Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/31"
(AUTOMATIC EDIT of page 31 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290179.png ; $n _ { i } \geq 1$ ; confidence 0.924 | 3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290179.png ; $n _ { i } \geq 1$ ; confidence 0.924 | ||
− | 4. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202306.png ; $[ K , L ] = - ( - 1 ) ^ { k l } [ L , K ]$ ; confidence 0.924 | + | 4. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202306.png ; $[ K , L ] = - ( - 1 ) ^ { k l } [ L , K ],$ ; confidence 0.924 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007078.png ; $\rightarrow \infty \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924 | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007078.png ; $\lim \inf _{x \rightarrow \infty} \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002043.png ; $u \in \overline { | + | 6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002043.png ; $u \in \overline { UM }$ ; confidence 0.924 |
7. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200501.png ; $x ^ { n } - y ^ { n } = z ^ { n }$ ; confidence 0.924 | 7. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200501.png ; $x ^ { n } - y ^ { n } = z ^ { n }$ ; confidence 0.924 | ||
Line 20: | Line 20: | ||
10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300508.png ; $K ( m )$ ; confidence 0.924 | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300508.png ; $K ( m )$ ; confidence 0.924 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507015.png ; $M = 1$ ; confidence 0.924 | + | 11. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507015.png ; $\dim_{ \text{C} } M = 1$ ; confidence 0.924 |
12. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752076.png ; $n _ { i j } > 0$ ; confidence 0.924 | 12. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752076.png ; $n _ { i j } > 0$ ; confidence 0.924 | ||
− | 13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018010.png ; $\sum _ { z : x \leq z \leq y } \mu ( x , z ) = 0 \text { if } x < y$ ; confidence 0.924 | + | 13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018010.png ; $\sum _ { z : x \leq z \leq y } \mu ( x , z ) = 0 \text { if } x < y.$ ; confidence 0.924 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040048.png ; $\varrho : H \rightarrow C ^ { * }$ ; confidence 0.924 | + | 14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040048.png ; $\varrho : H \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.924 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070106.png ; $C ^ { 0 } ( \Gamma , k + 2 , v ) \oplus C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.923 | + | 15. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070106.png ; $C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} ) \oplus C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.923 |
16. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022017.png ; $( a , \eta ( a ) )$ ; confidence 0.923 | 16. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022017.png ; $( a , \eta ( a ) )$ ; confidence 0.923 | ||
Line 38: | Line 38: | ||
19. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d03213025.png ; $U \subset M$ ; confidence 0.923 | 19. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d03213025.png ; $U \subset M$ ; confidence 0.923 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015016.png ; $\varphi \in A _ { N } ( R ^ { n } )$ ; confidence 0.923 | + | 20. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015016.png ; $\varphi \in \mathcal{A} _ { N } ( \mathbf{R} ^ { n } )$ ; confidence 0.923 |
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023066.png ; $x ^ { * } R y$ ; confidence 0.923 | 21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023066.png ; $x ^ { * } R y$ ; confidence 0.923 | ||
Line 58: | Line 58: | ||
29. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201309.png ; $| x | < 1$ ; confidence 0.923 | 29. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201309.png ; $| x | < 1$ ; confidence 0.923 | ||
− | 30. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840157.png ; $x , y \in D ( T )$ ; confidence 0.923 | + | 30. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840157.png ; $x , y \in \mathcal{D} ( T )$ ; confidence 0.923 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007077.png ; $Q ( x ) \geq \operatorname { | + | 31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007077.png ; $Q ( x ) \geq C \operatorname { log } x \operatorname { log } \operatorname { log } x / ( \operatorname { log } \operatorname { log } \operatorname { log } x ) ^ { 2 }$ ; confidence 0.923 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008057.png ; $X = H$ ; confidence 0.923 | + | 32. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008057.png ; $X = \mathcal{H}$ ; confidence 0.923 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120119.png ; $F \circ f \in A$ ; confidence 0.923 | + | 33. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120119.png ; $F \circ f \in \mathcal{A}$ ; confidence 0.923 |
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046015.png ; $C _ { G } ( x )$ ; confidence 0.923 | 34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046015.png ; $C _ { G } ( x )$ ; confidence 0.923 | ||
− | 35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030075.png ; $K _ { 0 } ( O _ { \infty } ) = Z$ ; confidence 0.923 | + | 35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030075.png ; $K _ { 0 } ( \mathcal{O} _ { \infty } ) = \mathbf{Z}$ ; confidence 0.923 |
36. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923 | 36. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923 | + | 37. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z ).$ ; confidence 0.923 |
38. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481908.png ; $\nu = 0$ ; confidence 0.923 | 38. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481908.png ; $\nu = 0$ ; confidence 0.923 | ||
Line 80: | Line 80: | ||
40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260203.png ; $x e = x$ ; confidence 0.923 | 40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260203.png ; $x e = x$ ; confidence 0.923 | ||
− | 41. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300309.png ; $N \in N \backslash \{ 0 \}$ ; confidence 0.923 | + | 41. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300309.png ; $N \in \mathbf{N} \backslash \{ 0 \}$ ; confidence 0.923 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012027.png ; $Y _ { obs } = M ( Y _ { aug } )$ ; confidence 0.923 | + | 42. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012027.png ; $Y _ { \text{obs} } = \mathcal{M} ( Y _ { \text{aug} } )$ ; confidence 0.923 |
43. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080129.png ; $v = \operatorname { tanh } ( J / k _ { B } T )$ ; confidence 0.923 | 43. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080129.png ; $v = \operatorname { tanh } ( J / k _ { B } T )$ ; confidence 0.923 | ||
Line 96: | Line 96: | ||
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050157.png ; $c > 1$ ; confidence 0.923 | 48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050157.png ; $c > 1$ ; confidence 0.923 | ||
− | 49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008027.png ; $A _ { j } \in C ^ { n \times n }$ ; confidence 0.923 | + | 49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008027.png ; $A _ {i j } \in C ^ { n \times n }$ ; confidence 0.923 |
50. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009048.png ; $G _ { \mu } ^ { * }$ ; confidence 0.922 | 50. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009048.png ; $G _ { \mu } ^ { * }$ ; confidence 0.922 | ||
Line 110: | Line 110: | ||
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202501.png ; $| \nabla L |$ ; confidence 0.922 | 55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202501.png ; $| \nabla L |$ ; confidence 0.922 | ||
