence 0.977
+
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140105.png ; $\sigma _ { e } ( T _ { \phi } ) = \phi ( \mathbf{T} )$ ; confidence 0.991
  
292. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020163.png ; $\tau = \operatorname { inf } \{ t > 0 : | B _ { t } | = 1 \}$ ; confidence 0.874
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004042.png ; $b _ { 0 } = 1 - c ^ { 2 } , b _ { 1 } = - \frac { 1 } { 2 } c ( 1 - c ).$ ; confidence 0.991
  
293. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002054.png ; $X ^ { * } = \operatorname { sup } _ { t \geq 0 } | X _ { t } |$ ; confidence 0.811
+
293. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005015.png ; $\int _ { - \infty } ^ { \infty } ( 1 + | x | ) | u ( x , 0 ) | d x < \infty$ ; confidence 0.991
  
294. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002057.png ; $X _ { t } = X _ { 0 } + \int _ { 0 } ^ { t } H _ { s } \cdot d B _ { s }$ ; confidence 0.768
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203605.png ; $k _ { B } T$ ; confidence 0.991
  
295. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004053.png ; $M \leq \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.742
+
295. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v09604012.png ; $m + n \rightarrow \infty$ ; confidence 0.991
  
296. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001046.png ; $\operatorname { span } \langle D \rangle < 4 c ( D )$ ; confidence 0.407
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009066.png ; $f ( z ) = \left( \beta \int _ { 0 } ^ { z } h ( \xi ) \xi ^ { - 1 } g ( \xi ) ^ { \beta } d \xi \right) ^ { 1 / \beta }.$ ; confidence 0.991
  
297. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006010.png ; $0 \leq \alpha _ { 1 } < \ldots < \alpha _ { k } \leq n - 1$ ; confidence 0.446
+
297. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002070.png ; $A _ { t } = 0$ ; confidence 0.991
  
298. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200302.png ; $\operatorname { Ric } ( \omega ) = \lambda \omega$ ; confidence 0.996
+
298. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007010.png ; $X ( s ) = 0 , X ^ { \prime } ( s ) = I.$ ; confidence 0.991
  
299. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003042.png ; $\in P , \alpha _ { i } \geq 0 , \text { alli } ; n \in N \}$ ; confidence 0.604
+
299. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025032.png ; $\mathcal{M} ( \Omega )$ ; confidence 0.991
  
300. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003017.png ; $\{ s _ { \mathfrak { q } ^ { \prime } } ^ { i } : i \geq 0 \}$ ; confidence 0.161
+
300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140152.png ; $ \operatorname { ind }T_{\Phi} = -\operatorname {wind} \operatorname {det} \Phi . $ ; confidence 0.991

Latest revision as of 17:10, 22 April 2020

List

1. a120050117.png ; $f \in C ( [ 0 , T ] ; X ) \cap L ^ { 1 } ( 0 , T ; Y )$ ; confidence 0.992

2. i12004089.png ; $0 \leq q \leq n$ ; confidence 0.992

3. n067520453.png ; $f = \sum _ { i = 1 } ^ { n } v _ { i } ^ { 2 }$ ; confidence 0.992

4. b1202001.png ; $H ^ { 2 }$ ; confidence 0.992

5. f120080128.png ; $B ( G ) = M _ { 0 } A ( G )$ ; confidence 0.992

6. l12013042.png ; $( X , 1 / f ( X ) )$ ; confidence 0.992

7. s13002039.png ; $l ( u ) = \infty$ ; confidence 0.992

8. h12003015.png ; $( y ^ { \alpha } )$ ; confidence 0.992

9. l12008018.png ; $M = \frac { \partial } { \partial x } + i x \frac { \partial } { \partial y }.$ ; confidence 0.992

10. b12003048.png ; $L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.992

11. a12006010.png ; $L ( \mathbf{R} ^ { p } )$ ; confidence 0.992

12. a012460159.png ; $x ^ { 0 }$ ; confidence 0.992

13. r130070107.png ; $= \operatorname { lim } _ { n \rightarrow \infty } ( f _ { n } , f _ { n } ) = \| f \| ^ { 2 }.$ ; confidence 0.992

14. n12010055.png ; $\| Y _ { 1 } - Z _ { 1 } \| _ { G } \leq \| Y _ { 0 } - Z _ { 0 } \| _ { G }$ ; confidence 0.992

15. o13006048.png ; $A _ { 1 } A _ { 2 } = A _ { 2 } A _ { 1 }$ ; confidence 0.992

