Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/38"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 38 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101010.png ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400103.png ; $p \in C^{-}$ ; confidence 0.843
  
2. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201408.png ; $N ( x ) = \lfloor x + 1 / 2$ ; confidence 0.565
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050048.png ; $= \operatorname { exp } \left( - x \int _ { 0 } ^ { \infty } ( 1 - e ^ { - u v } ) \frac { 1 } { \sqrt { 2 \pi v ^ { 3 } } } d v \right) =$ ; confidence 0.843
  
3. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014016.png ; $\lambda \theta ^ { n }$ ; confidence 0.684
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012067.png ; $2 \pi k / N$ ; confidence 0.843
  
4. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009026.png ; $P _ { \Omega } ( x , \xi )$ ; confidence 0.996
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040623.png ; $\Gamma \vDash_{ \mathcal{S} _ { P }} \varphi$ ; confidence 0.843
  
5. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009021.png ; $\omega _ { n } r ^ { n - 1 }$ ; confidence 0.609
+
5. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020129.png ; $g ( u _ { 1 } ) \leq v ^ { * }$ ; confidence 0.843
  
6. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015062.png ; $K _ { 1 } , \dots , K _ { 1 }$ ; confidence 0.428
+
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021027.png ; $M , N \in \{ A_i \} _ { i = 1 } ^ { k }$ ; confidence 0.843
  
7. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548010.png ; $\neg \neg p \supset p$ ; confidence 0.992
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031093.png ; $\operatorname{II} _ { 1 }$ ; confidence 0.843
  
8. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001059.png ; $t \mapsto \sqrt { - 1 }$ ; confidence 0.896
+
8. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003063.png ; $\mathfrak { G } = K.AN$ ; confidence 0.843
  
9. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005076.png ; $\theta = \theta ^ { k }$ ; confidence 0.999
+
9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h,$ ; confidence 0.843
  
10. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005099.png ; $( . . ) _ { D } 2 f ( x ^ { * } )$ ; confidence 0.140
+
10. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { deg } F \leq 100$ ; confidence 0.843
  
11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070107.png ; $\Delta g = g \otimes g$ ; confidence 0.946
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010027.png ; $2 ^ { X }$ ; confidence 0.843
  
12. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007051.png ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982
+
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016035.png ; $k _ { G } = 0$ ; confidence 0.843
  
13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r1300508.png ; $\alpha , b \in \Omega$ ; confidence 0.640
+
13. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030130.png ; $W _ { + }$ ; confidence 0.843
  
14. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005025.png ; $g : h \mapsto h g ^ { - 1 }$ ; confidence 0.910
+
14. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290124.png ; $\mathbf{FRM}$ ; confidence 0.843
  
15. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007036.png ; $H _ { + } \subset H _ { 0 }$ ; confidence 0.992
+
15. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004019.png ; $m \leq 6$ ; confidence 0.843
  
16. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r1300704.png ; $\| f \| = ( f , f ) ^ { 1 / 2 }$ ; confidence 0.997
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019037.png ; $\varphi \in \operatorname{HP} ^ { 0 } ( A )$ ; confidence 0.843
  
17. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007086.png ; $H ^ { 0 } \subset H _ { 1 }$ ; confidence 0.986
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023055.png ; $\operatorname{grad} \psi \neq 0$ ; confidence 0.843
  
18. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007031.png ; $H _ { - } \supset H _ { 0 }$ ; confidence 0.989
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240357.png ; $n - r \geq p$ ; confidence 0.843
  
19. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007011.png ; $( f ( . ) , K ( , y ) ) = f ( y )$ ; confidence 0.863
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058044.png ; $\sigma 2$ ; confidence 0.843
  
20. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009022.png ; $\sigma ( w x + \theta )$ ; confidence 0.883
+
20. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020120.png ; $\mu_{l}$ ; confidence 0.842
  
21. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232028.png ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788
+
21. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011035.png ; $z = m l + b / 2$ ; confidence 0.842
  
22. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011011.png ; $P \cap P ^ { - 1 } = \{ e \}$ ; confidence 0.977
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201102.png ; $\varphi ( a , b , 0 ) = \alpha + b,$ ; confidence 0.842
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001050.png ; $K \hookrightarrow C$ ; confidence 0.912
+
23. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011065.png ; $\pi _ { 1 } ( M ) = \mathbf{Z}$ ; confidence 0.842
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002043.png ; $u \in \overline { U M }$ ; confidence 0.924
+
24. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100124.png ; $f _ { 1 } , \dots , f _ { N }$ ; confidence 0.842
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002030.png ; $I ( \gamma ) \subset R$ ; confidence 0.950
+
25. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005027.png ; $q = p ^ { m }$ ; confidence 0.842
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040102.png ; $R = \sum _ { n > 0 } R ^ { n }$ ; confidence 0.918
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027092.png ; $\operatorname { lim } _ { t \rightarrow \infty } a ( t ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } u d F ( u ) }.$ ; confidence 0.842
  
27. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032660/d0326606.png ; $x _ { 1 } , \dots , x _ { 1 }$ ; confidence 0.185
+
27. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110135.png ; $a : 1 - a$ ; confidence 0.842
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040117.png ; $1 , \dots , | \lambda |$ ; confidence 0.578
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027056.png ; $\operatorname { Ext } ( X )$ ; confidence 0.842
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034034.png ; $K _ { x } = K _ { + } - K _ { - }$ ; confidence 0.329
+
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140111.png ; $H ^ { \infty } + C = \{ f + g : f \in C ( \mathbf{T} ) , g \in H ^ { \infty } \}$ ; confidence 0.842
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015084.png ; $H \rightarrow GL ( V )$ ; confidence 0.540
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021074.png ; $V ( \mathfrak { g } , \mathfrak { b } )$ ; confidence 0.842
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041039.png ; $( \mu _ { 0 } , \mu _ { 1 } )$ ; confidence 0.956
+
31. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190148.png ; $f \in G$ ; confidence 0.842
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602035.png ; $\alpha ^ { \prime } < 1$ ; confidence 0.676
+
32. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300204.png ; $( r _ { 1 } , r _ { 2 } )$ ; confidence 0.842
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020021.png ; $\lambda = ( 4,3,1,1 )$ ; confidence 0.998
+
33. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008018.png ; $\textsf{E}[W]_{\text{FCFS}} = \frac { 1 } { 2 ( 1 - \rho ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.842
  
34. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202101.png ; $\pi : Z \rightarrow Y$ ; confidence 0.978
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060179.png ; $S _ { 0 }$ ; confidence 0.842
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047013.png ; $n \geq \nu ( \lambda )$ ; confidence 0.989
+
35. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040125.png ; $\mathcal{N P} \neq \mathcal{P}$ ; confidence 0.842
  
36. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047012.png ; $( T - \lambda I ) ^ { n } X$ ; confidence 0.546
+
36. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005047.png ; $2 ^ { d - 1 } ( d + 1 )$ ; confidence 0.842
  
37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048036.png ; $H _ { S } ^ { 0 } ( D ) = ker D$ ; confidence 0.522
+
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090354.png ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841
  
38. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043270/g043270124.png ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709
+
38. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007037.png ; $E ( k , \omega )$ ; confidence 0.841
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048049.png ; $\pi : M \rightarrow B$ ; confidence 0.998
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430147.png ; $Y \subset X$ ; confidence 0.841
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080024.png ; $\overline { \nabla }$ ; confidence 0.900
+
40. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002050.png ; $( V _ { g } f ) ( \theta , t ) = ( 2 \pi t ) ^ { - 1 } \int _ { S ^ { 2 } } f ( \sigma ) g \left( \frac { 1 - \theta . \sigma } { t } \right) d \sigma$ ; confidence 0.841
  
41. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049041.png ; $k = 0 , \ldots , r ( P ) - 1$ ; confidence 0.616
+
41. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050162.png ; $\sigma _ { r } ( A ) = \sigma _ { T } ( A ) = \mathbf{B} _ { 4 }$ ; confidence 0.841
  
42. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023020.png ; $\phi ( T T ^ { \prime } )$ ; confidence 0.930
+
42. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230122.png ; $B ^ { \prime } = \alpha_{*} B$ ; confidence 0.841
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023060.png ; $K ^ { \prime } K = I _ { m }$ ; confidence 0.361
+
43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011079.png ; $\tilde{\mathcal{O}}$ ; confidence 0.841
  
44. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023032.png ; $X X ^ { \prime } = I _ { p }$ ; confidence 0.779
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018096.png ; $\varepsilon$ ; confidence 0.841
  
45. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510110.png ; $\gamma ( u ) = \dot { k }$ ; confidence 0.892
+
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013026.png ; $W _ { 2 } = S _ { 2 } e ^ { \sum _ { 1 } ^ { \infty } y _ { k } ( \Lambda ^ { t } ) ^ { k } };$ ; confidence 0.841
  
46. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051069.png ; $( u _ { i } , v _ { i } ) \in E$ ; confidence 0.848
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $| x | < e$ ; confidence 0.841
  
47. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051026.png ; $g ( u _ { i } ) \leq b _ { i }$ ; confidence 0.600
+
47. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010121.png ; $\mathcal{S} = ( f _ { i } : B \rightarrow A _ { i } ) _ { I }$ ; confidence 0.841
  
48. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051075.png ; $j \in \{ 1 , \dots , m \}$ ; confidence 0.514
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203403.png ; $\sum _ { k = 0 } ^ { \infty } \left| c _ { k } z ^ { k } \right| < 1$ ; confidence 0.841
  
49. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024047.png ; $\varepsilon _ { i } > 0$ ; confidence 0.995
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c1203004.png ; $\{ S _ { i } \} _ { i = 1 } ^ { n }$ ; confidence 0.841
  
50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054024.png ; $\pi : H \rightarrow G$ ; confidence 0.999
+
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202101.png ; $L = \sum _ { n = 0 } ^ { N } a ^ { [ n ] } ( z ) z ^ { n } \left( \frac { d } { d z } \right) ^ { n },$ ; confidence 0.841
  
51. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025019.png ; $P _ { n } ( x ) = U _ { n } ( x )$ ; confidence 0.744
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027070.png ; $f \in Y$ ; confidence 0.841
  
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025022.png ; $P _ { n } ( x ) = T _ { n } ( x )$ ; confidence 0.863
+
52. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080134.png ; $\mathcal{N} = 2 \rightarrow \mathcal{N} = 0$ ; confidence 0.841
  
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059041.png ; $( F _ { N } > 0 , G _ { N } > 0 )$ ; confidence 0.525
+
53. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001017.png ; $Z ( \alpha x ( n ) + \beta y ( n ) ) = \alpha Z ( x ( n ) ) + \beta Z ( y ( n ) ),$ ; confidence 0.841
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028036.png ; $[ g ] : Y \rightarrow P$ ; confidence 0.816
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030092.png ; $\operatorname { tr } ( K _ { i } ) \leq 1$ ; confidence 0.841
  
55. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906703.png ; $U : C \rightarrow Set$ ; confidence 0.641
+
55. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016018.png ; $\mathcal{R} _ { \text{nd} } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} } / \mathcal{I} _ { \text{nd} }$ ; confidence 0.841
  
56. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670103.png ; $W = GL ^ { k } ( n ) \nmid G$ ; confidence 0.272
+
56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011058.png ; $\a ( x , \xi ) = \int k \left( x + \frac { t } { 2 } , x - \frac { t } { 2 } \right) e ^ { - 2 i \pi t \xi } d t.$ ; confidence 0.841
  
57. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620142.png ; $\theta ( . , \lambda )$ ; confidence 0.943
+
57. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230128.png ; $S = X X ^ { \prime }$ ; confidence 0.841
  
58. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320138.png ; $R R ^ { 21 } = 1 \otimes 1$ ; confidence 0.999
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007076.png ; $\| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta },$ ; confidence 0.840
  
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340189.png ; $\overline { \Sigma }$ ; confidence 0.342
+
59. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006090.png ; $D \in \operatorname { Der } A$ ; confidence 0.840
  
60. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063022.png ; $m _ { 1 } , \dots , m _ { r }$ ; confidence 0.286
+
60. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011026.png ; $K ^ { n } \subset M ^ { n + 2 }$ ; confidence 0.840
  
61. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306603.png ; $T = \{ z \in C : | z | = 1 \}$ ; confidence 0.962
+
61. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008054.png ; $= \frac { ( - 1 ) ^ { l } } { 2 } \Gamma ( \alpha + 1 ) \left( \frac { 2 } { s } \right) ^ { \alpha + 1 } J _ { k + l + \alpha + 1 } ( s ),$ ; confidence 0.840
  
62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t1200202.png ; $X = ( X _ { n } ) _ { n \in Z }$ ; confidence 0.540
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065041.png ; $\psi _{0} = 1$ ; confidence 0.840
  
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050123.png ; $\sigma _ { T } ( A , X / Y )$ ; confidence 0.745
+
63. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024040.png ; $\operatorname{sup} h( t )$ ; confidence 0.840
  
64. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007031.png ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705
+
64. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006020.png ; $p B _ { 2 n } \equiv p - 1 ( \operatorname { mod } p ^ { h + 1 } )$ ; confidence 0.840
  
65. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005047.png ; $x \in \Sigma ^ { i } ( f )$ ; confidence 0.940
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203409.png ; $\left| \sum _ { \alpha } c _ { \alpha } z ^ { \alpha } \right| < 1,$ ; confidence 0.840
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005011.png ; $i \in \{ 0 , \dots , n \}$ ; confidence 0.531
+
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001040.png ; $z ^ { n } f ( D )$ ; confidence 0.840
  
67. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050123.png ; $x \in \Sigma ^ { n } ( f )$ ; confidence 0.855
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004034.png ; $K _ { \lambda \mu }$ ; confidence 0.840
  
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006091.png ; $R _ { j } ^ { 0 } \in R ^ { 3 }$ ; confidence 0.990
+
68. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
  
69. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006068.png ; $N _ { j } \in ( 0 , Z _ { j } )$ ; confidence 0.924
+
69. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $m \equiv 4$ ; confidence 0.840
  
70. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008022.png ; $p _ { 1 } , \dots , p _ { s }$ ; confidence 0.588
+
70. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041024.png ; $x , y \in \mathbf{R}$ ; confidence 0.840
  
71. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013051.png ; $\tau _ { N } ( x , y + [ z ] )$ ; confidence 0.798
+
71. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211012.png ; $\chi _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.840
  
72. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201308.png ; $M = S _ { 1 } ^ { - 1 } S _ { 2 }$ ; confidence 0.712
+
72. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010023.png ; $| \alpha . x _ { 0 } - p | < \delta$ ; confidence 0.840
  
73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013050.png ; $\tau _ { N } ( x - [ z ] , y )$ ; confidence 0.788
+
73. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004019.png ; $f ^ { * * } = ( f ^ { * } ) ^ { * }$ ; confidence 0.840
  
74. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t1301509.png ; $f \in L ^ { \infty } ( T )$ ; confidence 0.821
+
74. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029075.png ; $f ( q _ { n } ) q _ { n } > c _ { 1 } ( \varphi ( q _ { n } ) / q _ { n } ) ^ { c _ { 2 } }$ ; confidence 0.840
  
75. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520150.png ; $\phi \in H ^ { \infty }$ ; confidence 0.999
+
75. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004065.png ; $\varphi ( D ) = \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.840
  
76. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015039.png ; $\eta \in A ^ { \prime }$ ; confidence 0.990
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301709.png ; $C ( t )$ ; confidence 0.840
  
77. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356020.png ; $\phi ( x y ) = \phi ( y x )$ ; confidence 0.997
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031048.png ; $\delta \geq k - j$ ; confidence 0.840
  
78. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356026.png ; $f ( x x ^ { * } ) < + \infty$ ; confidence 0.936
+
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040094.png ; $H _ { R } \subset V$ ; confidence 0.840
  
79. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020095.png ; $( n / ( 2 e ( m + n ) ) ) ^ { n }$ ; confidence 0.756
+
79. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002030.png ; $q , r \in \mathbf{N}$ ; confidence 0.840
  
80. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020015.png ; $M _ { 4 } \geq \delta > 0$ ; confidence 0.966
+
80. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w1301105.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i \varepsilon }$ ; confidence 0.839
  
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200162.png ; $0 < \kappa \leq \pi / 2$ ; confidence 0.987
+
81. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012053.png ; $c = a q$ ; confidence 0.839
  
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020016.png ; $M _ { 6 } \geq \kappa > 0$ ; confidence 0.979
+
82. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082480/r08248050.png ; $\alpha \in \Phi$ ; confidence 0.839
  
83. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200222.png ; $( K / ( 8 e ( m + K ) ) ) ^ { K }$ ; confidence 0.988
+
83. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101808.png ; $\Psi ( x , x ^ { 1 / u } ) \sim \rho ( u ) x$ ; confidence 0.839
  
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021089.png ; $t ( T _ { 1 } ) = t ( T _ { 2 } )$ ; confidence 0.999
+
84. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300408.png ; $| f ^ { \prime } ( x ) | ^ { n } \leq K J _ { f } ( x )$ ; confidence 0.839
  
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021052.png ; $a ( G ) = t ( M _ { G } ; 2,0 )$ ; confidence 0.605
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081040.png ; $\psi ( t )$ ; confidence 0.839
  
86. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002010.png ; $\| \hat { f } \| _ { 2 } = 1$ ; confidence 0.971
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001096.png ; $\Gamma = \operatorname { Sp } ( 2 n , \mathbf{Z} )$ ; confidence 0.839
  
87. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002026.png ; $A = \{ x : f ( x ) \neq 0 \}$ ; confidence 0.993
+
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090145.png ; $\lambda _ { p } ( k _ { \infty } / k ) = \mu _ { p } ( k _ { \infty } / k ) = \nu _ { p } ( k _ { \infty } / k ) = 0$ ; confidence 0.839
  
88. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v09603010.png ; $\epsilon = \mu ^ { - 2 }$ ; confidence 1.000
+
88. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016029.png ; $X = \partial / \partial_{ t }$ ; confidence 0.839
  
89. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005067.png ; $\sum _ { n \in Z } x ^ { n }$ ; confidence 0.679
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
  
90. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128074.png ; $f , g : X \rightarrow Y$ ; confidence 0.995
+
90. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200109.png ; $\operatorname{GF} ( m ) \subseteq K$ ; confidence 0.839
  
91. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430104.png ; $BG_{q}$ ; confidence 0.839
  
92. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003013.png ; $\lambda ( E ) < \delta$ ; confidence 1.000
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302806.png ; $\operatorname { agm } ( a , b )$ ; confidence 0.839
  
93. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003036.png ; $\{ \int f _ { n } d \mu \}$ ; confidence 0.998
+
93. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840311.png ; $\mathcal{K} \oplus \mathcal{K} _ { 1 }$ ; confidence 0.839
  
94. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004042.png ; $\Delta ( G ) \geq 3 n / 4$ ; confidence 0.999
+
94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032093.png ; $\operatorname{Mat} (p | q )$ ; confidence 0.839
  
95. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690022.png ; $Z = A \cap A ^ { \prime }$ ; confidence 0.957
+
95. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013012.png ; $Y ( i ) \times I ^ { 2 } \rightarrow Y ( j )$ ; confidence 0.839
  
96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030120.png ; $x ^ { * * } \notin K _ { n }$ ; confidence 0.295
+
96. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300808.png ; $\| f - p \| _ { 2 } = \left( \int \int _ { D } | f ( x , y ) - p ( x , y ) | ^ { 2 } d x d y \right) ^ { 1 / 2 }$ ; confidence 0.839
  
97. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002014.png ; $c ( x , y ) = d ^ { p } ( x , y )$ ; confidence 0.995
+
97. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008036.png ; $\mathbf{P} ^ { 2 } ( \mathbf{R} )$ ; confidence 0.839
  
98. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004050.png ; $\eta ( W ) d g ( W ) \in i R$ ; confidence 0.973
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035024.png ; $Z ^ { N }$ ; confidence 0.839
  
99. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006097.png ; $F : M f \rightarrow M f$ ; confidence 0.942
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130093.png ; $\tilde { M } \rightarrow M$ ; confidence 0.839
  
100. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m06533023.png ; $A _ { 1 } , \dots , A _ { k }$ ; confidence 0.697
+
100. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306403.png ; $a _ { n } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } a ( e ^ { i \theta } ) e ^ { - i n \theta } d \theta.$ ; confidence 0.839
  
101. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067860/n06786012.png ; $S ^ { \prime } ( R ^ { n } )$ ; confidence 0.587
+
101. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004081.png ; $\Sigma _ { P }$ ; confidence 0.839
  
102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007045.png ; $f \in L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.498
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026031.png ; $\overline{X} _ { n } = \operatorname { sup } _ { t } X _ { n } ( t )$ ; confidence 0.839
  
103. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090339.png ; $e _ { \alpha } ^ { i } / i !$ ; confidence 0.769
+
103. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015014.png ; $P : C ( X ) \rightarrow \Pi _ { K \in \mathcal{K} } C ( G )$ ; confidence 0.838
  
104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011070.png ; $\Phi = E \oplus E ^ { * }$ ; confidence 0.927
+
104. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004033.png ; $f ( z ) = \int _ { \partial D } f ( \zeta ) K _ { \text{BM} } ( \zeta , z ) - \int _ { D } \overline { \partial } f ( \zeta ) \bigwedge K _ { \text{BM} } ( \zeta , z ),$ ; confidence 0.838
  
105. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080134.png ; $N = 2 \rightarrow N = 0$ ; confidence 0.841
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $\mathcal{C}$ ; confidence 0.838
  
106. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008085.png ; $\xi \sim w + ^ { ( 1 / N ) }$ ; confidence 0.662
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
  
107. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076370/q07637068.png ; $n _ { 1 } , n _ { 2 } , \dots$ ; confidence 0.774
+
107. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013028.png ; $\sigma ( A | _ { L } ) = \tau$ ; confidence 0.838
  
108. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018062.png ; $A \subset R _ { + } ^ { 2 }$ ; confidence 0.727
+
108. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009044.png ; $\hat { E } = 1 / P ( \xi )$ ; confidence 0.838
  
109. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006046.png ; $H = \oplus _ { N } H _ { n }$ ; confidence 0.331
+
109. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002042.png ; $G _ { \tau }$ ; confidence 0.838
  
110. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012029.png ; $T _ { W d } = T _ { \delta }$ ; confidence 0.846
+
110. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202001.png ; $f = \lambda ^ { n } + a _ { n - 1 } \lambda ^ { n - 1 } + \ldots + a _ { 1 } \lambda + a _ { 0 }$ ; confidence 0.838
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650267.png ; $x _ { 1 } , \dots , x _ { k }$ ; confidence 0.249
+
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021097.png ; $W ^ { ( i ) } = \{ w \in W : l ( w ) = i \}$ ; confidence 0.838
  
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021046.png ; $( s , \dots , s , B _ { m } )$ ; confidence 0.517
+
112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002054.png ; $| x _ { 1 } | \geq \ldots \geq | x _ { m } |$ ; confidence 0.838
  
113. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013046.png ; $S ^ { 3 } \subset R ^ { 4 }$ ; confidence 0.929
+
113. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016013.png ; $( \mathcal{M} _ { s } f ) ( t ) = \frac { 1 } { 2 } \operatorname { sup } _ { s } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { s } f ( s , t )$ ; confidence 0.838
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017070.png ; $y _ { 1 } , \dots , y _ { T }$ ; confidence 0.684
+
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170123.png ; $K ^ { 2 } \nearrow K ^ { 2 } \cup _ { B ^ { 2 } } B ^ { 3 } \searrow L ^ { 2 }$ ; confidence 0.838
  
115. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301704.png ; $x _ { t } = y _ { t } + z _ { t }$ ; confidence 0.986
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008061.png ; $\sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } E ^ { n - i } = 0$ ; confidence 0.838
  
116. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001076.png ; $\tau ( A ) \subseteq R$ ; confidence 0.990
+
116. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015049.png ; $x = t _ { 1 } ^ { 2 } t _ { 2 }$ ; confidence 0.838
  
117. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001083.png ; $C _ { S } ( R ) = C _ { S } ( Q )$ ; confidence 0.948
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024069.png ; $y _ { i j k }$ ; confidence 0.838
  
118. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001033.png ; $R \in A \otimes _ { k } A$ ; confidence 0.992
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016041.png ; $x = f ( \overline { u } ).$ ; confidence 0.838
  
119. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002025.png ; $\nabla _ { A } F _ { A } = 0$ ; confidence 0.980
+
119. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010058.png ; $a \cup b$ ; confidence 0.838
  
120. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y1200201.png ; $\xi : P \rightarrow M$ ; confidence 0.997
+
120. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001012.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t < \infty$ ; confidence 0.837
  
121. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004018.png ; $\{ u _ { j } \} \subset A$ ; confidence 0.957
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058037.png ; $\operatorname{epi} ( f )$ ; confidence 0.837
  
122. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001033.png ; $Z ^ { - 1 } ( x ( z ) ) = x ( n )$ ; confidence 0.759
+
122. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010116.png ; $\alpha ^ { \prime } \in S ^ { 2 } , \alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.837
  
123. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010069.png ; $\{ 0 , \{ \emptyset \}$ ; confidence 0.313
+
123. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010033.png ; $m \geq 8$ ; confidence 0.837
  
124. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010021.png ; $( \varphi \vee \psi )$ ; confidence 0.999
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008049.png ; $\operatorname { det } [ E \lambda - A ] \neq 0$ ; confidence 0.837
  
125. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010128.png ; $b _ { 2 } \neq b _ { 4 }$ ; confidence 0.995
+
125. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015066.png ; $I \geq 0$ ; confidence 0.837
  
126. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010130.png ; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007026.png ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T.$ ; confidence 0.837
  
127. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
+
127. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021065.png ; $( s _ { 1 } , \dots , s _ { k } )$ ; confidence 0.837
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013055.png ; $L ( \Lambda _ { 0 } )$ ; confidence 0.993
+
128. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001027.png ; $x ( \infty ) = \operatorname { lim } _ { n \rightarrow \infty } x ( n ) = \operatorname { lim } _ { z \rightarrow 1 } ( z - 1 ) Z ( x ( n ) )$ ; confidence 0.837
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240330.png ; $( p \times p _ { 1 } )$ ; confidence 0.958
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240168.png ; $\alpha_{.} = 0$ ; confidence 0.837
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975
+
130. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005097.png ; $v = \Theta _ { \Delta } ( z ) u$ ; confidence 0.837
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024097.png ; $y = \alpha + \beta t +$ ; confidence 0.990
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300135.png ; $n = n _ { 1 } n _ { 2 }$ ; confidence 0.837
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
+
132. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026019.png ; $\textsf{P} \{ w \in \partial G \} = 0$ ; confidence 0.837
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240378.png ; $p ^ { - 1 } ( n - r - p + 1 ) F$ ; confidence 0.999
+
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010017.png ; $\Phi ( q ) = \left\{ \begin{array} { l l } { + \infty } & { \text { if } | q | \leq \sigma , } \\ { 0 } & { \text { if } | q | > \sigma , } \end{array} \right.$ ; confidence 0.837
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310111.png ; $M ( C ( S ) , \alpha , G )$ ; confidence 0.994
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302802.png ; $b = b _ { 0 }$ ; confidence 0.837
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
+
135. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017022.png ; $P M _ { 2 } ( G )$ ; confidence 0.837
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004012.png ; $( d / d t ) x ( t ) = A x ( t )$ ; confidence 0.969
+
136. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300302.png ; $\Gamma \subset G ( \mathbf{Q} )$ ; confidence 0.837
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040168.png ; $h : F m \rightarrow A$ ; confidence 0.599
+
137. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008039.png ; $V _ { k + l } ^ { k - l } ( 1,0 ; \alpha ) = 1$ ; confidence 0.837
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004020.png ; $\varphi \in \Gamma$ ; confidence 1.000
+
138. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006037.png ; $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$ ; confidence 0.837
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040714.png ; $\exists v ; \varphi$ ; confidence 0.548
+
139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f1201406.png ; $K ( x , t ) = - \frac { 1 } { \pi } \frac { \partial } { \partial n _ { t } } \operatorname { log } | z - t | , z , t \in C,$ ; confidence 0.837
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
+
140. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040082.png ; $C ^ { - } = - C ^ { + }$ ; confidence 0.837
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040338.png ; $\lambda \in \Delta$ ; confidence 0.639
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a1202706.png ; $\Lambda ( s , \rho ) = W ( \rho ) . \Lambda ( 1 - s , \overline { \rho } ),$ ; confidence 0.837
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000103.png ; $R _ { \epsilon } ( X )$ ; confidence 0.837
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034028.png ; $B _ { n } ( D )$ ; confidence 0.837
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050248.png ; $Z _ { G } ( - q ^ { - 1 } ) = 0$ ; confidence 0.613
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012076.png ; $\Delta _ { \varepsilon } ( t + 2 \pi ) = \Delta _ { \varepsilon } ( t )$ ; confidence 0.837
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005017.png ; $0 \leq s \leq t \leq T$ ; confidence 0.999
+
145. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008039.png ; $J _ { i j } = J$ ; confidence 0.837
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007066.png ; $- ( 1 - \varepsilon )$ ; confidence 1.000
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300709.png ; $45045 = 5.79 .11 .13$ ; confidence 0.994
+
147. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003032.png ; $\mathcal{U} ( \mathfrak { g } )$ ; confidence 0.837
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a1300807.png ; $g ( x ) = h ( x ) / \alpha$ ; confidence 0.972
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034080.png ; $x = x ^ { \prime }$ ; confidence 0.836
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008073.png ; $- \infty < x < \infty$ ; confidence 0.999
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } ),$ ; confidence 0.836
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850
+
150. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011028.png ; $X = \operatorname { cl } ( M \backslash ( K \times D ^ { 2 } ) )$ ; confidence 0.836
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008086.png ; $s ^ { 2 } = ( R - m ) ( m - L )$ ; confidence 0.997
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002054.png ; $\| U _ { X } ( x ^ { * } ) \| = \| x \| ^ { 3 }$ ; confidence 0.836
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a13009014.png ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864
+
152. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232020.png ; $u ( x ) = - \int _ { H } g ( x , y ; H ) d \mu ( y ) + h ^ { * } ( x ),$ ; confidence 0.836
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011036.png ; $\alpha ( m , n ) \leq 3$ ; confidence 0.994
+
153. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023750/c0237502.png ; $x _ { 0 } \in \mathbf{R} ^ { n }$ ; confidence 0.836
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011020.png ; $A ( 3 , n ) = 2 ^ { n + 3 } - 3$ ; confidence 0.971
+
154. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029059.png ; $\square ^ { 1 }$ ; confidence 0.836
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010295.png ; $\underline { \Phi }$ ; confidence 0.194
+
155. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003031.png ; $P _ { \mu } = \operatorname{Id}$ ; confidence 0.836
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030046.png ; $\theta Y \circ \phi$ ; confidence 0.536
+
156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008086.png ; $x _ { i j } ^ { \nu }$ ; confidence 0.836
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032033.png ; $R _ { 0 } ^ { ( s + 1 ) } ( z )$ ; confidence 0.998
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001072.png ; $N ^ { ( n - 1 ) / 2 }$ ; confidence 0.836
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438
+
158. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004021.png ; $T _ { n } ^ { * } ( x )$ ; confidence 0.836
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160116.png ; $j = 1 , \ldots , p _ { t }$ ; confidence 0.428
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003018.png ; $\{ a b c \} = a b c + c b a$ ; confidence 0.836
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016068.png ; $c _ { 1 } \lambda ^ { 2 }$ ; confidence 0.333
+
160. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001042.png ; $| \delta | \leq 1$ ; confidence 0.836
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012033.png ; $( q , q ^ { \alpha - 2 } )$ ; confidence 0.336
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018019.png ; $a _ { 1 } + a _ { 2 } \neq 0$ ; confidence 0.472
+
162. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003024.png ; $1 - p _ { 0 } = \| P _ { 1 } \psi \| ^ { 2 }$ ; confidence 0.836
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018053.png ; $( L ) = S P A | g _ { + } ( L )$ ; confidence 0.100
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013010.png ; $\mathbf{Q} (\operatorname{exp} ( G ) )$ ; confidence 0.836
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022054.png ; $R \text { Mod } ( ? , C )$ ; confidence 0.369
+
164. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001024.png ; $Z ( x ( n + k ) ) = z ^ { k } Z ( x ( n ) ) - \sum _ { r = 0 } ^ { k - 1 } x ( r ) z ^ { k - r }$ ; confidence 0.836
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200105.png ; $C ^ { \prime \prime }$ ; confidence 0.135
+
165. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009057.png ; $T P / G$ ; confidence 0.836
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023060.png ; $| q | = q 1 + \ldots + q x$ ; confidence 0.931
+
166. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220203.png ; $\operatorname{dim}_{\text{Q}} H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { Z } ^ { 0 } < \infty$ ; confidence 0.836
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025010.png ; $\{ x y z \} = - \{ y x z \}$ ; confidence 0.866
+
167. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006079.png ; $\langle \lambda | f ( z ) ) = \frac { 1 } { \lambda - z } \langle \lambda | V \phi ) ( \phi , f ( z ) ),$ ; confidence 0.836
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027077.png ; $W _ { P } ( \rho _ { i z } )$ ; confidence 0.073
+
168. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060105.png ; $\varphi_{-} ( k ) = f ( - k )$ ; confidence 0.836
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280155.png ; $\omega \in \hat { G }$ ; confidence 0.940
+
169. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023037.png ; $v _ { 1 } , v _ { 2 } \in R$ ; confidence 0.836
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029042.png ; $L _ { 0 } \subset M ( P )$ ; confidence 0.975
+
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006084.png ; $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ ; confidence 0.836
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029043.png ; $L _ { 1 } \subset M ( P )$ ; confidence 0.984
+
171. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100120.png ; $u \in L _ { \text{C} } ^ { \infty } ( \hat { G } )$ ; confidence 0.835
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032030.png ; $Y _ { i } = 2 X _ { i } - 1$ ; confidence 0.991
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233046.png ; $y \in Y$ ; confidence 0.835
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501023.png ; $( B _ { r } , \phi _ { r } )$ ; confidence 0.963
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011025.png ; $x _ { i } + t _ { i } v _ { i } \in S$ ; confidence 0.835
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501015.png ; $( B _ { n } , \phi _ { n } )$ ; confidence 0.999
+
174. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200201.png ; $\frac { d } { d t } \frac { \partial L } { \partial \dot { q } } - \frac { \partial L } { \partial q } = \tau,$ ; confidence 0.835
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010021.png ; $( [ L , A ] F ) _ { N } ( X ) =$ ; confidence 0.754
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200604.png ; $\psi [ 1 ] = \psi _ { x } + \sigma \psi ; \quad \sigma = - \varphi _ { x } \varphi ^ { - 1 }$ ; confidence 0.835
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021068.png ; $\theta _ { \lambda }$ ; confidence 0.990
+
176. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002065.png ; $| R | > \varepsilon q ^ { n }$ ; confidence 0.835
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003014.png ; $Q _ { x } y = \{ x y x \} / 2$ ; confidence 0.861
+
177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005033.png ; $q ^ { \text{th} }$ ; confidence 0.835
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004058.png ; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026012.png ; $\sum _ { x \in f ^{ - 1} ( 0 ) \cap \partial K } \text { sign det } f ^ { \prime } ( x )$ ; confidence 0.835
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004074.png ; $L _ { 1 } = L _ { 1 } ( \mu )$ ; confidence 0.976
+
179. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840279.png ; $A x = \int _ { - \| A \| } ^ { \| A \| } \lambda E ( d \lambda ) x + N x,$ ; confidence 0.835
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040114.png ; $x _ { x } \downarrow 0$ ; confidence 0.438
+
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021072.png ; $\{ A _ { 1 } , \dots , A _ { k } \}$ ; confidence 0.835
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297033.png ; $1 \leq p \leq \infty$ ; confidence 0.997
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027015.png ; $S S ^ { * } = 1 - P$ ; confidence 0.835
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981
+
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024083.png ; $= \mathfrak { g }$ ; confidence 0.835
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006090.png ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786
+
183. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840144.png ; $x \in \mathcal{D} ( T )$ ; confidence 0.835
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007035.png ; $a ^ { i } b ^ { k } a ^ { - j }$ ; confidence 0.679
+
184. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584031.png ; $( x , y ) = [ x _ { + } , y _ { + } ] - [ x _ { - } , y _ { - } ],$ ; confidence 0.835
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009093.png ; $( f ( z ^ { n } ) ) ^ { m / n }$ ; confidence 0.804
+
185. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180138.png ; $\tau _ { 2 } : \otimes ^ { 2 } \mathcal{E} \rightarrow \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.835
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009034.png ; $m ( \xi ) = 1 + \xi ^ { 2 }$ ; confidence 0.999
+
186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010017.png ; $\mathbf{c} ^ { \text{em} } =\mathbf{f} ^ { \text{em} } \times \mathbf{x} + ( \mathbf{P} \times \mathbf{E} ^ { \prime } + \mathbf{M} ^ { \prime } \times \mathbf{B} ),$ ; confidence 0.835
  
187. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009028.png ; $\Omega \times [ 0 , T$ ; confidence 0.804
+
187. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012097.png ; $\Sigma ^ { ( t + 1 ) } = \frac { 1 } { n } \sum _ { i } w _ { i } ^ { ( t + 1 ) } ( y _ { i } - \mu ^ { ( t + 1 ) } ) ( y _ { i } - \mu ^ { ( t + 1 ) } ) ^ { T }.$ ; confidence 0.835
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010064.png ; $T ( z ) \rightarrow 0$ ; confidence 0.998
+
188. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100137.png ; $T = c _ { 1 } \lambda ^ { p } ( \delta _ { x _ { 1 } } ) + \ldots + c _ { n } \lambda ^ { p } ( \delta _ { x _ { n } } )$ ; confidence 0.835
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016040.png ; $f = \sum _ { l } a _ { l } x$ ; confidence 0.457
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340117.png ; $\omega_0$ ; confidence 0.835
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017043.png ; $F _ { \alpha } ^ { p , q }$ ; confidence 0.780
+
190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202601.png ; $( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , \mathcal{B} , d \mu )$ ; confidence 0.834
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020059.png ; $y ( n ) = c x ( n ) + d u ( n )$ ; confidence 0.995
+
191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201004.png ; $e _ { 1 } \leq e _ { 2 } \leq \ldots < 0$ ; confidence 0.834
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020017.png ; $| \theta ( z ) | \leq 1$ ; confidence 0.996
+
192. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005054.png ; $x ^ { 0 } = \operatorname { cosh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.834
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022068.png ; $f ( \xi ) \in D _ { \xi }$ ; confidence 0.985
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013980/a0139805.png ; $Y _ { t }$ ; confidence 0.834
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022092.png ; $N + d = 2 / ( \gamma - 1 )$ ; confidence 0.967
+
194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230118.png ; $+ ( - 1 ) ^ { q + k _ { 1 } } d \omega \bigwedge i ( K _ { 1 } ) K _ { 2 }.$ ; confidence 0.834
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301501.png ; $z ( \Gamma , t ) = x + i y$ ; confidence 0.996
+
195. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003018.png ; $I \subset \mathbf{R}$ ; confidence 0.834
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016083.png ; $\overline { f } \in A$ ; confidence 0.956
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017042.png ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , S ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1.$ ; confidence 0.834
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030080.png ; $g \in L ^ { 2 } ( R ^ { N } )$ ; confidence 0.808
+
197. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002028.png ; $( d / d z ) f _ { i }$ ; confidence 0.834
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031068.png ; $f \in L ^ { p } ( T ^ { N } )$ ; confidence 0.447
+
198. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018096.png ; $\mathbf{T} ^ { 2 }$ ; confidence 0.834
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031080.png ; $f \in L ^ { 1 } ( T ^ { n } )$ ; confidence 0.830
+
199. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010120.png ; $i : \overline { H } ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ ; confidence 0.834
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031092.png ; $\lambda _ { k } \geq 0$ ; confidence 0.966
+
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021069.png ; $M \in \mathcal{O}$ ; confidence 0.834
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031097.png ; $\lambda _ { k } = 2 k + n$ ; confidence 0.889
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta \mathbf{b}$ ; confidence 0.834
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032059.png ; $F ( r s , r t ) = r F ( s , t )$ ; confidence 0.990
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327019.png ; $I \subseteq S$ ; confidence 0.834
  
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034020.png ; $K _ { N } ( D ^ { \circ } )$ ; confidence 0.655
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022051.png ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) = K ^ { ( j ) _{ 2 j - i}} ( X )$ ; confidence 0.834
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019067.png ; $v _ { 1 } ^ { t } = B v ^ { t }$ ; confidence 0.605
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026050.png ; $1 \leq n$ ; confidence 0.834
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019044.png ; $S ( f ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.901
+
205. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300503.png ; $x \in \mathbf{R} : = ( - \infty , \infty ),$ ; confidence 0.834
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037074.png ; $C _ { B _ { 2 } } ( L _ { n } )$ ; confidence 0.636
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005044.png ; $\Gamma = \operatorname { Cay } ( G , S )$ ; confidence 0.834
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037066.png ; $L \cap \{ 0,1 \} ^ { x }$ ; confidence 0.485
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031083.png ; $( \mathcal{Q} , \mu )$ ; confidence 0.834
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200140.png ; $- ( a | \omega ( a ) ) > 0$ ; confidence 0.928
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026042.png ; $m ^ { \nu ( c ) }$ ; confidence 0.834
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443
+
209. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001089.png ; $Z ( e ) = \operatorname { log } _ { \omega } ( 1 + \omega ^ { e } )$ ; confidence 0.834
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040057.png ; $\mathfrak { g } _ { Q }$ ; confidence 0.115
+
210. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007082.png ; $\{ e _ { a } \}$ ; confidence 0.834
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400112.png ; $H ^ { k } ( G / B , \xi ) = 0$ ; confidence 0.992
+
211. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007027.png ; $g ^ { n } = 1$ ; confidence 0.833
  
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420137.png ; $\square _ { H } ^ { H } M$ ; confidence 0.987
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029031.png ; $\varepsilon _ { X } ^ { \mathcal{C} U } ( g ) = \varepsilon _ { X } ^ { \mathcal{C} U } ( f )$ ; confidence 0.833
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025025.png ; $\alpha = \angle B A C$ ; confidence 0.972
+
213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028056.png ; $\overline { D } _ { m } \subset D _ { m + 1 } \subset D$ ; confidence 0.833
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025027.png ; $\gamma = \angle A C B$ ; confidence 0.998
+
214. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008015.png ; $\frac { d } { d t } V _ { t } = P + \delta V _ { t } - \mu _ { x  + t} ( S - V _ { t } ),$ ; confidence 0.833
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049031.png ; $A \cap B = \emptyset$ ; confidence 0.725
+
215. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e1202607.png ; $\theta ( x )$ ; confidence 0.833
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026079.png ; $B [ R ] \subset R ^ { n }$ ; confidence 0.476
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020012.png ; $3\text{l}$ ; confidence 0.833
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260101.png ; $d [ f , S ^ { n } , S ^ { n } ]$ ; confidence 0.912
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042047.png ; $\Psi _ { W , V } ^ { - 1 }$ ; confidence 0.833
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027044.png ; $A \rightarrow B ( H )$ ; confidence 0.958
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016058.png ; $x _ { j } ^ { \prime }$ ; confidence 0.833
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302706.png ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959
+
219. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011059.png ; $\psi ( \underline{x} ^ { * } )$ ; confidence 0.833
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028018.png ; $A \rightarrow G ( n )$ ; confidence 0.999
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430168.png ; $\partial _ { q } f ( x ) = \frac { f ( x ) - f ( q x ) } { x ( 1 - q ) } , \quad \partial _ { q } x ^ { n } = [ n ] _ { q } x ^ { n - 1 },$ ; confidence 0.833
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050053.png ; $\{ 1 ( T , x ) : x \in R \}$ ; confidence 0.583
+
221. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007066.png ; $q _ { 0 } ( s ) = \left[ \frac { 1 - s } { 1 + s \alpha } \right] ^ { 1 / 2 } , \theta _ { 0 } ( s ) = \operatorname { cos } ^ { - 1 } q _ { 0 } ( s ),$ ; confidence 0.833
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051031.png ; $\nabla f ( x ^ { * } ) = 0$ ; confidence 0.992
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060130.png ; $q_0 > 1$ ; confidence 0.833
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052066.png ; $G = B _ { 0 } ^ { - 1 } F ( x )$ ; confidence 0.989
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012900/a01290059.png ; $\{ T _ { n } \}$ ; confidence 0.833
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290123.png ; $H _ { m } ^ { i } ( A ) = ( 0 )$ ; confidence 0.925
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046038.png ; $D \subset \mathbf{C}$ ; confidence 0.833
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029071.png ; $1 \leq i \leq j \leq d$ ; confidence 0.998
+
225. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010031.png ; $L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }.$ ; confidence 0.833
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290158.png ; $A \backslash \{ m \}$ ; confidence 0.477
+
226. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005054.png ; $s ^ { k } = x ^ { k + 1 } - x ^ { k }$ ; confidence 0.833
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104012.png ; $x ^ { p } - x - p \dot { k }$ ; confidence 0.410
+
227. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200208.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } f ( x ) d x \times$ ; confidence 0.833
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030040.png ; $| B ( 4,4 ) | = 2 ^ { 422 }$ ; confidence 0.998
+
228. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005032.png ; $g ( x , k ) = e ^ { - i k x } + \int _ { - \infty } ^ { x } A _ { - } ( x , y ) e ^ { - i k y } d y,$ ; confidence 0.833
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030035.png ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506
+
229. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010024.png ; $\square ^ { t } a$ ; confidence 0.833
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055012.png ; $t - d ( x , \gamma ( t ) )$ ; confidence 0.974
+
230. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012061.png ; $\phi = Y _ { \text{mis} }$ ; confidence 0.832
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055048.png ; $\partial \iota ( M )$ ; confidence 0.998
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054034.png ; $w ( a ) = x ( a ) y ( - a ^ { - 1 } ) x ( a )$ ; confidence 0.832
  
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010150.png ; $s ( \zeta ) \in E ^ { * }$ ; confidence 0.896
+
232. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v0960409.png ; $\left( \begin{array} { c c c } { 1 } & { \ldots } & { ( m + n ) } \\ { s ( 1 ) } & { \cdots } & { s ( m + n ) } \end{array} \right),$ ; confidence 0.832
  
233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001039.png ; $p ^ { m } \backslash X$ ; confidence 0.192
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006088.png ; $\overline{\mathcal{H}}$ ; confidence 0.832
  
234. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200201.png ; $f \in L ^ { 2 } ( R ^ { n } )$ ; confidence 0.985
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302902.png ; $( L , \leq , \otimes )$ ; confidence 0.832
  
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003035.png ; $h _ { K } \in L ^ { p } ( J )$ ; confidence 0.991
+
235. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010019.png ; $\check{\varphi} { P } ( x ) = \varphi ( x ^ { - 1 } )$ ; confidence 0.832
  