− | 56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021011.png ; $\{ z \in C : | z | < \epsilon \} \backslash ( - \infty , 0 ]$ ; confidence 0.922 | + | 56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021011.png ; $\{ z \in \mathbf{C} : | z | < \epsilon \} \backslash ( - \infty , 0 ]$ ; confidence 0.922 |
57. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010048.png ; $( i , \alpha )$ ; confidence 0.922 | 57. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010048.png ; $( i , \alpha )$ ; confidence 0.922 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007012.png ; $\{ p _ { j } , p _ { k } \} = \{ q _ { j } , q _ { k } \} = 0 , \quad \{ p _ { j } , q _ { k } \} = \delta _ { j k }$ ; confidence 0.922 | + | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007012.png ; $\{ \mathbf{p} _ { j } , \mathbf{p} _ { k } \} = \{ \mathbf{q} _ { j } , \mathbf{q} _ { k } \} = 0 , \quad \{ \mathbf{p} _ { j } , \mathbf{q} _ { k } \} = \delta _ { j k }.$ ; confidence 0.922 |
59. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013040.png ; $\zeta _ { \lambda } ^ { \prime }$ ; confidence 0.922 | 59. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013040.png ; $\zeta _ { \lambda } ^ { \prime }$ ; confidence 0.922 | ||
Line 120: | Line 120: | ||
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024050.png ; $< \varepsilon _ { i }$ ; confidence 0.922 | 60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024050.png ; $< \varepsilon _ { i }$ ; confidence 0.922 | ||
− | 61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070103.png ; $\zeta \in C ^ { k }$ ; confidence 0.922 | + | 61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070103.png ; $\zeta \in \mathbf{C} ^ { k }$ ; confidence 0.922 |
62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034089.png ; $S _ { H }$ ; confidence 0.922 | 62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034089.png ; $S _ { H }$ ; confidence 0.922 | ||
Line 128: | Line 128: | ||
64. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620151.png ; $q _ { 2 } ( . ) \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.922 | 64. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620151.png ; $q _ { 2 } ( . ) \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.922 | ||
− | 65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220147.png ; $K _ { 2 } ( X ) \rightarrow H ^ { 1 } ( X ( C ) , R ( 1 ) )$ ; confidence 0.922 | + | 65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220147.png ; $r:K _ { 2 } ( X ) \rightarrow H ^ { 1 } ( X ( \mathbf{C} ) , \mathbf{R} ( 1 ) )$ ; confidence 0.922 |
66. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333037.png ; $X \rightarrow Y$ ; confidence 0.922 | 66. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333037.png ; $X \rightarrow Y$ ; confidence 0.922 | ||
Line 134: | Line 134: | ||
67. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003034.png ; $\phi \in \Gamma ( V _ { + } )$ ; confidence 0.922 | 67. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003034.png ; $\phi \in \Gamma ( V _ { + } )$ ; confidence 0.922 | ||
− | 68. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201005.png ; $E ^ { \prime }$ ; confidence 0.922 | + | 68. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201005.png ; $\mathbf{E} ^ { \prime }$ ; confidence 0.922 |
69. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010061.png ; $( \Gamma _ { A } ) _ { s }$ ; confidence 0.922 | 69. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010061.png ; $( \Gamma _ { A } ) _ { s }$ ; confidence 0.922 | ||
− | 70. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006012.png ; $T _ { A } M = \operatorname { Hom } ( C ^ { \infty } ( M , R ) , A )$ ; confidence 0.922 | + | 70. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006012.png ; $T _ { A } M = \operatorname { Hom } ( C ^ { \infty } ( M , \mathbf{R} ) , A ),$ ; confidence 0.922 |
71. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021045.png ; $O ( h ^ { k } )$ ; confidence 0.922 | 71. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021045.png ; $O ( h ^ { k } )$ ; confidence 0.922 | ||
− | 72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400116.png ; $\varrho : B \rightarrow C ^ { * }$ ; confidence 0.922 | + | 72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400116.png ; $\varrho : B \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.922 |
73. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013030.png ; $\chi = 2 g \phi$ ; confidence 0.922 | 73. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013030.png ; $\chi = 2 g \phi$ ; confidence 0.922 | ||
Line 158: | Line 158: | ||
79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080114.png ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921 | 79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080114.png ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921 | ||
− | 80. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005062.png ; $\delta = x ^ { 0 } y ^ { 0 } - \sum x ^ { t } y ^ { t }$ ; confidence 0.921 | + | 80. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005062.png ; $\cosh \delta = x ^ { 0 } y ^ { 0 } - \sum x ^ { t } y ^ { t }.$ ; confidence 0.921 |
81. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012069.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 } \circ \phi _ { 4 }$ ; confidence 0.921 | 81. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012069.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 } \circ \phi _ { 4 }$ ; confidence 0.921 | ||
Line 164: | Line 164: | ||
82. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840208.png ; $( T _ { i j } ) _ { 1 } ^ { 2 }$ ; confidence 0.921 | 82. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840208.png ; $( T _ { i j } ) _ { 1 } ^ { 2 }$ ; confidence 0.921 | ||
− | 83. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028021.png ; $\Sigma ^ { n } A / \{ Sq ^ { i } : 2 i > n \} A \cong G ( n )$ ; confidence 0.921 | + | 83. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028021.png ; $\Sigma ^ { n } \mathcal{A} / \{ Sq ^ { i } : 2 i > n \} \mathcal{A} \cong G ( n ).$ ; confidence 0.921 |
84. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160113.png ; $( \phi _ { 1 } \vee \ldots \vee \phi _ { n } )$ ; confidence 0.921 | 84. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160113.png ; $( \phi _ { 1 } \vee \ldots \vee \phi _ { n } )$ ; confidence 0.921 | ||
Line 174: | Line 174: | ||
87. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301208.png ; $x , y \in G _ { 1 }$ ; confidence 0.921 | 87. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301208.png ; $x , y \in G _ { 1 }$ ; confidence 0.921 | ||
− | 88. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691020.png ; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) )$ ; confidence 0.921 | + | 88. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691020.png ; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) ).$ ; confidence 0.921 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028036.png ; $[ \pi ( X * ) , C ] \cong [ X , B C ]$ ; confidence 0.921 | + | 89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028036.png ; $[ \pi ( X _* ) , C ] \cong [ X , B C ]$ ; confidence 0.921 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008032.png ; $h _ { t } ( s ) = h ( ( s - t ) / \operatorname { log } | t | ) / \operatorname { log } | t$ ; confidence 0.921 | + | 90. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008032.png ; $h _ { t } ( s ) = h ( ( s - t ) / \operatorname { log } | t | ) / \operatorname { log } | t | $ ; confidence 0.921 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n$ ; confidence 0.921 | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 1.$ ; confidence 0.921 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022048.png ; $F _ { j } ( u ) = \int a _ { j } ( \xi ) M ( u , \xi ) d \xi$ ; confidence 0.921 | + | 92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022048.png ; $F _ { j } ( u ) = \int a _ { j } ( \xi ) M ( u , \xi ) d \xi ,$ ; confidence 0.921 |
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037061.png ; $C _ { B _ { 2 } } ( f ) \geq 2 ^ { n } / n$ ; confidence 0.921 | 93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037061.png ; $C _ { B _ { 2 } } ( f ) \geq 2 ^ { n } / n$ ; confidence 0.921 | ||