16. p12011014.png ; $5$ ; confidence 0.992

17. j12001065.png ; $\operatorname { det } J F ( x ) \neq 0$ ; confidence 0.992

18. b11026040.png ; $k = 2 m + 1$ ; confidence 0.992

19. f120110159.png ; $[ \mathcal{F} f ] ( \xi ) = G ( \xi - i \Gamma 0 )$ ; confidence 0.992

20. j1300103.png ; $\operatorname{Tait}( D )$ ; confidence 0.992

21. c13007072.png ; $d ( d - 1 ) / 2$ ; confidence 0.992

22. s130510143.png ; $\infty ( L _ { 2 } )$ ; confidence 0.992

23. b1202202.png ; $f ( t , x , v ) \geq 0$ ; confidence 0.992

24. a13012045.png ; $A G ( d , q )$ ; confidence 0.992

25. a01095019.png ; $t \rightarrow 0$ ; confidence 0.992

26. y12003029.png ; $L = \operatorname { det } ( V _ { \pm } )$ ; confidence 0.992

27. z13003065.png ; $f ( t ) = \int _ { 0 } ^ { 1 } ( Z f ) ( t , w ) d w , - \infty < t < \infty,$ ; confidence 0.992

28. t12007018.png ; $\Gamma _ { 0 } ( p ) +$ ; confidence 0.992

29. m13014021.png ; $j _ { n } ( \zeta ) - 1$ ; confidence 0.992

30. i130060182.png ; $f ( k ) = 1 + \int _ { 0 } ^ { \infty } A ( y ) e ^ { i k y } d y$ ; confidence 0.992

31. m12011027.png ; $K \times D ^ { 2 } \subset M$ ; confidence 0.992

32. w12021034.png ; $p \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.992

33. b120040179.png ; $( r , 1 )$ ; confidence 0.992

34. g13003028.png ; $\{ \mathcal{A} ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.992

35. c13015071.png ; $\mathcal{G} ^ { \infty } ( \Omega )$ ; confidence 0.992

36. i12004055.png ; $K ( s )$ ; confidence 0.992

37. c130160169.png ; $M ( w )$ ; confidence 0.992

38. w12017014.png ; $\{ \omega _ { \alpha } ( G ) \}$ ; confidence 0.992

39. v096900161.png ; $H ( \zeta )$ ; confidence 0.992

40. i130090199.png ; $u _ { \chi } ( T )$ ; confidence 0.992

41. w1202003.png ; $L _ { \nu } [ f ] = f ( x _ { \nu } )$ ; confidence 0.992

42. y12001033.png ; $R \in A \otimes _ { k } A$ ; confidence 0.992

43. r13007070.png ; $( f , f ) \geq 0$ ; confidence 0.992

44. b12009028.png ; $\operatorname { Re } p ( f , \tau ) > 0$ ; confidence 0.992

45. n12002046.png ; $D ( \mu ) = \Theta ( \mu )$ ; confidence 0.992

46. e1201004.png ; $R _ { C } ( x , t )$ ; confidence 0.992

47. b13027022.png ; $\lambda \notin \sigma ( \pi ( T ) )$ ; confidence 0.992

48. d03428051.png ; $m > 3$ ; confidence 0.992

49. b12051070.png ; $D = \{ x : f ( x ) \leq f ( x _ { 0 } ) \}$ ; confidence 0.992

50. h1201509.png ; $\operatorname { Re } C ( X )$ ; confidence 0.992

51. r13007036.png ; $H _ { + } \subset H _ { 0 }$ ; confidence 0.992

52. b12016048.png ; $p _ { 1 } = x _ { 1 } + x _ { 2 } , \quad p _ { 2 } = x _ { 3 } + x _ { 4 },$ ; confidence 0.992

53. a120050128.png ; $D ( S ) = Y$ ; confidence 0.992

54. g13003037.png ; $( v _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.992

55. p11015027.png ; $\varphi : G \rightarrow H$ ; confidence 0.992

56. e12019042.png ; $( P , L )$ ; confidence 0.992

57. j12001055.png ; $\operatorname { deg } F \leq d$ ; confidence 0.992

58. r13005044.png ; $1 \neq g \in G$ ; confidence 0.992

59. s13062084.png ; $f ( \lambda ) = d \rho ( \lambda ) / d \lambda$ ; confidence 0.992