236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004012.png ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002071.png ; $\mu ( x ) = m ( x ^ { \prime } ) \times \lambda ( x ^ { \prime \prime } )$ ; confidence 0.832
  
237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004047.png ; $\gamma \cap \Gamma$ ; confidence 0.999
+
237. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023012.png ; $L ( G )$ ; confidence 0.832
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007029.png ; $c M : C \rightarrow A$ ; confidence 0.404
+
238. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040280/f04028067.png ; $| G |$ ; confidence 0.832
  
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200803.png ; $A \in C ^ { n \times n }$ ; confidence 0.934
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301109.png ; $\partial _ { P } f ( x )$ ; confidence 0.832
  
240. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008023.png ; $A \in C ^ { m \times n }$ ; confidence 0.929
+
240. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c11033024.png ; $x \in \mathbf{R} ^ { d }$ ; confidence 0.832
  
241. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008067.png ; $A \in M _ { m } ( P _ { n } )$ ; confidence 0.428
+
241. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006036.png ; $\operatorname { max } _ { 1 \leq j \leq n } | x _ { j } | > 0$ ; confidence 0.832
  
242. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008051.png ; $\alpha , \beta \in C$ ; confidence 0.998
+
242. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014074.png ; $\lfloor \frac { q - 1 } { n } \rfloor + 1 \leq | V _ { f } | \leq q.$ ; confidence 0.832
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005018.png ; $g : x \rightarrow x g$ ; confidence 0.953
+
243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011010.png ; $\| A x - b \|$ ; confidence 0.832
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695021.png ; $\mathfrak { N } _ { f }$ ; confidence 0.969
+
244. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010136.png ; $\chi ( P )$ ; confidence 0.832
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120120/c1201201.png ; $L _ { \infty } \omega$ ; confidence 0.595
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380170.png ; $s \geq 1$ ; confidence 0.832
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017041.png ; $t ^ { \prime \prime }$ ; confidence 0.065
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035010.png ; $M _ { n }$ ; confidence 0.832
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301109.png ; $\partial _ { P } f ( x )$ ; confidence 0.832
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019035.png ; $x = M _ { 1 }$ ; confidence 0.831
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014038.png ; $A = ( \alpha _ { i } , j )$ ; confidence 0.372
+
248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004057.png ; $( 1 ^ { l } )$ ; confidence 0.831
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015011.png ; $E _ { M } ( D ( \Omega ) )$ ; confidence 0.989
+
249. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014077.png ; $\nu ( \zeta - a ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline { a } _ { k } ) d \overline { \zeta } [ k ] \bigwedge d \zeta;$ ; confidence 0.831
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327018.png ; $( \overline { A } = A )$ ; confidence 0.929
+
250. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060172.png ; $+ \int _ { \frac { x + y } { 2 } } ^ { \infty } d s \int _ { 0 } ^ { \frac { y - x } { 2 } } q ( s - t ) A ( s - t , s + t ) d t.$ ; confidence 0.831
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170122.png ; $20 , \dots , z _ { r } - 1$ ; confidence 0.416
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057630/l05763019.png ; $f \leq g$ ; confidence 0.831
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170102.png ; $M \equiv M ( \infty )$ ; confidence 0.999
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027070.png ; $( 2 , d ) _ { P }$ ; confidence 0.831
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170149.png ; $Z = \alpha 1 + \beta Z$ ; confidence 0.815
+
253. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230186.png ; $S ( \phi )$ ; confidence 0.831
  
254. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180457.png ; $R ^ { + } = ( 0 , \infty )$ ; confidence 0.971
+
254. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015030.png ; $[ x , y ] _ { d } = [ x , d y ]$ ; confidence 0.831
  
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180141.png ; $g \in \otimes ^ { 2 } E$ ; confidence 0.968
+
255. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300307.png ; $w _ { t t } = \lambda w$ ; confidence 0.831
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019024.png ; $\varphi ( t , x ) \in L$ ; confidence 0.990
+
256. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140194.png ; $\mathfrak{H}$ ; confidence 0.831
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020067.png ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210116.png ; $P _ { x , \theta _ { n } }$ ; confidence 0.517
+
258. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210135.png ; $\{ P _ { x } , \theta \}$ ; confidence 0.577
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583063.png ; $0 \leq s \leq \infty$ ; confidence 0.998
+
260. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( \mathbf{R} ) \cap L ^ { \infty } ( \mathbf{R} )$ ; confidence 0.831
  
261. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583014.png ; $T _ { 1 } = T | _ { H _ { 1 } }$ ; confidence 0.855
+
261. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003055.png ; $( \text { id } \otimes \pi ) \Delta f = f \otimes 1$ ; confidence 0.831
  
262. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583013.png ; $T _ { 0 } = T | _ { H _ { 0 } }$ ; confidence 0.849
+
262. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003023.png ; $\Omega ^ { \bullet } ( \tilde { \mathcal{M} } _ { \text{C} } )$ ; confidence 0.831
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c1202603.png ; $[ 0,1 ] \times [ 0 , T ]$ ; confidence 0.999
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007095.png ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega,$ ; confidence 0.831
  
264. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029010.png ; $m , m ^ { \prime } \in M$ ; confidence 0.992
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279013.png ; $F _ { \nu }$ ; confidence 0.831
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030076.png ; $O _ { n } \simeq O _ { m }$ ; confidence 0.462
+
265. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017075.png ; $R _ { i } S _ { i } ^ { - 1 }$ ; confidence 0.831
  
266. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030017.png ; $S , S ^ { \prime } \in H$ ; confidence 0.948
+
266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007020.png ; $[ P _ { j } , P _ { k } ] = [ Q _ { j } , Q _ { k } ] = 0 , \quad [ P _ { j } , Q _ { k } ] = \frac { \hbar } { i } \delta _ { j k } I$ ; confidence 0.831
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c1302609.png ; $\{ \phi _ { j } \in D \}$ ; confidence 0.985
+
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023054.png ; $= \int _ { a } ^ { b } \left[ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) - \frac { d } { d x } \left( \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) \right) \right] z ( x ) d x =$ ; confidence 0.831
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031025.png ; $C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.954
+
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b1205208.png ; $x _ { + } = x _ { c } - F ^ { \prime } ( x _ { c } ) ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.831
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020191.png ; $g ( \overline { u } 1 )$ ; confidence 0.409
+
269. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300608.png ; $\operatorname { Bel } ( A _ { 1 } \cup \ldots \cup A _ { k } ) \geq$ ; confidence 0.831
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033031.png ; $H ^ { * } ( A _ { dR } ( X ) )$ ; confidence 0.886
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300409.png ; $= \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k },$ ; confidence 0.831
  
271. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008012.png ; $e = e ( w | v ) = ( w L : v K )$ ; confidence 0.895
+
271. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v1200304.png ; $\mu : \Sigma \rightarrow X$ ; confidence 0.831
  
272. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008013.png ; $f = f ( w | v ) = [ L w : K v ]$ ; confidence 0.982
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010070.png ; $K ( M )$ ; confidence 0.831
  
273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012015.png ; $d _ { A } = d _ { 0 } \circ$ ; confidence 0.675
+
273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029024.png ; $\sum _ { q = 1 } ^ { Q } q f ( q ) \leq c \sum _ { q = 1 } ^ { Q } \varphi ( q ) f ( q )$ ; confidence 0.831
  
274. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013037.png ; $V = H ^ { 1 } ( W ; F _ { 2 } )$ ; confidence 0.997
+
274. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721026.png ; $\phi _ { j } ( x )$ ; confidence 0.830
  
275. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014038.png ; $D _ { N } ( x , 0 ) = x ^ { n }$ ; confidence 0.326
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160105.png ; $p _ { ij }$ ; confidence 0.830
  
276. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167026.png ; $( \xi , \eta , \zeta )$ ; confidence 0.999
+
276. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012065.png ; $M ( x ) \in B$ ; confidence 0.830
  
277. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167025.png ; $\eta \oplus \sigma$ ; confidence 0.996
+
277. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200408.png ; $A _ { M } ( s )$ ; confidence 0.830
  
278. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015026.png ; $( v , k , \lambda , n ) =$ ; confidence 0.992
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020049.png ; $T _ { \iota 0 }$ ; confidence 0.830
  
279. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016072.png ; $\| \hat { r } _ { 2 } , \|$ ; confidence 0.118
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l1200409.png ; $u _ { i } ^ { n + 1 } = u _ { i } ^ { n } + \frac { \Delta t ^ { n } } { \Delta x } [ f _ { i - 1 / 2 } - f _ { i + 1 / 2 } ].$ ; confidence 0.830
  
280. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017078.png ; $\Delta u + k ^ { 2 } u = 0$ ; confidence 0.990
+
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037063.png ; $f \in B _ { n }$ ; confidence 0.830
  
281. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022043.png ; $y ^ { ( l ) } ( x _ { j } ) = 0$ ; confidence 0.603
+
281. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011039.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } [ \operatorname { log } \operatorname { sin } \left( \frac { \pi } { l } \left( z - \frac { i b } { 2 } \right) \right) +$ ; confidence 0.830
  
282. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022036.png ; $y ^ { ( i ) } ( x _ { j } ) = a$ ; confidence 0.244
+
282. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s12029010.png ; $\sum _ { k = 1 } ^ { \infty } x _ { \pi ( k )}$ ; confidence 0.830
  
283. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023014.png ; $c _ { i } = c _ { - i } ^ { * }$ ; confidence 0.896
+
283. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300601.png ; $[ n ] : = \{ 1 , \dots , n \}$ ; confidence 0.830
  
284. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023077.png ; $R ^ { - \# } = T R ^ { - 1 } I$ ; confidence 0.347
+
284. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017036.png ;$\hat{A}$ ; confidence 0.830
  
285. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230156.png ; $( n - i ) \times ( n - i )$ ; confidence 1.000
+
285. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003014.png ; $K _ { \infty } = \operatorname{SO} ( 2 ) \times Z ( \mathbf{R} ) ^ { 0 }$ ; confidence 0.830
  
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230119.png ; $d ( z , w ) = ( z - w ^ { * } )$ ; confidence 0.999
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d031730109.png ; $h = ( h _ { 1 } , \dots , h _ { n } )$ ; confidence 0.830
  
287. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018086.png ; $( g _ { n } ) _ { n } \geq 1$ ; confidence 0.294
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022041.png ; $x \in \mathbf{R} ^ { N }$ ; confidence 0.830
  
288. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018077.png ; $H = \Gamma ^ { \perp }$ ; confidence 0.999
+
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031080.png ; $f \in L ^ { 1 } ( \mathcal{T} ^ { n } )$ ; confidence 0.830
  
289. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280143.png ; $C ^ { x } \backslash D$ ; confidence 0.181
+
289. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003032.png ; $\frac { r ( z ^ { - 1 } ) } { z } - \frac { p ( z ) } { q ( z ) } = w _ { 0 } z ^ { 2 n } + w _ { 1 } z ^ { 2 n + 1 } +\dots ,$ ; confidence 0.830
  
290. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280128.png ; $g \in H ^ { n , n - 1 } ( U )$ ; confidence 0.996
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029057.png ; $\nu : N \rightarrow Q$ ; confidence 0.830
  
291. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030040.png ; $( Z ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301009.png ; $f ( z ) = \langle f , K _ { z } \rangle$ ; confidence 0.830
  
292. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030046.png ; $( X ( t ) , t \in [ 0 , T ] )$ ; confidence 0.997
+
292. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040019.png ; $X \cong S ^ { m }$ ; confidence 0.830
  
293. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030039.png ; $( Y ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998
+
293. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013020.png ; $\mathbf{A}^{ - }$ ; confidence 0.829
  
294. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203206.png ; $S T : X \rightarrow Y$ ; confidence 0.982
+
294. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354040.png ; $k > 3$ ; confidence 0.829
  
295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010117.png ; $e : X \rightarrow G B$ ; confidence 0.953
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080022.png ; $\tilde{T}$ ; confidence 0.829
  
296. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001093.png ; $( E , \mathfrak { M } )$ ; confidence 0.991
+
296. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022063.png ; $x ^ { ( n ) } + p _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + p _ { n } ( t ) x = 0$ ; confidence 0.829
  
297. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010123.png ; $M \in \mathfrak { M }$ ; confidence 0.986
+
297. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020060.png ; $M ^ { \lambda }$ ; confidence 0.829
  
298. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001084.png ; $( \mathfrak { E } , M )$ ; confidence 0.883
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680231.png ; $\geq 3$ ; confidence 0.829
  
299. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010116.png ; $f : X \rightarrow G A$ ; confidence 0.997
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201104.png ; $\varphi ( a , 0 , i ) = a \text { for } i \geq 3 , \varphi ( a , b , i ) = \varphi ( a , \varphi ( a , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1.$ ; confidence 0.829
  
300. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020123.png ; $H ^ { 1 } ( Y ^ { 1 } ; Z ) = 0$ ; confidence 0.997
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067097.png ; $V _ { ( 2 ) } ^ { 1 } \approx V \otimes S ^ { 2 } V ^ { * }$ ; confidence 0.829

Latest revision as of 23:28, 10 April 2020

List

1. b120400103.png ; $p \in C^{-}$ ; confidence 0.843

2. b12050048.png ; $= \operatorname { exp } \left( - x \int _ { 0 } ^ { \infty } ( 1 - e ^ { - u v } ) \frac { 1 } { \sqrt { 2 \pi v ^ { 3 } } } d v \right) =$ ; confidence 0.843

3. b13012067.png ; $2 \pi k / N$ ; confidence 0.843

4. a130040623.png ; $\Gamma \vDash_{ \mathcal{S} _ { P }} \varphi$ ; confidence 0.843

5. d120020129.png ; $g ( u _ { 1 } ) \leq v ^ { * }$ ; confidence 0.843

6. w12021027.png ; $M , N \in \{ A_i \} _ { i = 1 } ^ { k }$ ; confidence 0.843

7. a12031093.png ; $\operatorname{II} _ { 1 }$ ; confidence 0.843

8. q12003063.png ; $\mathfrak { G } = K.AN$ ; confidence 0.843

9. c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h,$ ; confidence 0.843

10. j12001037.png ; $\operatorname { deg } F \leq 100$ ; confidence 0.843

11. a12010027.png ; $2 ^ { X }$ ; confidence 0.843

12. f12016035.png ; $k _ { G } = 0$ ; confidence 0.843

13. i130030130.png ; $W _ { + }$ ; confidence 0.843

14. f130290124.png ; $\mathbf{FRM}$ ; confidence 0.843

15. z13004019.png ; $m \leq 6$ ; confidence 0.843

16. c12019037.png ; $\varphi \in \operatorname{HP} ^ { 0 } ( A )$ ; confidence 0.843

17. a12023055.png ; $\operatorname{grad} \psi \neq 0$ ; confidence 0.843

18. a130240357.png ; $n - r \geq p$ ; confidence 0.843

19. a11058044.png ; $\sigma 2$ ; confidence 0.843

20. d120020120.png ; $\mu_{l}$ ; confidence 0.842

21. v13011035.png ; $z = m l + b / 2$ ; confidence 0.842

22. a1201102.png ; $\varphi ( a , b , 0 ) = \alpha + b,$ ; confidence 0.842

23. m12011065.png ; $\pi _ { 1 } ( M ) = \mathbf{Z}$ ; confidence 0.842

24. l120100124.png ; $f _ { 1 } , \dots , f _ { N }$ ; confidence 0.842

25. f12005027.png ; $q = p ^ { m }$ ; confidence 0.842

26. b12027092.png ; $\operatorname { lim } _ { t \rightarrow \infty } a ( t ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } u d F ( u ) }.$ ; confidence 0.842

27. z130110135.png ; $a : 1 - a$ ; confidence 0.842

28. b13027056.png ; $\operatorname { Ext } ( X )$ ; confidence 0.842

29. t120140111.png ; $H ^ { \infty } + C = \{ f + g : f \in C ( \mathbf{T} ) , g \in H ^ { \infty } \}$ ; confidence 0.842

30. b12021074.png ; $V ( \mathfrak { g } , \mathfrak { b } )$ ; confidence 0.842

31. e120190148.png ; $f \in G$ ; confidence 0.842

32. o1300204.png ; $( r _ { 1 } , r _ { 2 } )$ ; confidence 0.842

33. q12008018.png ; $\textsf{E}[W]_{\text{FCFS}} = \frac { 1 } { 2 ( 1 - \rho ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.842

34. a014060179.png ; $S _ { 0 }$ ; confidence 0.842

35. j130040125.png ; $\mathcal{N P} \neq \mathcal{P}$ ; confidence 0.842

36. g13005047.png ; $2 ^ { d - 1 } ( d + 1 )$ ; confidence 0.842

37. w120090354.png ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841

38. j13007037.png ; $E ( k , \omega )$ ; confidence 0.841

39. a012430147.png ; $Y \subset X$ ; confidence 0.841

40. c12002050.png ; $( V _ { g } f ) ( \theta , t ) = ( 2 \pi t ) ^ { - 1 } \int _ { S ^ { 2 } } f ( \sigma ) g \left( \frac { 1 - \theta . \sigma } { t } \right) d \sigma$ ; confidence 0.841

41. t130050162.png ; $\sigma _ { r } ( A ) = \sigma _ { T } ( A ) = \mathbf{B} _ { 4 }$ ; confidence 0.841

42. m130230122.png ; $B ^ { \prime } = \alpha_{*} B$ ; confidence 0.841

43. f12011079.png ; $\tilde{\mathcal{O}}$ ; confidence 0.841

44. a12018096.png ; $\varepsilon$ ; confidence 0.841

45. t12013026.png ; $W _ { 2 } = S _ { 2 } e ^ { \sum _ { 1 } ^ { \infty } y _ { k } ( \Lambda ^ { t } ) ^ { k } };$ ; confidence 0.841

46. a1202209.png ; $| x | < e$ ; confidence 0.841

47. e120010121.png ; $\mathcal{S} = ( f _ { i } : B \rightarrow A _ { i } ) _ { I }$ ; confidence 0.841

48. b1203403.png ; $\sum _ { k = 0 } ^ { \infty } \left| c _ { k } z ^ { k } \right| < 1$ ; confidence 0.841

49. c1203004.png ; $\{ S _ { i } \} _ { i = 1 } ^ { n }$ ; confidence 0.841

50. f1202101.png ; $L = \sum _ { n = 0 } ^ { N } a ^ { [ n ] } ( z ) z ^ { n } \left( \frac { d } { d z } \right) ^ { n },$ ; confidence 0.841

51. a13027070.png ; $f \in Y$ ; confidence 0.841

52. w130080134.png ; $\mathcal{N} = 2 \rightarrow \mathcal{N} = 0$ ; confidence 0.841

53. z13001017.png ; $Z ( \alpha x ( n ) + \beta y ( n ) ) = \alpha Z ( x ( n ) ) + \beta Z ( y ( n ) ),$ ; confidence 0.841

54. c12030092.png ; $\operatorname { tr } ( K _ { i } ) \leq 1$ ; confidence 0.841

55. r13016018.png ; $\mathcal{R} _ { \text{nd} } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} } / \mathcal{I} _ { \text{nd} }$ ; confidence 0.841

56. w12011058.png ; $\a ( x , \xi ) = \int k \left( x + \frac { t } { 2 } , x - \frac { t } { 2 } \right) e ^ { - 2 i \pi t \xi } d t.$ ; confidence 0.841

57. s120230128.png ; $S = X X ^ { \prime }$ ; confidence 0.841

58. a12007076.png ; $\| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta },$ ; confidence 0.840

59. w12006090.png ; $D \in \operatorname { Der } A$ ; confidence 0.840

60. m12011026.png ; $K ^ { n } \subset M ^ { n + 2 }$ ; confidence 0.840

61. z13008054.png ; $= \frac { ( - 1 ) ^ { l } } { 2 } \Gamma ( \alpha + 1 ) \left( \frac { 2 } { s } \right) ^ { \alpha + 1 } J _ { k + l + \alpha + 1 } ( s ),$ ; confidence 0.840

62. s13065041.png ; $\psi _{0} = 1$ ; confidence 0.840

63. f12024040.png ; $\operatorname{sup} h( t )$ ; confidence 0.840

64. v12006020.png ; $p B _ { 2 n } \equiv p - 1 ( \operatorname { mod } p ^ { h + 1 } )$ ; confidence 0.840

65. b1203409.png ; $\left| \sum _ { \alpha } c _ { \alpha } z ^ { \alpha } \right| < 1,$ ; confidence 0.840

66. w12001040.png ; $z ^ { n } f ( D )$ ; confidence 0.840

67. s12004034.png ; $K _ { \lambda \mu }$ ; confidence 0.840

68. f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840

69. g12007022.png ; $m \equiv 4$ ; confidence 0.840

70. c11041024.png ; $x , y \in \mathbf{R}$ ; confidence 0.840

71. c02211012.png ; $\chi _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.840

72. l13010023.png ; $| \alpha . x _ { 0 } - p | < \delta$ ; confidence 0.840

73. f12004019.png ; $f ^ { * * } = ( f ^ { * } ) ^ { * }$ ; confidence 0.840

74. d12029075.png ; $f ( q _ { n } ) q _ { n } > c _ { 1 } ( \varphi ( q _ { n } ) / q _ { n } ) ^ { c _ { 2 } }$ ; confidence 0.840

75. j13004065.png ; $\varphi ( D ) = \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.840

76. b1301709.png ; $C ( t )$ ; confidence 0.840

77. b12031048.png ; $\delta \geq k - j$ ; confidence 0.840

78. b12040094.png ; $H _ { R } \subset V$ ; confidence 0.840

79. h13002030.png ; $q , r \in \mathbf{N}$ ; confidence 0.840

80. w1301105.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i \varepsilon }$ ; confidence 0.839

81. m12012053.png ; $c = a q$ ; confidence 0.839

82. r08248050.png ; $\alpha \in \Phi$ ; confidence 0.839

83. d1101808.png ; $\Psi ( x , x ^ { 1 / u } ) \sim \rho ( u ) x$ ; confidence 0.839

84. q1300408.png ; $| f ^ { \prime } ( x ) | ^ { n } \leq K J _ { f } ( x )$ ; confidence 0.839

85. a01081040.png ; $\psi ( t )$ ; confidence 0.839

86. b13001096.png ; $\Gamma = \operatorname { Sp } ( 2 n , \mathbf{Z} )$ ; confidence 0.839

87. i130090145.png ; $\lambda _ { p } ( k _ { \infty } / k ) = \mu _ { p } ( k _ { \infty } / k ) = \nu _ { p } ( k _ { \infty } / k ) = 0$ ; confidence 0.839

88. e12016029.png ; $X = \partial / \partial_{ t }$ ; confidence 0.839

89. c020740328.png ; $e \in E$ ; confidence 0.839

90. z1200109.png ; $\operatorname{GF} ( m ) \subseteq K$ ; confidence 0.839

91. b120430104.png ; $BG_{q}$ ; confidence 0.839

92. a1302806.png ; $\operatorname { agm } ( a , b )$ ; confidence 0.839

93. k055840311.png ; $\mathcal{K} \oplus \mathcal{K} _ { 1 }$ ; confidence 0.839

94. s12032093.png ; $\operatorname{Mat} (p | q )$ ; confidence 0.839

95. h12013012.png ; $Y ( i ) \times I ^ { 2 } \rightarrow Y ( j )$ ; confidence 0.839

96. z1300808.png ; $\| f - p \| _ { 2 } = \left( \int \int _ { D } | f ( x , y ) - p ( x , y ) | ^ { 2 } d x d y \right) ^ { 1 / 2 }$ ; confidence 0.839