− | 94. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200405.png ; $f : P \rightarrow C$ ; confidence 0.921 | + | 94. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200405.png ; $f : \overline{P} \rightarrow \mathbf{C}$ ; confidence 0.921 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005012.png ; $u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0$ ; confidence 0.921 | + | 95. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005012.png ; $u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0.$ ; confidence 0.921 |
96. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027022.png ; $E _ { [ \theta n ] } ( f ) = O ( E _ { n } ( f ) )$ ; confidence 0.921 | 96. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027022.png ; $E _ { [ \theta n ] } ( f ) = O ( E _ { n } ( f ) )$ ; confidence 0.921 | ||
Line 196: | Line 196: | ||
98. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080214.png ; $L = \partial ^ { n + 1 } - q _ { 1 } \partial ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.921 | 98. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080214.png ; $L = \partial ^ { n + 1 } - q _ { 1 } \partial ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.921 | ||
− | 99. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016042.png ; $C ( S ) \otimes \pi _ { k } ( T ) + \pi ( S ) \otimes C ( T )$ ; confidence 0.921 | + | 99. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016042.png ; $C ( S ) \otimes \pi _ { k } ( T ) + \pi _{\text{l}} ( S ) \otimes C ( T )$ ; confidence 0.921 |
100. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810138.png ; $x \notin S$ ; confidence 0.921 | 100. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810138.png ; $x \notin S$ ; confidence 0.921 | ||
− | 101. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260114.png ; $K ( H )$ ; confidence 0.921 | + | 101. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260114.png ; $K ( \mathcal{H} )$ ; confidence 0.921 |
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921 | 102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921 | ||
Line 206: | Line 206: | ||
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320105.png ; $\operatorname { det } ( T )$ ; confidence 0.921 | 103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320105.png ; $\operatorname { det } ( T )$ ; confidence 0.921 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021029.png ; $E ^ { 2 }$ ; confidence 0.921 | + | 104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021029.png ; $\mathbf{E} ^ { 2 }$ ; confidence 0.921 |
105. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507023.png ; $k \eta$ ; confidence 0.921 | 105. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507023.png ; $k \eta$ ; confidence 0.921 | ||
Line 218: | Line 218: | ||
109. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025024.png ; $C ( \beta )$ ; confidence 0.921 | 109. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025024.png ; $C ( \beta )$ ; confidence 0.921 | ||
− | 110. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025024.png ; $h ( x ) = \frac { ( 1 - x ^ { 2 } ) ^ { \pm 1 / 2 } } { \rho _ { m } ( x ) }$ ; confidence 0.921 | + | 110. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025024.png ; $h ( x ) = \frac { ( 1 - x ^ { 2 } ) ^ { \pm 1 / 2 } } { \rho _ { m } ( x ) },$ ; confidence 0.921 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030012.png ; $h : R _ { + } \times R ^ { n } \times R ^ { m } \rightarrow R ^ { m }$ ; confidence 0.921 | + | 111. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030012.png ; $h : \mathbf{R} _ { + } \times \mathbf{R} ^ { n } \times \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.921 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005066.png ; $ | + | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005066.png ; $\operatorname{ACS}$ ; confidence 0.921 |
113. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016019.png ; $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.921 | 113. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016019.png ; $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.921 | ||
Line 234: | Line 234: | ||
117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020241.png ; $\overline { u } _ { 1 } \geq 0$ ; confidence 0.920 | 117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020241.png ; $\overline { u } _ { 1 } \geq 0$ ; confidence 0.920 | ||
− | 118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200901.png ; $\nabla | + | 118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200901.png ; $\nabla . E = \rho$ ; confidence 0.920 |
119. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008015.png ; $L w , K v$ ; confidence 0.920 | 119. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008015.png ; $L w , K v$ ; confidence 0.920 | ||
Line 242: | Line 242: | ||
121. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009032.png ; $G _ { \Omega } ( x , y )$ ; confidence 0.920 | 121. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009032.png ; $G _ { \Omega } ( x , y )$ ; confidence 0.920 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232051.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { 0 } ^ { 2 \pi } | f ( r e ^ { i \theta } ) - f ( e ^ { i \theta } ) | ^ { \delta } d \theta = 0$ ; confidence 0.920 | + | 122. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232051.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { 0 } ^ { 2 \pi } | f ( r e ^ { i \theta } ) - f ( e ^ { i \theta } ) | ^ { \delta } d \theta = 0,$ ; confidence 0.920 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583064.png ; $A = ( I + T ) ( I - T ) ^ { - 1 } , \quad 1 \notin \sigma _ { p } ( T )$ ; confidence 0.920 | + | 123. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583064.png ; $A = ( I + T ) ( I - T ) ^ { - 1 } , \quad 1 \notin \sigma _ { p } ( T ),$ ; confidence 0.920 |
124. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052014.png ; $F : X \rightarrow X$ ; confidence 0.920 | 124. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052014.png ; $F : X \rightarrow X$ ; confidence 0.920 | ||
− | 125. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121061.png ; $ | + | 125. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121061.png ; $\partial$ ; confidence 0.920 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070101.png ; $h \in \operatorname { SPSH } ( \Omega \times \Omega ) , h < 0$ ; confidence 0.920 | + | 126. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070101.png ; $h \in \operatorname { SPSH } ( \Omega \times \Omega ) , h < 0,$ ; confidence 0.920 |
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032034.png ; $n _ { S } < n$ ; confidence 0.920 | 127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032034.png ; $n _ { S } < n$ ; confidence 0.920 | ||
− | 128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { | + | 128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2i + 1} ( \mathcal{S} ) = 0$ ; confidence 0.920 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920 | + | 129. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t.$ ; confidence 0.920 |
130. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087670/s087670113.png ; $k = 8$ ; confidence 0.920 | 130. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087670/s087670113.png ; $k = 8$ ; confidence 0.920 | ||
− | 131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070142.png ; $( h ( s , y ) , \delta _ { m } ( t - s ) ) _ { H } = h ( t , y )$ ; confidence 0.920 | + | 131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070142.png ; $( h ( s , y ) , \delta _ { m } ( t - s ) ) _ { \mathcal{H} } = h ( t , y )$ ; confidence 0.920 |
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080133.png ; $\Lambda _ { G }$ ; confidence 0.920 | 132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080133.png ; $\Lambda _ { G }$ ; confidence 0.920 | ||
Line 266: | Line 266: | ||