60. s13066018.png ; $\lambda _ { n k } = \frac { 1 } { \sum _ { j = 0 } ^ { n - 1 } | \phi _ { j } ( \xi _ { n k } ) | ^ { 2 } } > 0.$ ; confidence 0.992

61. l120100116.png ; $| i \nabla + A ( x ) | ^ { 2 }$ ; confidence 0.992

62. m12023026.png ; $d f _ { t }$ ; confidence 0.992

63. c12029010.png ; $m , m ^ { \prime } \in M$ ; confidence 0.992

64. e12019012.png ; $Q ( x ) = \sigma ( x , x )$ ; confidence 0.992

65. g1200502.png ; $\psi ( x , y , t ) : \mathbf{R} ^ { n } \times \Omega \times \mathbf{R} ^ { + } \rightarrow \mathbf{R} ^ { N },$ ; confidence 0.992

66. a13001016.png ; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992

67. a12010079.png ; $( I + \lambda A )$ ; confidence 0.992

68. b12009080.png ; $| f ( z ) | < 1$ ; confidence 0.992

69. b13017045.png ; $S _ { T }$ ; confidence 0.992

70. b130200102.png ; $\beta \neq - \alpha$ ; confidence 0.992

71. c130070146.png ; $k ( C ^ { * } )$ ; confidence 0.992

72. d1201904.png ; $C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$ ; confidence 0.992

73. d13017013.png ; $0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq \dots$ ; confidence 0.992

74. e12005039.png ; $h ^ { i } ( w ) = g ^ { i } ( w )$ ; confidence 0.992

75. d03292035.png ; $s = 0$ ; confidence 0.992

76. g1200302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } ),$ ; confidence 0.992

77. n13003066.png ; $\operatorname { Re } ( \lambda )$ ; confidence 0.992

78. w12009012.png ; $E = K ^ { n }$ ; confidence 0.992

79. f12021021.png ; $L _ { 0 } ( u ^ { \lambda } ) = \pi ( \lambda ) z ^ { \lambda }$ ; confidence 0.992

80. n067520309.png ; $( M , \sigma )$ ; confidence 0.992

81. e1300501.png ; $0 = L ( \alpha , \beta ) u = \left\{ \partial _ { x } \partial _ { y } - \frac { \alpha - \beta } { x - y } \partial _ { x } + \frac { \alpha ( \beta - 1 ) } { ( x - y ) ^ { 2 } } \right\} u = 0,$ ; confidence 0.992

82. b01663026.png ; $\partial K$ ; confidence 0.992

83. p07548010.png ; $\neg \neg p \supset p$ ; confidence 0.992

84. s12023026.png ; $\psi ( T T ^ { \prime } ) = \phi ( A ^ { \prime } T T ^ { \prime } A )$ ; confidence 0.992

85. e13007036.png ; $I = ( N , N + M ]$ ; confidence 0.992

86. a13004038.png ; $\Gamma \subset T$ ; confidence 0.992

87. b1302701.png ; $T = T ^ { * }$ ; confidence 0.992

88. o13001040.png ; $u ( x , \alpha , k )$ ; confidence 0.992

89. t12021043.png ; $t ( M _ { G } ; x , y )$ ; confidence 0.992

90. e03500063.png ; $M ( C , \epsilon )$ ; confidence 0.992

91. c12002059.png ; $\gamma \in \operatorname{SO} ( n )$ ; confidence 0.992

92. c130070198.png ; $r , s \in k ( C )$ ; confidence 0.992

93. b120040180.png ; $1 / r = 1 / p ^ { \prime } + 1 / 2$ ; confidence 0.992

94. o130010131.png ; $k = k _ { 0 } > 0$ ; confidence 0.992

95. w13014015.png ; $\operatorname { sinc } ( x ) = x ^ { - 1 } \operatorname { sin } x$ ; confidence 0.992

96. e120120100.png ; $\operatorname { log } \int f ( \theta , \phi ) d \phi = \operatorname { log } f ( \theta , \phi ) - \operatorname { log } f ( \phi | \theta ) =$ ; confidence 0.992

97. f13009067.png ; $R_{l} ( p ; k , n ) = p ^ { - 1 } q ^ { n + 1 } F _ { n + 2 } \left( \frac { p } { q } \right),$ ; confidence 0.992

98. e12015034.png ; $\mathcal{P} _ { j } ^ { i } =$ ; confidence 0.992

99. a130040231.png ; $E ( \Gamma , \Delta ) = \{ \epsilon _ { i } ( \gamma , \delta ) : \gamma \approx \delta \in \Gamma \approx \Delta , i \in I \}$ ; confidence 0.992