97. i13008036.png ; $\mathbf{P} ^ { 2 } ( \mathbf{R} )$ ; confidence 0.839

98. s12035024.png ; $Z ^ { N }$ ; confidence 0.839

99. a01130093.png ; $\tilde { M } \rightarrow M$ ; confidence 0.839

100. s1306403.png ; $a _ { n } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } a ( e ^ { i \theta } ) e ^ { - i n \theta } d \theta.$ ; confidence 0.839

101. g12004081.png ; $\Sigma _ { P }$ ; confidence 0.839

102. d12026031.png ; $\overline{X} _ { n } = \operatorname { sup } _ { t } X _ { n } ( t )$ ; confidence 0.839

103. p12015014.png ; $P : C ( X ) \rightarrow \Pi _ { K \in \mathcal{K} } C ( G )$ ; confidence 0.838

104. i12004033.png ; $f ( z ) = \int _ { \partial D } f ( \zeta ) K _ { \text{BM} } ( \zeta , z ) - \int _ { D } \overline { \partial } f ( \zeta ) \bigwedge K _ { \text{BM} } ( \zeta , z ),$ ; confidence 0.838

105. a1300102.png ; $\mathcal{C}$ ; confidence 0.838

106. a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838

107. r13013028.png ; $\sigma ( A | _ { L } ) = \tau$ ; confidence 0.838

108. m12009044.png ; $\hat { E } = 1 / P ( \xi )$ ; confidence 0.838

109. z13002042.png ; $G _ { \tau }$ ; confidence 0.838

110. f1202001.png ; $f = \lambda ^ { n } + a _ { n - 1 } \lambda ^ { n - 1 } + \ldots + a _ { 1 } \lambda + a _ { 0 }$ ; confidence 0.838

111. b12021097.png ; $W ^ { ( i ) } = \{ w \in W : l ( w ) = i \}$ ; confidence 0.838

112. i13002054.png ; $| x _ { 1 } | \geq \ldots \geq | x _ { m } |$ ; confidence 0.838

113. d12016013.png ; $( \mathcal{M} _ { s } f ) ( t ) = \frac { 1 } { 2 } \operatorname { sup } _ { s } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { s } f ( s , t )$ ; confidence 0.838

114. l120170123.png ; $K ^ { 2 } \nearrow K ^ { 2 } \cup _ { B ^ { 2 } } B ^ { 3 } \searrow L ^ { 2 }$ ; confidence 0.838

115. c12008061.png ; $\sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } E ^ { n - i } = 0$ ; confidence 0.838

116. s12015049.png ; $x = t _ { 1 } ^ { 2 } t _ { 2 }$ ; confidence 0.838

117. a13024069.png ; $y _ { i j k }$ ; confidence 0.838

118. a12016041.png ; $x = f ( \overline { u } ).$ ; confidence 0.838

119. z13010058.png ; $a \cup b$ ; confidence 0.838

120. i12001012.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t < \infty$ ; confidence 0.837

121. b11058037.png ; $\operatorname{epi} ( f )$ ; confidence 0.837

122. o130010116.png ; $\alpha ^ { \prime } \in S ^ { 2 } , \alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.837

123. i12010033.png ; $m \geq 8$ ; confidence 0.837

124. c12008049.png ; $\operatorname { det } [ E \lambda - A ] \neq 0$ ; confidence 0.837

125. e12015066.png ; $I \geq 0$ ; confidence 0.837

126. a12007026.png ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T.$ ; confidence 0.837

127. w12021065.png ; $( s _ { 1 } , \dots , s _ { k } )$ ; confidence 0.837

128. z13001027.png ; $x ( \infty ) = \operatorname { lim } _ { n \rightarrow \infty } x ( n ) = \operatorname { lim } _ { z \rightarrow 1 } ( z - 1 ) Z ( x ( n ) )$ ; confidence 0.837

129. a130240168.png ; $\alpha_{.} = 0$ ; confidence 0.837

130. o13005097.png ; $v = \Theta _ { \Delta } ( z ) u$ ; confidence 0.837

131. b130300135.png ; $n = n _ { 1 } n _ { 2 }$ ; confidence 0.837

132. d12026019.png ; $\textsf{P} \{ w \in \partial G \} = 0$ ; confidence 0.837

133. b12010017.png ; $\Phi ( q ) = \left\{ \begin{array} { l l } { + \infty } & { \text { if } | q | \leq \sigma , } \\ { 0 } & { \text { if } | q | > \sigma , } \end{array} \right.$ ; confidence 0.837

134. a1302802.png ; $b = b _ { 0 }$ ; confidence 0.837

135. f13017022.png ; $P M _ { 2 } ( G )$ ; confidence 0.837

136. e1300302.png ; $\Gamma \subset G ( \mathbf{Q} )$ ; confidence 0.837

137. z13008039.png ; $V _ { k + l } ^ { k - l } ( 1,0 ; \alpha ) = 1$ ; confidence 0.837

138. t12006037.png ; $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$ ; confidence 0.837

139. f1201406.png ; $K ( x , t ) = - \frac { 1 } { \pi } \frac { \partial } { \partial n _ { t } } \operatorname { log } | z - t | , z , t \in C,$ ; confidence 0.837

140. b12040082.png ; $C ^ { - } = - C ^ { + }$ ; confidence 0.837

141. a1202706.png ; $\Lambda ( s , \rho ) = W ( \rho ) . \Lambda ( 1 - s , \overline { \rho } ),$ ; confidence 0.837

142. e035000103.png ; $R _ { \epsilon } ( X )$ ; confidence 0.837

143. b12034028.png ; $B _ { n } ( D )$ ; confidence 0.837

144. b13012076.png ; $\Delta _ { \varepsilon } ( t + 2 \pi ) = \Delta _ { \varepsilon } ( t )$ ; confidence 0.837

145. i12008039.png ; $J _ { i j } = J$ ; confidence 0.837

146. a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837

147. q12003032.png ; $\mathcal{U} ( \mathfrak { g } )$ ; confidence 0.837

148. s12034080.png ; $x = x ^ { \prime }$ ; confidence 0.836

149. a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } ),$ ; confidence 0.836

150. m12011028.png ; $X = \operatorname { cl } ( M \backslash ( K \times D ^ { 2 } ) )$ ; confidence 0.836

151. b13002054.png ; $\| U _ { X } ( x ^ { * } ) \| = \| x \| ^ { 3 }$ ; confidence 0.836

152. r08232020.png ; $u ( x ) = - \int _ { H } g ( x , y ; H ) d \mu ( y ) + h ^ { * } ( x ),$ ; confidence 0.836

153. c0237502.png ; $x _ { 0 } \in \mathbf{R} ^ { n }$ ; confidence 0.836

154. c12029059.png ; $\square ^ { 1 }$ ; confidence 0.836

155. w12003031.png ; $P _ { \mu } = \operatorname{Id}$ ; confidence 0.836

156. c12008086.png ; $x _ { i j } ^ { \nu }$ ; confidence 0.836

157. l13001072.png ; $N ^ { ( n - 1 ) / 2 }$ ; confidence 0.836

158. t13004021.png ; $T _ { n } ^ { * } ( x )$ ; confidence 0.836

159. b13003018.png ; $\{ a b c \} = a b c + c b a$ ; confidence 0.836

160. l13001042.png ; $| \delta | \leq 1$ ; confidence 0.836

161. a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836

162. q13003024.png ; $1 - p _ { 0 } = \| P _ { 1 } \psi \| ^ { 2 }$ ; confidence 0.836

163. s13013010.png ; $\mathbf{Q} (\operatorname{exp} ( G ) )$ ; confidence 0.836

164. z13001024.png ; $Z ( x ( n + k ) ) = z ^ { k } Z ( x ( n ) ) - \sum _ { r = 0 } ^ { k - 1 } x ( r ) z ^ { k - r }$ ; confidence 0.836

165. l12009057.png ; $T P / G$ ; confidence 0.836

166. b110220203.png ; $\operatorname{dim}_{\text{Q}} H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { Z } ^ { 0 } < \infty$ ; confidence 0.836

167. l12006079.png ; $\langle \lambda | f ( z ) ) = \frac { 1 } { \lambda - z } \langle \lambda | V \phi ) ( \phi , f ( z ) ),$ ; confidence 0.836

168. i130060105.png ; $\varphi_{-} ( k ) = f ( - k )$ ; confidence 0.836

169. m13023037.png ; $v _ { 1 } , v _ { 2 } \in R$ ; confidence 0.836

170. t12006084.png ; $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ ; confidence 0.836

171. f130100120.png ; $u \in L _ { \text{C} } ^ { \infty } ( \hat { G } )$ ; confidence 0.835

172. a01233046.png ; $y \in Y$ ; confidence 0.835

173. c13011025.png ; $x _ { i } + t _ { i } v _ { i } \in S$ ; confidence 0.835

174. r1200201.png ; $\frac { d } { d t } \frac { \partial L } { \partial \dot { q } } - \frac { \partial L } { \partial q } = \tau,$ ; confidence 0.835

175. d1200604.png ; $\psi [ 1 ] = \psi _ { x } + \sigma \psi ; \quad \sigma = - \varphi _ { x } \varphi ^ { - 1 }$ ; confidence 0.835

176. h13002065.png ; $| R | > \varepsilon q ^ { n }$ ; confidence 0.835

177. f12005033.png ; $q ^ { \text{th} }$ ; confidence 0.835

178. b13026012.png ; $\sum _ { x \in f ^{ - 1} ( 0 ) \cap \partial K } \text { sign det } f ^ { \prime } ( x )$ ; confidence 0.835

179. k055840279.png ; $A x = \int _ { - \| A \| } ^ { \| A \| } \lambda E ( d \lambda ) x + N x,$ ; confidence 0.835

180. w12021072.png ; $\{ A _ { 1 } , \dots , A _ { k } \}$ ; confidence 0.835

181. b13027015.png ; $S S ^ { * } = 1 - P$ ; confidence 0.835

182. d12024083.png ; $= \mathfrak { g }$ ; confidence 0.835

183. k055840144.png ; $x \in \mathcal{D} ( T )$ ; confidence 0.835

184. k05584031.png ; $( x , y ) = [ x _ { + } , y _ { + } ] - [ x _ { - } , y _ { - } ],$ ; confidence 0.835

185. c120180138.png ; $\tau _ { 2 } : \otimes ^ { 2 } \mathcal{E} \rightarrow \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.835

186. e12010017.png ; $\mathbf{c} ^ { \text{em} } =\mathbf{f} ^ { \text{em} } \times \mathbf{x} + ( \mathbf{P} \times \mathbf{E} ^ { \prime } + \mathbf{M} ^ { \prime } \times \mathbf{B} ),$ ; confidence 0.835

187. e12012097.png ; $\Sigma ^ { ( t + 1 ) } = \frac { 1 } { n } \sum _ { i } w _ { i } ^ { ( t + 1 ) } ( y _ { i } - \mu ^ { ( t + 1 ) } ) ( y _ { i } - \mu ^ { ( t + 1 ) } ) ^ { T }.$ ; confidence 0.835

188. f130100137.png ; $T = c _ { 1 } \lambda ^ { p } ( \delta _ { x _ { 1 } } ) + \ldots + c _ { n } \lambda ^ { p } ( \delta _ { x _ { n } } )$ ; confidence 0.835

189. b017340117.png ; $\omega_0$ ; confidence 0.835

190. s1202601.png ; $( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , \mathcal{B} , d \mu )$ ; confidence 0.834

191. l1201004.png ; $e _ { 1 } \leq e _ { 2 } \leq \ldots < 0$ ; confidence 0.834

192. l06005054.png ; $x ^ { 0 } = \operatorname { cosh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.834

193. a0139805.png ; $Y _ { t }$ ; confidence 0.834

194. f120230118.png ; $+ ( - 1 ) ^ { q + k _ { 1 } } d \omega \bigwedge i ( K _ { 1 } ) K _ { 2 }.$ ; confidence 0.834

195. c12003018.png ; $I \subset \mathbf{R}$ ; confidence 0.834

196. a12017042.png ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , S ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1.$ ; confidence 0.834