133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003033.png ; $\{ x : f ( x ) > \alpha \}$ ; confidence 0.920 | 133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003033.png ; $\{ x : f ( x ) > \alpha \}$ ; confidence 0.920 | ||
− | 134. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300203.png ; $p = \{ p _ { i } : i \in \Gamma \}$ ; confidence 0.920 | + | 134. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300203.png ; $\mathbf{p} = \{ p _ { i } : i \in \Gamma \}$ ; confidence 0.920 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032037.png ; $I = \langle x \otimes y - B ( x \otimes y ) \rangle$ ; confidence 0.920 | + | 135. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032037.png ; $\mathcal{I} = \langle x \otimes y - B ( x \otimes y ) \rangle$ ; confidence 0.920 |
136. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030050.png ; $r ( x , t | x _ { 0 } , \sigma ( Y ( u ) , u \leq t ) ) =$ ; confidence 0.920 | 136. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030050.png ; $r ( x , t | x _ { 0 } , \sigma ( Y ( u ) , u \leq t ) ) =$ ; confidence 0.920 | ||
Line 280: | Line 280: | ||
140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230102.png ; $X \rightarrow Y \leftarrow X ^ { + }$ ; confidence 0.920 | 140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230102.png ; $X \rightarrow Y \leftarrow X ^ { + }$ ; confidence 0.920 | ||
− | 141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300303.png ; $j = s _ { i | + | 141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300303.png ; $h_{ i , j } = s _ { i + j - 1 }$ ; confidence 0.920 |
142. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085034.png ; $K G$ ; confidence 0.920 | 142. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085034.png ; $K G$ ; confidence 0.920 | ||
Line 288: | Line 288: | ||
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010079.png ; $T = T _ { \varphi } + C$ ; confidence 0.920 | 144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010079.png ; $T = T _ { \varphi } + C$ ; confidence 0.920 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005024.png ; $Kn = \frac { \lambda } { l }$ ; confidence 0.920 | + | 145. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005024.png ; $Kn = \frac { \lambda } { l }.$ ; confidence 0.920 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007080.png ; $U \in SGL _ { n } ( \Gamma )$ ; confidence 0.919 | + | 146. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007080.png ; $U \in \operatorname{SGL} _ { n } ( \Gamma )$ ; confidence 0.919 |
147. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003039.png ; $V ( T , F _ { \theta } ) = \int \operatorname { IF } ( x ; T , F _ { \theta } ) ^ { 2 } d F _ { \theta } ( x )$ ; confidence 0.919 | 147. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003039.png ; $V ( T , F _ { \theta } ) = \int \operatorname { IF } ( x ; T , F _ { \theta } ) ^ { 2 } d F _ { \theta } ( x )$ ; confidence 0.919 | ||
Line 296: | Line 296: | ||
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028011.png ; $\operatorname { sn } ( u | k )$ ; confidence 0.919 | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028011.png ; $\operatorname { sn } ( u | k )$ ; confidence 0.919 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040575.png ; $S 5 ^ { S }$ ; confidence 0.919 | + | 149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040575.png ; $\operatorname{S}5 ^ { S }$ ; confidence 0.919 |
150. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040199.png ; $\operatorname { spt } ( \| \nu \| ) \cap B ( a , ( 1 - \epsilon ) R )$ ; confidence 0.919 | 150. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040199.png ; $\operatorname { spt } ( \| \nu \| ) \cap B ( a , ( 1 - \epsilon ) R )$ ; confidence 0.919 | ||
− | 151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012016.png ; $d _ { A } = d _ { 0 }$ ; confidence 0.919 | + | 151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012016.png ; $\operatorname{codom}_{G'} \circ d _ { A } = d _ { 0 } \circ \operatorname{codom}_{G}$ ; confidence 0.919 |
152. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162043.png ; $\operatorname { Re } z > 0$ ; confidence 0.919 | 152. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162043.png ; $\operatorname { Re } z > 0$ ; confidence 0.919 | ||
Line 308: | Line 308: | ||
154. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005022.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) < 0$ ; confidence 0.919 | 154. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005022.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) < 0$ ; confidence 0.919 | ||
− | 155. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004029.png ; $\sum _ { k = 1 } ^ { \infty } ( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } ) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } =$ ; confidence 0.919 | + | 155. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004029.png ; $\sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } =$ ; confidence 0.919 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012059.png ; $ | + | 156. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012059.png ; $d_Y$ ; confidence 0.919 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012017.png ; $T _ { n } ( . ) = Z _ { n } ( ; 0 )$ ; confidence 0.919 | + | 157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012017.png ; $T _ { n } ( . ) = Z _ { n } (\, . \, ; 0 )$ ; confidence 0.919 |
158. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023022.png ; $X \sim \operatorname { LS } _ { p , n } ( \phi )$ ; confidence 0.919 | 158. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023022.png ; $X \sim \operatorname { LS } _ { p , n } ( \phi )$ ; confidence 0.919 | ||
Line 326: | Line 326: | ||
163. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300505.png ; $\operatorname { Im } T = K J K ^ { * }$ ; confidence 0.919 | 163. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300505.png ; $\operatorname { Im } T = K J K ^ { * }$ ; confidence 0.919 | ||
− | 164. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200105.png ; $g _ { \alpha } ( t ) = \frac { 1 } { 2 \sqrt { \pi \alpha } } e ^ { - t ^ { 2 } / ( 4 \alpha ) } , \alpha > 0$ ; confidence 0.919 | + | 164. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200105.png ; $g _ { \alpha } ( t ) = \frac { 1 } { 2 \sqrt { \pi \alpha } } e ^ { - t ^ { 2 } / ( 4 \alpha ) } , \alpha > 0.$ ; confidence 0.919 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120130.png ; $H \equiv - \frac { \partial ^ { 2 } } { \partial \theta . \partial \theta } \int f ( \theta , \phi ) d \phi | _ { \theta = \theta ^ { * } }$ ; confidence 0.919 | + | 165. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120130.png ; $H \equiv - \frac { \partial ^ { 2 } } { \partial \theta . \partial \theta } \int f ( \theta , \phi ) d \phi | _ { \theta = \theta ^ { * } },$ ; confidence 0.919 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004020.png ; $U _ { \xi } \subset * U _ { \eta }$ ; confidence 0.919 | + | 166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004020.png ; $U _ { \xi } \subset _{*} U _ { \eta }$ ; confidence 0.919 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195023.png ; $f _ { | + | 167. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195023.png ; $f _ { l }$ ; confidence 0.919 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002016.png ; $\phi | + | 168. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002016.png ; $\phi / \| \phi \|$ ; confidence 0.919 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021080.png ; $L [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ] \Rightarrow L$ ; confidence 0.919 | + | 169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021080.png ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ] \Rightarrow \tilde{\mathcal{L}}$ ; confidence 0.919 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ]$ ; confidence 0.919 | + | 170. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ],$ ; confidence 0.919 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037015.png ; $x , y \in D$ ; confidence 0.919 | + | 171. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037015.png ; $x , y \in \mathcal{D}$ ; confidence 0.919 |