100. a12025098.png ; $k = ( n - 1 ) q + n$ ; confidence 0.992

101. f120080174.png ; $\varphi \in B _ { p } ( G )$ ; confidence 0.992

102. k05584021.png ; $\kappa = \operatorname { min } ( \operatorname { dim } \mathcal{K} _ { + } , \operatorname { dim } \mathcal{K} _ { - } ) < \infty$ ; confidence 0.992

103. b13022044.png ; $D ^ { \gamma } q = 0$ ; confidence 0.992

104. a130180177.png ; $\square ^ { \alpha } U$ ; confidence 0.992

105. c12019021.png ; $L ^ { 2 } ( M )$ ; confidence 0.992

106. q12001098.png ; $Y \in C$ ; confidence 0.992

107. a12023042.png ; $\Gamma \in C ^ { 2 }$ ; confidence 0.992

108. w1300408.png ; $\omega _ { j } = 2 \frac { \partial X _ { j } } { \partial z } d z$ ; confidence 0.992

109. a130070108.png ; $\alpha \geq 2$ ; confidence 0.992

110. f12015042.png ; $B \in \Phi ( Y , Z )$ ; confidence 0.992

111. b120400112.png ; $H ^ { k } ( G / B , \xi ) = 0$ ; confidence 0.992

112. c13025053.png ; $\overline { N } = \sum _ { k } N _ { k }$ ; confidence 0.992

113. l11003019.png ; $\mu \perp \nu$ ; confidence 0.992

114. m12016044.png ; $\Phi _ { 11 }$ ; confidence 0.992

115. f12009052.png ; $| f ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( \epsilon | \zeta | )$ ; confidence 0.992

116. m13003026.png ; $0 \mapsto 01$ ; confidence 0.992

117. m12012056.png ; $R C$ ; confidence 0.992

118. k05584078.png ; $\int _ { - \infty } ^ { \infty } | f | ^ { 2 } d | \sigma | < \infty$ ; confidence 0.992

119. i13006098.png ; $q ( x ) = 2 \frac { d } { d x } [ \Gamma _ { 2 x } ( 2 x , 0 ) - \Gamma _ { 2 x } ( 0,0 ) ].$ ; confidence 0.992

120. g130030103.png ; $f ^ { * } ( x , \varepsilon )$ ; confidence 0.992

121. s1200206.png ; $h : \mathbf{R} ^ { N } \times \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.992

122. l12006090.png ; $\overline { \mathcal{H} } \supset \mathcal{H} \supset \mathcal{D}$ ; confidence 0.992

123. s12017020.png ; $X = \{ a , b \}$ ; confidence 0.992

124. j120020129.png ; $H _ { 0 } ^ { 1 } = \{ f \in H ^ { 1 } : f ( 0 ) = 0 \}$ ; confidence 0.992

125. c1104705.png ; $T M$ ; confidence 0.992

126. d12015026.png ; $( v , k , \lambda , n ) =$ ; confidence 0.992

127. t130050134.png ; $\sigma _ { \mathcal{B} } ( A )$ ; confidence 0.992

128. m13007028.png ; $[ m , s ]$ ; confidence 0.992

129. n067520289.png ; $A \simeq K _ { \rho }$ ; confidence 0.992

130. t120200194.png ; $1 > \delta _ { 1 } > \delta _ { 2 } \geq \rho$ ; confidence 0.992

131. d120230131.png ; $\{ F _ { i } \}$ ; confidence 0.992

132. x12002041.png ; $B ( L )$ ; confidence 0.992

133. a12008071.png ; $f \in L ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.992

134. d12014021.png ; $u = e ^ { i \alpha }$ ; confidence 0.992

135. f12009018.png ; $\mathcal{F} \mu ( \zeta ) = \mu ( \operatorname { exp } \zeta z ),$ ; confidence 0.992

136. b13029044.png ; $I ( A ) = d - 1$ ; confidence 0.992

137. s13051090.png ; $\mathcal{P} = \{ \mathbf{u} \in \mathbf{V} : \sigma ( \mathbf{u} ) = 0 \},$ ; confidence 0.992

138. j13004023.png ; $2_{1}$ ; confidence 0.992

139. e12002016.png ; $X \rightarrow X \vee X$ ; confidence 0.992

140. o13001061.png ; $L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.992

141. c130070133.png ; $k [ C ] = k [ x , y ]$ ; confidence 0.992

142. o13006035.png ; $A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 }$ ; confidence 0.992