197. g13002028.png ; $( d / d z ) f _ { i }$ ; confidence 0.834

198. d13018096.png ; $\mathbf{T} ^ { 2 }$ ; confidence 0.834

199. o130010120.png ; $i : \overline { H } ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ ; confidence 0.834

200. b12021069.png ; $M \in \mathcal{O}$ ; confidence 0.834

201. a130240429.png ; $\Theta \mathbf{b}$ ; confidence 0.834

202. c02327019.png ; $I \subseteq S$ ; confidence 0.834

203. b11022051.png ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) = K ^ { ( j ) _{ 2 j - i}} ( X )$ ; confidence 0.834

204. c12026050.png ; $1 \leq n$ ; confidence 0.834

205. i1300503.png ; $x \in \mathbf{R} : = ( - \infty , \infty ),$ ; confidence 0.834

206. c13005044.png ; $\Gamma = \operatorname { Cay } ( G , S )$ ; confidence 0.834

207. a13031083.png ; $( \mathcal{Q} , \mu )$ ; confidence 0.834

208. a12026042.png ; $m ^ { \nu ( c ) }$ ; confidence 0.834

209. g13001089.png ; $Z ( e ) = \operatorname { log } _ { \omega } ( 1 + \omega ^ { e } )$ ; confidence 0.834

210. q12007082.png ; $\{ e _ { a } \}$ ; confidence 0.834

211. q12007027.png ; $g ^ { n } = 1$ ; confidence 0.833

212. b12029031.png ; $\varepsilon _ { X } ^ { \mathcal{C} U } ( g ) = \varepsilon _ { X } ^ { \mathcal{C} U } ( f )$ ; confidence 0.833

213. d12028056.png ; $\overline { D } _ { m } \subset D _ { m + 1 } \subset D$ ; confidence 0.833

214. t13008015.png ; $\frac { d } { d t } V _ { t } = P + \delta V _ { t } - \mu _ { x + t} ( S - V _ { t } ),$ ; confidence 0.833

215. e1202607.png ; $\theta ( x )$ ; confidence 0.833

216. b13020012.png ; $3\text{l}$ ; confidence 0.833

217. b12042047.png ; $\Psi _ { W , V } ^ { - 1 }$ ; confidence 0.833

218. b12016058.png ; $x _ { j } ^ { \prime }$ ; confidence 0.833

219. n12011059.png ; $\psi ( \underline{x} ^ { * } )$ ; confidence 0.833

220. b120430168.png ; $\partial _ { q } f ( x ) = \frac { f ( x ) - f ( q x ) } { x ( 1 - q ) } , \quad \partial _ { q } x ^ { n } = [ n ] _ { q } x ^ { n - 1 },$ ; confidence 0.833

221. v13007066.png ; $q _ { 0 } ( s ) = \left[ \frac { 1 - s } { 1 + s \alpha } \right] ^ { 1 / 2 } , \theta _ { 0 } ( s ) = \operatorname { cos } ^ { - 1 } q _ { 0 } ( s ),$ ; confidence 0.833

222. a130060130.png ; $q_0 > 1$ ; confidence 0.833

223. a01290059.png ; $\{ T _ { n } \}$ ; confidence 0.833

224. a01046038.png ; $D \subset \mathbf{C}$ ; confidence 0.833

225. l12010031.png ; $L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }.$ ; confidence 0.833

226. q12005054.png ; $s ^ { k } = x ^ { k + 1 } - x ^ { k }$ ; confidence 0.833

227. i1200208.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } f ( x ) d x \times$ ; confidence 0.833

228. i13005032.png ; $g ( x , k ) = e ^ { - i k x } + \int _ { - \infty } ^ { x } A _ { - } ( x , y ) e ^ { - i k y } d y,$ ; confidence 0.833

229. f12010024.png ; $\square ^ { t } a$ ; confidence 0.833

230. e12012061.png ; $\phi = Y _ { \text{mis} }$ ; confidence 0.832

231. s13054034.png ; $w ( a ) = x ( a ) y ( - a ^ { - 1 } ) x ( a )$ ; confidence 0.832

232. v0960409.png ; $\left( \begin{array} { c c c } { 1 } & { \ldots } & { ( m + n ) } \\ { s ( 1 ) } & { \cdots } & { s ( m + n ) } \end{array} \right),$ ; confidence 0.832

233. l12006088.png ; $\overline{\mathcal{H}}$ ; confidence 0.832

234. f1302902.png ; $( L , \leq , \otimes )$ ; confidence 0.832

235. f13010019.png ; $\check{\varphi} { P } ( x ) = \varphi ( x ^ { - 1 } )$ ; confidence 0.832

236. c12002071.png ; $\mu ( x ) = m ( x ^ { \prime } ) \times \lambda ( x ^ { \prime \prime } )$ ; confidence 0.832

237. d11023012.png ; $L ( G )$ ; confidence 0.832

238. f04028067.png ; $| G |$ ; confidence 0.832

239. c1301109.png ; $\partial _ { P } f ( x )$ ; confidence 0.832

240. c11033024.png ; $x \in \mathbf{R} ^ { d }$ ; confidence 0.832

241. g13006036.png ; $\operatorname { max } _ { 1 \leq j \leq n } | x _ { j } | > 0$ ; confidence 0.832

242. d12014074.png ; $\lfloor \frac { q - 1 } { n } \rfloor + 1 \leq | V _ { f } | \leq q.$ ; confidence 0.832

243. l12011010.png ; $\| A x - b \|$ ; confidence 0.832

244. h046010136.png ; $\chi ( P )$ ; confidence 0.832

245. a011380170.png ; $s \geq 1$ ; confidence 0.832

246. b11035010.png ; $M _ { n }$ ; confidence 0.832

247. b13019035.png ; $x = M _ { 1 }$ ; confidence 0.831

248. s12004057.png ; $( 1 ^ { l } )$ ; confidence 0.831

249. m13014077.png ; $\nu ( \zeta - a ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline { a } _ { k } ) d \overline { \zeta } [ k ] \bigwedge d \zeta;$ ; confidence 0.831

250. i130060172.png ; $+ \int _ { \frac { x + y } { 2 } } ^ { \infty } d s \int _ { 0 } ^ { \frac { y - x } { 2 } } q ( s - t ) A ( s - t , s + t ) d t.$ ; confidence 0.831

251. l05763019.png ; $f \leq g$ ; confidence 0.831

252. a12027070.png ; $( 2 , d ) _ { P }$ ; confidence 0.831

253. e120230186.png ; $S ( \phi )$ ; confidence 0.831

254. l12015030.png ; $[ x , y ] _ { d } = [ x , d y ]$ ; confidence 0.831

255. n1300307.png ; $w _ { t t } = \lambda w$ ; confidence 0.831

256. c023140194.png ; $\mathfrak{H}$ ; confidence 0.831

257. a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831

258. d03225022.png ; $\partial M$ ; confidence 0.831

259. i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831

260. s13064057.png ; $L ^ { 1 } ( \mathbf{R} ) \cap L ^ { \infty } ( \mathbf{R} )$ ; confidence 0.831

261. q12003055.png ; $( \text { id } \otimes \pi ) \Delta f = f \otimes 1$ ; confidence 0.831

262. e13003023.png ; $\Omega ^ { \bullet } ( \tilde { \mathcal{M} } _ { \text{C} } )$ ; confidence 0.831

263. a12007095.png ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega,$ ; confidence 0.831

264. a01279013.png ; $F _ { \nu }$ ; confidence 0.831

265. l12017075.png ; $R _ { i } S _ { i } ^ { - 1 }$ ; confidence 0.831

266. w12007020.png ; $[ P _ { j } , P _ { k } ] = [ Q _ { j } , Q _ { k } ] = 0 , \quad [ P _ { j } , Q _ { k } ] = \frac { \hbar } { i } \delta _ { j k } I$ ; confidence 0.831

267. e12023054.png ; $= \int _ { a } ^ { b } \left[ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) - \frac { d } { d x } \left( \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) \right) \right] z ( x ) d x =$ ; confidence 0.831

268. b1205208.png ; $x _ { + } = x _ { c } - F ^ { \prime } ( x _ { c } ) ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.831

269. d1300608.png ; $\operatorname { Bel } ( A _ { 1 } \cup \ldots \cup A _ { k } ) \geq$ ; confidence 0.831

270. c1300409.png ; $= \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k },$ ; confidence 0.831

271. v1200304.png ; $\mu : \Sigma \rightarrow X$ ; confidence 0.831

272. a11010070.png ; $K ( M )$ ; confidence 0.831

273. d12029024.png ; $\sum _ { q = 1 } ^ { Q } q f ( q ) \leq c \sum _ { q = 1 } ^ { Q } \varphi ( q ) f ( q )$ ; confidence 0.831

274. c02721026.png ; $\phi _ { j } ( x )$ ; confidence 0.830

275. a120160105.png ; $p _ { ij }$ ; confidence 0.830

276. n12012065.png ; $M ( x ) \in B$ ; confidence 0.830

277. n1200408.png ; $A _ { M } ( s )$ ; confidence 0.830

278. c12020049.png ; $T _ { \iota 0 }$ ; confidence 0.830

279. l1200409.png ; $u _ { i } ^ { n + 1 } = u _ { i } ^ { n } + \frac { \Delta t ^ { n } } { \Delta x } [ f _ { i - 1 / 2 } - f _ { i + 1 / 2 } ].$ ; confidence 0.830

280. b12037063.png ; $f \in B _ { n }$ ; confidence 0.830

281. v13011039.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } [ \operatorname { log } \operatorname { sin } \left( \frac { \pi } { l } \left( z - \frac { i b } { 2 } \right) \right) +$ ; confidence 0.830

282. s12029010.png ; $\sum _ { k = 1 } ^ { \infty } x _ { \pi ( k )}$ ; confidence 0.830

283. k1300601.png ; $[ n ] : = \{ 1 , \dots , n \}$ ; confidence 0.830

284. p12017036.png ;$\hat{A}$ ; confidence 0.830

285. e13003014.png ; $K _ { \infty } = \operatorname{SO} ( 2 ) \times Z ( \mathbf{R} ) ^ { 0 }$ ; confidence 0.830

286. d031730109.png ; $h = ( h _ { 1 } , \dots , h _ { n } )$ ; confidence 0.830

287. b12022041.png ; $x \in \mathbf{R} ^ { N }$ ; confidence 0.830

288. b12031080.png ; $f \in L ^ { 1 } ( \mathcal{T} ^ { n } )$ ; confidence 0.830

289. h13003032.png ; $\frac { r ( z ^ { - 1 } ) } { z } - \frac { p ( z ) } { q ( z ) } = w _ { 0 } z ^ { 2 n } + w _ { 1 } z ^ { 2 n + 1 } +\dots ,$ ; confidence 0.830

290. c12029057.png ; $\nu : N \rightarrow Q$ ; confidence 0.830

291. b1301009.png ; $f ( z ) = \langle f , K _ { z } \rangle$ ; confidence 0.830

292. s13040019.png ; $X \cong S ^ { m }$ ; confidence 0.830

293. d13013020.png ; $\mathbf{A}^{ - }$ ; confidence 0.829

294. g04354040.png ; $k > 3$ ; confidence 0.829

295. a01080022.png ; $\tilde{T}$ ; confidence 0.829

296. d11022063.png ; $x ^ { ( n ) } + p _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + p _ { n } ( t ) x = 0$ ; confidence 0.829

297. s12020060.png ; $M ^ { \lambda }$ ; confidence 0.829

298. a110680231.png ; $\geq 3$ ; confidence 0.829

299. a1201104.png ; $\varphi ( a , 0 , i ) = a \text { for } i \geq 3 , \varphi ( a , b , i ) = \varphi ( a , \varphi ( a , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1.$ ; confidence 0.829

300. s09067097.png ; $V _ { ( 2 ) } ^ { 1 } \approx V \otimes S ^ { 2 } V ^ { * }$ ; confidence 0.829

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/38. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/38&oldid=44448