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420102.png ; $\beta : G \times G \rightarrow k ^ { * }$ ; confidence 0.919 | 172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420102.png ; $\beta : G \times G \rightarrow k ^ { * }$ ; confidence 0.919 | ||
Line 354: | Line 354: | ||
177. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304504.png ; $S _ { i } = \operatorname { rank } ( y _ { i } )$ ; confidence 0.919 | 177. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304504.png ; $S _ { i } = \operatorname { rank } ( y _ { i } )$ ; confidence 0.919 | ||
− | 178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008095.png ; $E = I _ { | + | 178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008095.png ; $E = I _ { n }$ ; confidence 0.918 |
179. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302703.png ; $S _ { k } ( f , x )$ ; confidence 0.918 | 179. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302703.png ; $S _ { k } ( f , x )$ ; confidence 0.918 | ||
Line 360: | Line 360: | ||
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004048.png ; $\lambda > 0$ ; confidence 0.918 | 180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004048.png ; $\lambda > 0$ ; confidence 0.918 | ||
− | 181. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010083.png ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z )$ ; confidence 0.918 | + | 181. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010083.png ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z ),$ ; confidence 0.918 |
182. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300503.png ; $\operatorname { Im } T = ( T - T ^ { * } ) / 2 i$ ; confidence 0.918 | 182. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300503.png ; $\operatorname { Im } T = ( T - T ^ { * } ) / 2 i$ ; confidence 0.918 | ||
Line 366: | Line 366: | ||
183. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020179.png ; $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ ; confidence 0.918 | 183. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020179.png ; $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ ; confidence 0.918 | ||
− | 184. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png ; $\ | + | 184. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png ; $\alpha_j$ ; confidence 0.918 |
185. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000128.png ; $\lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0$ ; confidence 0.918 | 185. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000128.png ; $\lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0$ ; confidence 0.918 | ||
− | 186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202604.png ; $S ^ { \prime } ( R )$ ; confidence 0.918 | + | 186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202604.png ; $\mathcal{S} ^ { \prime } ( \mathbf{R} )$ ; confidence 0.918 |
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024089.png ; $g > 1$ ; confidence 0.918 | 187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024089.png ; $g > 1$ ; confidence 0.918 | ||
Line 376: | Line 376: | ||
188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010036.png ; $R _ { \Gamma , n } = 1$ ; confidence 0.918 | 188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010036.png ; $R _ { \Gamma , n } = 1$ ; confidence 0.918 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e1202409.png ; $O _ { K }$ ; confidence 0.918 | + | 189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e1202409.png ; $\mathcal{O} _ { K }$ ; confidence 0.918 |
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918 | 190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918 | ||
Line 382: | Line 382: | ||
191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040102.png ; $R = \sum _ { n > 0 } R ^ { n }$ ; confidence 0.918 | 191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040102.png ; $R = \sum _ { n > 0 } R ^ { n }$ ; confidence 0.918 | ||
− | 192. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001033.png ; $ | + | 192. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001033.png ; $|.| v$ ; confidence 0.918 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004091.png ; $s ( D _ { | + | 193. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004091.png ; $s ( D _ { 3_{1} } ) = 2$ ; confidence 0.918 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005057.png ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.918 | + | 194. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005057.png ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.918 |
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004057.png ; $D _ { S }$ ; confidence 0.918 | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004057.png ; $D _ { S }$ ; confidence 0.918 | ||
− | 196. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013042.png ; $( T , F )$ ; confidence 0.918 | + | 196. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013042.png ; $( \mathcal{T} , \mathcal{F} )$ ; confidence 0.918 |
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002031.png ; $c _ { \mu } f + T _ { \mu } f$ ; confidence 0.918 | 197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002031.png ; $c _ { \mu } f + T _ { \mu } f$ ; confidence 0.918 | ||
Line 400: | Line 400: | ||
200. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918 | 200. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220130.png ; $\{ s \in C : i / 2 \leq \operatorname { Re } ( s ) \leq 1 + i / 2 \}$ ; confidence 0.918 | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220130.png ; $\{ s \in \mathbf{C} : i / 2 \leq \operatorname { Re } ( s ) \leq 1 + i / 2 \}$ ; confidence 0.918 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007032.png ; $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi - 3 )$ ; confidence 0.918 | + | 202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007032.png ; $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi _{- 3} )$ ; confidence 0.918 |
203. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000102.png ; $I ( \rho ) = \frac { d \rho } { d ( \mu \times \mu ) }$ ; confidence 0.918 | 203. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000102.png ; $I ( \rho ) = \frac { d \rho } { d ( \mu \times \mu ) }$ ; confidence 0.918 | ||
Line 410: | Line 410: | ||
205. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001041.png ; $i \in S$ ; confidence 0.918 | 205. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001041.png ; $i \in S$ ; confidence 0.918 | ||
− | 206. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024019.png ; $f ( 2 ) ( x _ { 0 } )$ ; confidence 0.918 | + | 206. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024019.png ; $f _{ ( 2 ) } ( x _ { 0 } )$ ; confidence 0.918 |
207. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840132.png ; $[ T x , y ] = [ x , T ^ { + } y ]$ ; confidence 0.918 | 207. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840132.png ; $[ T x , y ] = [ x , T ^ { + } y ]$ ; confidence 0.918 | ||
Line 418: | Line 418: | ||
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010154.png ; $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.918 | 209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010154.png ; $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.918 | ||
− | 210. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017054.png ; $K _ { 0 } ^ { n + 1 } K _ { 1 }$ ; confidence 0.917 | + | 210. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017054.png ; $K _ { 0 } ^ { n + 1 } \searrow K _ { 1 }$ ; confidence 0.917 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005063.png ; $x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } ) Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) +$ ; confidence 0.917 | + | 211. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005063.png ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) +$ ; confidence 0.917 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001083.png ; $0 \neq K _ { 0 } \subset H ( \pi )$ ; confidence 0.917 | + | 212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001083.png ; $0 \neq \mathcal{K} _ { 0 } \subset \mathcal{H} ( \pi )$ ; confidence 0.917 |