143. e13005016.png ; $\Omega = \{ ( x , y ) \in \mathbf{R} ^ { 2 } : 0 < x < y < 1 \}$ ; confidence 0.992

144. f11005061.png ; $k ( z )$ ; confidence 0.992

145. a12007092.png ; $\left. - A ( s ) ( \lambda - A ( s ) ) ^ { - 1 } \frac { d A ( s ) ^ { - 1 } } { d s } \right\| \leq$ ; confidence 0.992

146. s130530120.png ; $B N$ ; confidence 0.992

147. l12003062.png ; $\varphi \in \operatorname{Hom}_{\mathcal{K}}( R ^ { * } , H ^ { * } B E )$ ; confidence 0.992

148. m12009051.png ; $N > n / 2$ ; confidence 0.992

149. b12017015.png ; $\mathcal{G} _ { \alpha } \mathcal{G} _ { \beta } = \mathcal{G} _ { \alpha + \beta }$ ; confidence 0.992

150. h04602011.png ; $y ( t ) = \int _ { 0 } ^ { t } g ( t - \tau ) x ( \tau ) d \tau.$ ; confidence 0.992

151. i13001044.png ; $\chi _ { \mu }$ ; confidence 0.992

152. b13030050.png ; $f ( m , n )$ ; confidence 0.992

153. p13012019.png ; $K \geq ( 5,2 )$ ; confidence 0.992

154. a11053020.png ; $F G$ ; confidence 0.992

155. h13006059.png ; $\xi \in X$ ; confidence 0.992

156. l12004092.png ; $\rho _ { R } = 0.125$ ; confidence 0.992

157. w13008038.png ; $Q \sim \infty$ ; confidence 0.992

158. i12001014.png ; $W _ { p } ^ { k } ( \Omega )$ ; confidence 0.992

159. c120210101.png ; $( \mathcal{X} , \mathcal{A} )$ ; confidence 0.992

160. e12011057.png ; $\mathbf{H} = - \nabla \varphi$ ; confidence 0.992

161. t12020062.png ; $M _ { 2 } ( k ) = 1$ ; confidence 0.992

162. n13006014.png ; $0 = \mu _ { 1 } ( \Omega ) \leq \mu _ { 2 } ( \Omega ) \leq \dots$ ; confidence 0.992

163. o0681703.png ; $\omega ^ { 2 } = \int _ { 0 } ^ { 1 } Z ^ { 2 } ( t ) d t,$ ; confidence 0.992

164. a01139025.png ; $M ( G )$ ; confidence 0.992

165. t12007031.png ; $= \frac { 1 } { q } + 196884 q + 21493760 q ^ { 2 } + 864299970 q ^ { 3 } +$ ; confidence 0.992

166. f13013013.png ; $E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.992

167. i13007084.png ; $\alpha ^ { \prime } , \alpha \in M$ ; confidence 0.992

168. v096900156.png ; $f _ { p } \in L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.992

169. j12001054.png ; $\operatorname { det } J F = 1$ ; confidence 0.992

170. e120020104.png ; $Y , Z$ ; confidence 0.992

171. f11001053.png ; $y ^ { ( 2 ) } = x$ ; confidence 0.992

172. w120060103.png ; $A = F \mathbf{R}$ ; confidence 0.992

173. z13008057.png ; $\alpha \in \mathbf{N} _ { 0 }$ ; confidence 0.992

174. a13025027.png ; $\mathcal{L} = \mathcal{D} \oplus V$ ; confidence 0.992

175. m12023060.png ; $f _ { t , s } \rightarrow f$ ; confidence 0.992

176. d13011026.png ; $\gamma _ { i } \gamma _ { j } + \gamma _ { j } \gamma _ { i } = 0 , i \neq j , i , j = 1,2,3,4.$ ; confidence 0.992

177. i1300307.png ; $Y \rightarrow B$ ; confidence 0.992

178. h12011038.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \left| \int _ { \Gamma } \frac { f ( \xi ) } { \xi ^ { k + 1 } } d \xi \right| ^ { 1 / k } \leq 1.$ ; confidence 0.992

179. m12016050.png ; $c = - 2 \psi ^ { \prime } ( 0 )$ ; confidence 0.992

180. l05705023.png ; $S \rightarrow S$ ; confidence 0.992

181. e120120104.png ; $\theta ^ { ( t + 1 ) }$ ; confidence 0.992

182. o13001065.png ; $\Gamma u = u _ { N } + h u$ ; confidence 0.992

183. d13018029.png ; $f J _ { E }$ ; confidence 0.992

184. d11022059.png ; $( m , m )$ ; confidence 0.992

185. f12019030.png ; $C _ { H } ( n ) = \{ 1 \}$ ; confidence 0.991

186. l12003063.png ; $T ^ { 0 } E$ ; confidence 0.991

187. t120200189.png ; $0 < \kappa < \pi / 2$ ; confidence 0.991

188. c12029058.png ; $Q \rightarrow P$ ; confidence 0.991

189. t12019010.png ; $C ( n , k , r )$ ; confidence 0.991

190. b01722033.png ; $K ( X )$ ; confidence 0.991

191. s12018018.png ; $( \alpha \beta ) ^ { * } = \beta ^ { * } \alpha ^ { * }$ ; confidence 0.991

192. c120170115.png ; $\operatorname { rank } M = \operatorname { rank } M ( n ) = r$ ; confidence 0.991

193. a13025018.png ; $L _ { 1 } = V$ ; confidence 0.991

194. l12015032.png ; $( T V , d )$ ; confidence 0.991

195. l11003078.png ; $\sigma ( M ( \mathcal{E} ) , L ( \mathcal{E} ) )$ ; confidence 0.991

196. q13003050.png ; $H ( \rho ) = \operatorname { Tr } \rho \operatorname { log } _ { 2 } ( \rho )$ ; confidence 0.991

197. w13004041.png ; $( g , \eta )$ ; confidence 0.991

198. t13007011.png ; $g ( e ^ { i t } ) = \rho ( \theta ( t ) ) e ^ { i \theta ( t ) } ( \forall t \in \mathbf{R} ),$ ; confidence 0.991

199. s12023096.png ; $X : = A Q \Rightarrow U : = Q$ ; confidence 0.991

200. w12017063.png ; $d \leq ( 5 l + 2 ) / 3$ ; confidence 0.991

201. t13014061.png ; $( v _ { i } \times v _ { j } )$ ; confidence 0.991

202. t13007021.png ; $t \mapsto \operatorname { log } \rho ( \theta ( t ) )$ ; confidence 0.991

203. d12018015.png ; $R ( K )$ ; confidence 0.991

204. c130070264.png ; $F = \nu _ { 1 } F _ { 1 }$ ; confidence 0.991

205. l120090114.png ; $\mu : A _ { 1 } \rightarrow A _ { 2 }$ ; confidence 0.991

206. b12052070.png ; $G ( x ) = F ^ { \prime } ( x _ { 0 } ) ^ { - 1 } F ( x )$ ; confidence 0.991

207. n067520403.png ; $\omega _ { k } = \operatorname { min } | ( Q , \Lambda ) |$ ; confidence 0.991

208. n12002015.png ; $\mu \in \mathcal{M} ( E )$ ; confidence 0.991

209. s12017049.png ; $f ( d ) = 3 | \{ i : d _ { i } = 1 \} | - 2 n$ ; confidence 0.991

210. z12001065.png ; $> 3$ ; confidence 0.991

211. v120020119.png ; $( p ^ { * } , q ^ { * } )$ ; confidence 0.991

212. b1200605.png ; $\Delta u + \epsilon \frac { 4 n ( n + 1 ) } { ( 1 + \epsilon ( x ^ { 2 } + y ^ { 2 } ) ) ^ { 2 } } u = 0,$ ; confidence 0.991

213. q12007059.png ; $q ^ { H \otimes H / 2 }$ ; confidence 0.991

214. e13006022.png ; $e ( f ) ( z ) ( y ) = f ( z , y )$ ; confidence 0.991

215. w1201903.png ; $\mathcal{H} = L ^ { 2 } ( \mathbf{R} ^ { 3 N } )$ ; confidence 0.991

216. a130240361.png ; $\mathcal{H} : \Theta = 0$ ; confidence 0.991

217. b130290173.png ; $i \neq \operatorname { dim } A$ ; confidence 0.991

218. d12016056.png ; $k , \text{l} \geq 1$ ; confidence 0.991

219. w12006060.png ; $T _ { A } M \times T _ { A } M ^ { \prime }$ ; confidence 0.991