213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021013.png ; $C ^ { * } ( G )$ ; confidence 0.917 | 213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021013.png ; $C ^ { * } ( G )$ ; confidence 0.917 | ||
Line 430: | Line 430: | ||
215. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012010.png ; $u , v \in C$ ; confidence 0.917 | 215. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012010.png ; $u , v \in C$ ; confidence 0.917 | ||
− | 216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003057.png ; $\pi _ { 0 } \operatorname { Map } ( B E , X ) = [ B E , X ] = \operatorname { Hom } _ { K } ( H ^ { * } X , H ^ { * } B E )$ ; confidence 0.917 | + | 216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003057.png ; $\pi _ { 0 } \operatorname { Map } ( B E , X ) = [ B E , X ] = \operatorname { Hom } _ { \mathcal{K} } ( H ^ { * } X , H ^ { * } B E ).$ ; confidence 0.917 |
217. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300309.png ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917 | 217. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300309.png ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917 | ||
− | 218. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006029.png ; $\sigma ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.917 | + | 218. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006029.png ; $\sigma ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A ).$ ; confidence 0.917 |
219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020106.png ; $Y \times K \simeq Z \times K$ ; confidence 0.917 | 219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020106.png ; $Y \times K \simeq Z \times K$ ; confidence 0.917 | ||
Line 440: | Line 440: | ||
220. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003047.png ; $\lambda = \omega ^ { 2 }$ ; confidence 0.917 | 220. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003047.png ; $\lambda = \omega ^ { 2 }$ ; confidence 0.917 | ||
− | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917 | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $[\mathbf{Z} _ { 32 } , \mathbf{Z} _ { 33 }]$ ; confidence 0.917 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010073.png ; $E _ { 7 }$ ; confidence 0.917 | + | 222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010073.png ; $\mathbf{E} _ { 7 }$ ; confidence 0.917 |
223. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950110.png ; $N - 1$ ; confidence 0.917 | 223. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950110.png ; $N - 1$ ; confidence 0.917 | ||
Line 448: | Line 448: | ||
224. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662027.png ; $q < n$ ; confidence 0.917 | 224. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662027.png ; $q < n$ ; confidence 0.917 | ||
− | 225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917 | + | 225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $\mathbf{Z} _ { 12 }$ ; confidence 0.917 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917 | + | 226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } \textsf{P} ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104010.png ; $p | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104010.png ; $p k $ ; confidence 0.917 |
228. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005034.png ; $k = k _ { c }$ ; confidence 0.917 | 228. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005034.png ; $k = k _ { c }$ ; confidence 0.917 | ||
− | 229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015031.png ; $D = \{ z \in C ^ { n } : | z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1 \}$ ; confidence 0.917 | + | 229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015031.png ; $D = \left\{ z \in \mathbf{C} ^ { n } : | z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1 \right\}$ ; confidence 0.917 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080157.png ; $T M _ { g }$ ; confidence 0.917 | + | 230. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080157.png ; $T \mathcal{M} _ { g }$ ; confidence 0.917 |
231. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002015.png ; $( \int _ { - \infty } ^ { \infty } ( x - a ) ^ { 2 } | f ( x ) | ^ { 2 } d x ) ( \int _ { - \infty } ^ { \infty } ( y - b ) ^ { 2 } | \hat { f } ( y ) | ^ { 2 } d y ) \geq$ ; confidence 0.917 | 231. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002015.png ; $( \int _ { - \infty } ^ { \infty } ( x - a ) ^ { 2 } | f ( x ) | ^ { 2 } d x ) ( \int _ { - \infty } ^ { \infty } ( y - b ) ^ { 2 } | \hat { f } ( y ) | ^ { 2 } d y ) \geq$ ; confidence 0.917 | ||
− | 232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025057.png ; $PG ( 4,9 )$ ; confidence 0.917 | + | 232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025057.png ; $\operatorname{PG} ( 4,9 )$ ; confidence 0.917 |
233. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752024.png ; $D \in M _ { n \times n } ( K )$ ; confidence 0.917 | 233. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752024.png ; $D \in M _ { n \times n } ( K )$ ; confidence 0.917 | ||
Line 468: | Line 468: | ||
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027084.png ; $Y ^ { * }$ ; confidence 0.917 | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027084.png ; $Y ^ { * }$ ; confidence 0.917 | ||
− | 235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027022.png ; $U ( t ) \equiv E N ( t )$ ; confidence 0.917 | + | 235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027022.png ; $U ( t ) \equiv \textsf{E} N ( t ),$ ; confidence 0.917 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002021.png ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } }$ ; confidence 0.917 | + | 236. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002021.png ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } },$ ; confidence 0.917 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300906.png ; $U _ { m + n } ( x ) = U _ { m + 1 } ( x ) U _ { n } ( x ) + U _ { m } ( x ) U _ { n - 1 } ( x )$ ; confidence 0.917 | + | 237. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300906.png ; $U _ { m + n } ( x ) = U _ { m + 1 } ( x ) U _ { n } ( x ) + U _ { m } ( x ) U _ { n - 1 } ( x );$ ; confidence 0.917 |
238. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840185.png ; $\rho ( \lambda ) = \sum _ { j = 1 } ^ { \kappa } [ d _ { j } / 2 ]$ ; confidence 0.917 | 238. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840185.png ; $\rho ( \lambda ) = \sum _ { j = 1 } ^ { \kappa } [ d _ { j } / 2 ]$ ; confidence 0.917 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020017.png ; $A v _ { i } = v _ { i | + | 239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020017.png ; $A v _ { i } = v _ { i + 1}$ ; confidence 0.917 |
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029011.png ; $w _ { 2 } ( P _ { Y } ) \neq 0$ ; confidence 0.917 | 240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029011.png ; $w _ { 2 } ( P _ { Y } ) \neq 0$ ; confidence 0.917 | ||
Line 486: | Line 486: | ||
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020132.png ; $X ^ { 1 } \vee S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.916 | 243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020132.png ; $X ^ { 1 } \vee S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.916 | ||
− | 244. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120004.png ; $y \in R ^ { x }$ ; confidence 0.916 | + | 244. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120004.png ; $y \in \mathbf{R} ^ { x }$ ; confidence 0.916 |
245. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566027.png ; $N ^ { 2 }$ ; confidence 0.916 | 245. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566027.png ; $N ^ { 2 }$ ; confidence 0.916 | ||
Line 496: | Line 496: | ||