220. p12017091.png ; $c d = d c$ ; confidence 0.991

221. k12005018.png ; $\mu : Y \rightarrow X$ ; confidence 0.991

222. l05700053.png ; $\lambda z ( ( z z ) z )$ ; confidence 0.991

223. b12022046.png ; $M ( u , \xi )$ ; confidence 0.991

224. a01076031.png ; $t \rightarrow \pm \infty$ ; confidence 0.991

225. b11076044.png ; $d x$ ; confidence 0.991

226. g130030102.png ; $( x , \varepsilon ) \in \mathbf{R} \times ( 0 , \infty )$ ; confidence 0.991

227. f13021027.png ; $B ( G )$ ; confidence 0.991

228. r13007090.png ; $0 = ( f , K ( x , y ) ) _ { H _ { 1 } } = f ( y )$ ; confidence 0.991

229. v12004015.png ; $\Delta ( G ) \leq \chi ^ { \prime } ( G ) \leq \Delta ( G ) + \mu ( G ).$ ; confidence 0.991

230. e12026055.png ; $F ( t , \nu )$ ; confidence 0.991

231. e12014037.png ; $f \in \Phi$ ; confidence 0.991

232. a11066029.png ; $f g$ ; confidence 0.991

233. v130050110.png ; $u _ { n } ( w ) = 0$ ; confidence 0.991

234. q12003042.png ; $L ( f ) = 1 \otimes f$ ; confidence 0.991

235. d0330606.png ; $A \subset \Omega$ ; confidence 0.991

236. e120190173.png ; $( h _ { 1 } , h _ { 2 } , p , W )$ ; confidence 0.991

237. l12010091.png ; $\gamma + n / 2$ ; confidence 0.991

238. d0302801.png ; $( V P )$ ; confidence 0.991

239. v12002066.png ; $Q \subset M _ { k }$ ; confidence 0.991

240. d12020010.png ; $\sigma \geq \sigma _ { 0 } > 0$ ; confidence 0.991

241. b11096054.png ; $\alpha ( x )$ ; confidence 0.991

242. s130620217.png ; $\beta > 1 / 2$ ; confidence 0.991

243. e12001093.png ; $( E , \mathfrak { M } )$ ; confidence 0.991

244. k05507032.png ; $( \sqrt { - 5 } , \sqrt { - 7 } )$ ; confidence 0.991

245. f13021048.png ; $B ( G_{2} )$ ; confidence 0.991

246. c13013016.png ; $\frac { d K ( t ) } { d t } = F ( K ( t ) , L ( t ) ) - \lambda K ( t ) - C ( t ),$ ; confidence 0.991

247. c12017090.png ; $ \operatorname { rank } M ( n + 1 ) = \operatorname { rank } M ( n )$ ; confidence 0.991

248. v13005072.png ; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ),$ ; confidence 0.991

249. b1102604.png ; $( - \lambda , \rho \pm i \omega )$ ; confidence 0.991

250. v13011032.png ; $w ( m , l ) = \frac { d \Phi } { d z } = - \frac { i \Gamma } { 2 \pi } \left[ \operatorname { cotan } \frac { \pi z } { l } - \frac { 1 } { z - m l } \right] \equiv 0.$ ; confidence 0.991

251. a130070105.png ; $\sigma ^ { * } ( d ) < \alpha d$ ; confidence 0.991

252. k12012019.png ; $x \in ( - \infty , \infty )$ ; confidence 0.991

253. c12003035.png ; $h _ { K } \in L ^ { p } ( J )$ ; confidence 0.991

254. c130070203.png ; $\tau T = M ( T )$ ; confidence 0.991

255. c13015048.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 }$ ; confidence 0.991

256. b12030067.png ; $( \eta , Y )$ ; confidence 0.991

257. b12009079.png ; $f \in B ( \beta )$ ; confidence 0.991

258. a1106304.png ; $m > 0$ ; confidence 0.991

259. f12010051.png ; $| \tau ( p ) | \leq 2 p ^ { 11 / 2 }$ ; confidence 0.991

260. a120070100.png ; $< 2 m$ ; confidence 0.991

261. q1300407.png ; $K \in [ 1 , \infty )$ ; confidence 0.991

262. l12004041.png ; $b _ { - 1 } = \frac { 1 } { 2 } c ( 1 + c ),$ ; confidence 0.991

263. m13001024.png ; $d _ { i } = c ( x _ { i } )$ ; confidence 0.991

264. b1201707.png ; $- \infty < \alpha < \infty$ ; confidence 0.991

265. s12026028.png ; $( L ^ { 2 } ) ^ { - } \supset ( L ^ { 2 } ) \supset ( L ^ { 2 } ) ^ { + }$ ; confidence 0.991

266. c12016029.png ; $\| A \| _ { 2 } = \| R ^ { T } R \| _ { 2 } = \| R \| _ { 2 } ^ { 2 }$ ; confidence 0.991

267. g12004094.png ; $u \in G ^ { s } ( U )$ ; confidence 0.991

268. s09067037.png ; $x = u ^ { - 1 } ( 0 )$ ; confidence 0.991

269. d130080136.png ; $\sigma ( F ^ { \prime } ( c ) )$ ; confidence 0.991

270. a01295056.png ; $p = 2$ ; confidence 0.991

271. c120010112.png ; $\partial E$ ; confidence 0.991

272. m12001039.png ; $T - C$ ; confidence 0.991

273. d12006020.png ; $H ^ { ( 1 ) } = Q ^ { + } Q ^ { - } = - D ^ { 2 } + u [ 1 ].$ ; confidence 0.991

274. m13022011.png ; $T _ { g } ( z ) = \sum _ { k = - 1 } ^ { \infty } \chi _ { k } ( g ) q ^ { k }$ ; confidence 0.991

275. d12023088.png ; $T ^ { - 1 } = L ( x ) L ^ { * } ( x ) - L ( y ) L ^ { * } ( y )$ ; confidence 0.991

276. c12008098.png ; $T _ { p q } = T _ { 10 } T _ { p - 1 , q } + T _ { 01 } T _ { p , q - 1 }$ ; confidence 0.991

277. c12002037.png ; $\{ A ^ { \alpha } \}$ ; confidence 0.991

278. p130070126.png ; $\delta ( z , w ) = \operatorname { inf } _ { f \in \mathcal{F} } \{ \operatorname { log } | \xi | : f ( \xi ) = z , f ( 0 ) = w \},$ ; confidence 0.991

279. a13013040.png ; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }.$ ; confidence 0.991

280. a13029031.png ; $P \rightarrow \Sigma$ ; confidence 0.991

281. a13032030.png ; $Y _ { i } = 2 X _ { i } - 1$ ; confidence 0.991

282. f130100140.png ; $G = \mathbf{T}$ ; confidence 0.991

283. l12019010.png ; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991

284. d12016052.png ; $s \mapsto ( \mathcal{M} _ { s } f ) ( t )$ ; confidence 0.991

285. m06262079.png ; $( x , y ) \in Z$ ; confidence 0.991

286. a130240461.png ; $f ( t ) = \beta _ { 0 } + \beta _ { 1 } t + \ldots + \beta _ { k } t ^ { k }$ ; confidence 0.991

287. b12004056.png ; $s > 0$ ; confidence 0.991

288. l057000107.png ; $F = \lambda k x$ ; confidence 0.991

289. a130240437.png ; $( p \times q )$ ; confidence 0.991

290. b12001017.png ; $\frac { d ^ { 2 } u } { d t ^ { 2 } } = \operatorname { sin } ( u ) , \quad \frac { d ^ { 2 } v } { d t ^ { 2 } } = \operatorname { sinh } ( v ),$ ; confidence 0.991

291. t120140105.png ; $\sigma _ { e } ( T _ { \phi } ) = \phi ( \mathbf{T} )$ ; confidence 0.991

292. l12004042.png ; $b _ { 0 } = 1 - c ^ { 2 } , b _ { 1 } = - \frac { 1 } { 2 } c ( 1 - c ).$ ; confidence 0.991

293. h13005015.png ; $\int _ { - \infty } ^ { \infty } ( 1 + | x | ) | u ( x , 0 ) | d x < \infty$ ; confidence 0.991

294. b1203605.png ; $k _ { B } T$ ; confidence 0.991

295. v09604012.png ; $m + n \rightarrow \infty$ ; confidence 0.991

296. b12009066.png ; $f ( z ) = \left( \beta \int _ { 0 } ^ { z } h ( \xi ) \xi ^ { - 1 } g ( \xi ) ^ { \beta } d \xi \right) ^ { 1 / \beta }.$ ; confidence 0.991

297. j12002070.png ; $A _ { t } = 0$ ; confidence 0.991

298. k12007010.png ; $X ( s ) = 0 , X ^ { \prime } ( s ) = I.$ ; confidence 0.991

299. m13025032.png ; $\mathcal{M} ( \Omega )$ ; confidence 0.991

300. t120140152.png ; $ \operatorname { ind }T_{\Phi} = -\operatorname {wind} \operatorname {det} \Phi . $ ; confidence 0.991

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/15. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/15&oldid=44425