248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200807.png ; $b _ { p } ^ { ( 2 ) }$ ; confidence 0.916 | 248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200807.png ; $b _ { p } ^ { ( 2 ) }$ ; confidence 0.916 | ||
− | 249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200704.png ; $C ^ { n } ( C , M )$ ; confidence 0.916 | + | 249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200704.png ; $C ^ { n } ( \mathcal{C} , M )$ ; confidence 0.916 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200169.png ; $\operatorname { Re } G _ { 2 } ( r ) \geq A$ ; confidence 0.916 | + | 250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200169.png ; $\max _ r \operatorname { Re } G _ { 2 } ( r ) \geq A$ ; confidence 0.916 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067083.png ; $GL ^ { 1 } ( n ) = GL ( n )$ ; confidence 0.916 | + | 251. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067083.png ; $\operatorname{GL} ^ { 1 } ( n ) = \operatorname{GL} ( n )$ ; confidence 0.916 |
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049024.png ; $m : \Sigma \rightarrow [ 0 , \infty )$ ; confidence 0.916 | 252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049024.png ; $m : \Sigma \rightarrow [ 0 , \infty )$ ; confidence 0.916 | ||
− | 253. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025014.png ; $C ( \beta ) = \prod _ { j = 1 } ^ { n } \frac { \operatorname { exp } ( z _ { j } ^ { T } ( T _ { j } ) \beta ) } { \sum _ { k \in R _ { j } } \operatorname { exp } ( z _ { k } ^ { T } ( T _ { j } ) \beta ) }$ ; confidence 0.916 | + | 253. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025014.png ; $C ( \beta ) = \prod _ { j = 1 } ^ { n } \frac { \operatorname { exp } ( z _ { j } ^ { T } ( T _ { j } ) \beta ) } { \sum _ { k \in R _ { j } } \operatorname { exp } ( z _ { k } ^ { T } ( T _ { j } ) \beta ) },$ ; confidence 0.916 |
254. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583077.png ; $H = K \oplus K ^ { \prime }$ ; confidence 0.916 | 254. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583077.png ; $H = K \oplus K ^ { \prime }$ ; confidence 0.916 | ||
Line 510: | Line 510: | ||
255. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007081.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916 | 255. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007081.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916 | ||
− | 256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024052.png ; $x _ { t } ( \theta ) = x ( t + \theta ) , \theta \in J _ { t } \subseteq ( - \infty , 0 ]$ ; confidence 0.916 | + | 256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024052.png ; $x _ { t } ( \theta ) = x ( t + \theta ) , \theta \in J _ { t } \subseteq ( - \infty , 0 ],$ ; confidence 0.916 |
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916 | 257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916 | ||
− | 258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916 | + | 258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $\mathcal{S} ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916 |
259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200100.png ; $\mathfrak { g } ^ { \alpha } \times \mathfrak { g } ^ { - \alpha }$ ; confidence 0.916 | 259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200100.png ; $\mathfrak { g } ^ { \alpha } \times \mathfrak { g } ^ { - \alpha }$ ; confidence 0.916 | ||
− | 260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080208.png ; $b _ { 2 } | + | 260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080208.png ; $b _ { 2 + } = 1$ ; confidence 0.916 |
261. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002037.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ ; confidence 0.916 | 261. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002037.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ ; confidence 0.916 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003058.png ; $( FBL ( X , Y ) , FBL ( Y , X ) )$ ; confidence 0.916 | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003058.png ; $( \operatorname{FBL} ( X , Y ) , \operatorname{FBL} ( Y , X ) )$ ; confidence 0.916 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001038.png ; $\ | + | 263. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001038.png ; $ \overset{\rightharpoonup}{ D }$ ; confidence 0.916 |
264. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011019.png ; $\partial T ( h ) = \partial F \times S ^ { 1 }$ ; confidence 0.916 | 264. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011019.png ; $\partial T ( h ) = \partial F \times S ^ { 1 }$ ; confidence 0.916 | ||
Line 530: | Line 530: | ||
265. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010027.png ; $W ^ { n } = ( M , g , \gamma )$ ; confidence 0.916 | 265. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010027.png ; $W ^ { n } = ( M , g , \gamma )$ ; confidence 0.916 | ||
− | 266. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003051.png ; $B = ( C ^ { \infty } ( \Omega ) ) ^ { \Lambda }$ ; confidence 0.916 | + | 266. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003051.png ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \Lambda }$ ; confidence 0.916 |
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027028.png ; $P _ { m }$ ; confidence 0.916 | 267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027028.png ; $P _ { m }$ ; confidence 0.916 | ||
Line 538: | Line 538: | ||
269. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200209.png ; $\langle u - v , j \rangle \leq 0$ ; confidence 0.916 | 269. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200209.png ; $\langle u - v , j \rangle \leq 0$ ; confidence 0.916 | ||
− | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016045.png ; $J = \frac { 1 } { f } \left( \begin{array} { c c } { 1 } & { - \psi } \\ { - \psi } & { \psi ^ { 2 } + r ^ { 2 } f ^ { 2 } } \end{array} \right)$ ; confidence 0.916 | + | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016045.png ; $J = \frac { 1 } { f } \left( \begin{array} { c c } { 1 } & { - \psi } \\ { - \psi } & { \psi ^ { 2 } + r ^ { 2 } f ^ { 2 } } \end{array} \right),$ ; confidence 0.916 |
271. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000160.png ; $\Gamma \vdash M : \sigma$ ; confidence 0.916 | 271. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000160.png ; $\Gamma \vdash M : \sigma$ ; confidence 0.916 | ||
− | 272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022027.png ; $\in | + | 272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022027.png ; $e \in \mathbf{M}$ ; confidence 0.916 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620117.png ; $+ ( \lambda ) > 0$ ; confidence 0.916 | + | 273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620117.png ; $\operatorname{Im} m_+ ( \lambda ) > 0$ ; confidence 0.916 |
274. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002036.png ; $\varphi _ { 1 } + \tilde { \varphi } _ { 2 }$ ; confidence 0.916 | 274. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002036.png ; $\varphi _ { 1 } + \tilde { \varphi } _ { 2 }$ ; confidence 0.916 | ||
− | 275. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008088.png ; $\pm [ \operatorname { exp } ( \frac { 2 J } { k _ { B } T } ) \operatorname { cosh } ^ { 2 } ( \frac { H } { k _ { B } T } ) - 2 \operatorname { sinh } ( \frac { 2 J } { k _ { B } T } ) ] ^ { 1 / 2 }$ ; confidence 0.916 | + | 275. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008088.png ; $\pm \left[ \operatorname { exp } ( \frac { 2 J } { k _ { B } T } ) \operatorname { cosh } ^ { 2 } ( \frac { H } { k _ { B } T } ) - 2 \operatorname { sinh } ( \frac { 2 J } { k _ { B } T } ) \right] ^ { 1 / 2 }.$ ; confidence 0.916 |
276. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003013.png ; $U ^ { \prime } P T ^ { \prime }$ ; confidence 0.916 | 276. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003013.png ; $U ^ { \prime } P T ^ { \prime }$ ; confidence 0.916 | ||
− | 277. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005065.png ; $D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.915 | + | 277. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005065.png ; $D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right).$ ; confidence 0.915 |
278. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160107.png ; $A ( a , b )$ ; confidence 0.915 | 278. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160107.png ; $A ( a , b )$ ; confidence 0.915 | ||
Line 562: | Line 562: | ||
281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023043.png ; $D _ { X } \in \operatorname { Der } _ { k } \wedge T _ { X } ^ { * } M$ ; confidence 0.915 | 281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023043.png ; $D _ { X } \in \operatorname { Der } _ { k } \wedge T _ { X } ^ { * } M$ ; confidence 0.915 | ||
− | 282. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702065.png ; $Q$ ; confidence 0.915 | + | 282. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702065.png ; $\mathbf{Q}_l$ ; confidence 0.915 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029037.png ; $ | + | 283. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029037.png ; $\underline{ \top } $ ; confidence 0.915 |
284. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211051.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } )$ ; confidence 0.915 | 284. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211051.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } )$ ; confidence 0.915 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $a , b$ ; confidence 0.915 | + | 285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $[a , b]$ ; confidence 0.915 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005028.png ; $H _ { b } ( U )$ ; confidence 0.915 | + | 286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005028.png ; $\mathcal{H} _ { b } ( U )$ ; confidence 0.915 |
287. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004025.png ; $x ^ { T } = \prod _ { i \in T } x _ { i }$ ; confidence 0.915 | 287. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004025.png ; $x ^ { T } = \prod _ { i \in T } x _ { i }$ ; confidence 0.915 | ||
− | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025017.png ; $L _ { 0 } = D$ ; confidence 0.915 | + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025017.png ; $L _ { 0 } = \mathcal{D}$ ; confidence 0.915 |
289. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002045.png ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915 | 289. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002045.png ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915 | ||
− | 290. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021024.png ; $1 | + | 290. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021024.png ; $1 / \lambda$ ; confidence 0.915 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320183.png ; $ | + | 291. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320183.png ; $K_i$ ; confidence 0.915 |
292. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010010.png ; $\hat { f } ( \alpha , p )$ ; confidence 0.915 | 292. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010010.png ; $\hat { f } ( \alpha , p )$ ; confidence 0.915 | ||
− | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031069.png ; $( Q _ { 1 } , \mu _ { 1 } )$ ; confidence 0.915 | + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031069.png ; $( \mathcal{Q} _ { 1 } , \mu _ { 1 } )$ ; confidence 0.915 |
294. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004021.png ; $\psi _ { \pm }$ ; confidence 0.915 | 294. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004021.png ; $\psi _ { \pm }$ ; confidence 0.915 | ||
− | 295. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005021.png ; $( R ^ { n } )$ ; confidence 0.915 | + | 295. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005021.png ; $\operatorname{VMO} ( \mathbf{R} ^ { n } )$ ; confidence 0.915 |
296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010020.png ; $\square ^ { \prime } \Gamma$ ; confidence 0.915 | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010020.png ; $\square ^ { \prime } \Gamma$ ; confidence 0.915 | ||
Line 596: | Line 596: | ||
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060143.png ; $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$ ; confidence 0.915 | 298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060143.png ; $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$ ; confidence 0.915 | ||
− | 299. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007019.png ; $P _ { k } = \hbar D _ { k } = \frac { \hbar } { i } \frac { \partial } { \partial x _ { k } }$ ; confidence 0.915 | + | 299. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007019.png ; $P _ { k } = \hbar D _ { k } = \frac { \hbar } { i } \frac { \partial } { \partial x _ { k } }.$ ; confidence 0.915 |
300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040029.png ; $X ^ { P }$ ; confidence 0.915 | 300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040029.png ; $X ^ { P }$ ; confidence 0.915 |
Latest revision as of 20:36, 7 April 2020
List
1. ; $Q _ { j } = X _ { j }$ ; confidence 0.924
2. ; $d = - H _ { c } ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.924
3. ; $n _ { i } \geq 1$ ; confidence 0.924
4. ; $[ K , L ] = - ( - 1 ) ^ { k l } [ L , K ],$ ; confidence 0.924
5. ; $\lim \inf _{x \rightarrow \infty} \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924
6. ; $u \in \overline { UM }$ ; confidence 0.924
7. ; $x ^ { n } - y ^ { n } = z ^ { n }$ ; confidence 0.924
8. ; $N _ { j } \in ( 0 , Z _ { j } )$ ; confidence 0.924
9. ; $\lambda _ { 1 }$ ; confidence 0.924
10. ; $K ( m )$ ; confidence 0.924
11. ; $\dim_{ \text{C} } M = 1$ ; confidence 0.924
12. ; $n _ { i j } > 0$ ; confidence 0.924
13. ; $\sum _ { z : x \leq z \leq y } \mu ( x , z ) = 0 \text { if } x < y.$ ; confidence 0.924
14. ; $\varrho : H \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.924
15. ; $C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} ) \oplus C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.923
16. ; $( a , \eta ( a ) )$ ; confidence 0.923
17. ; $\beta _ { 11 } = \beta _ { 21 }$ ; confidence 0.923
18. ; $D ( a , R ) =$ ; confidence 0.923
19. ; $U \subset M$ ; confidence 0.923
20. ; $\varphi \in \mathcal{A} _ { N } ( \mathbf{R} ^ { n } )$ ; confidence 0.923
21. ; $x ^ { * } R y$ ; confidence 0.923
22. ; $( z _ { j } , t _ { j } )$ ; confidence 0.923
23. ; $v = ( v _ { j } )$ ; confidence 0.923
24. ; $N = \int \rho$ ; confidence 0.923
25. ; $p ^ { m }$ ; confidence 0.923
26. ; $\xi _ { 1 } \xi _ { 2 } \equiv \pi ( \xi _ { 1 } ) \xi _ { 2 }$ ; confidence 0.923
27. ; $L _ { 2 } ( X )$ ; confidence 0.923
28. ; $\operatorname { Ext } _ { A } ^ { 1 } ( T , T ) = 0$ ; confidence 0.923
29. ; $| x | < 1$ ; confidence 0.923
30. ; $x , y \in \mathcal{D} ( T )$ ; confidence 0.923
31. ; $Q ( x ) \geq C \operatorname { log } x \operatorname { log } \operatorname { log } x / ( \operatorname { log } \operatorname { log } \operatorname { log } x ) ^ { 2 }$ ; confidence 0.923
32. ; $X = \mathcal{H}$ ; confidence 0.923
33. ; $F \circ f \in \mathcal{A}$ ; confidence 0.923
34. ; $C _ { G } ( x )$ ; confidence 0.923
35. ; $K _ { 0 } ( \mathcal{O} _ { \infty } ) = \mathbf{Z}$ ; confidence 0.923
36. ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923
37. ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z ).$ ; confidence 0.923
38. ; $\nu = 0$ ; confidence 0.923
39. ; $I$ ; confidence 0.923
40. ; $x e = x$ ; confidence 0.923
41. ; $N \in \mathbf{N} \backslash \{ 0 \}$ ; confidence 0.923
42. ; $Y _ { \text{obs} } = \mathcal{M} ( Y _ { \text{aug} } )$ ; confidence 0.923
43. ; $v = \operatorname { tanh } ( J / k _ { B } T )$ ; confidence 0.923
44. ; $( I , \preceq )$ ; confidence 0.923
45. ; $x \in B$ ; confidence 0.923
46. ; $Q ( n )$ ; confidence 0.923
47. ; $\alpha ^ { \prime }$ ; confidence 0.923
48. ; $c > 1$ ; confidence 0.923
49. ; $A _ {i j } \in C ^ { n \times n }$ ; confidence 0.923
50. ; $G _ { \mu } ^ { * }$ ; confidence 0.922
51. ; $( a , b ) \mapsto a \square b ^ { * }$ ; confidence 0.922
52. ; $\sum _ { i = 1 } ^ { k } A _ { i } A _ { i } ^ { T } = k m I _ { m }$ ; confidence 0.922
53. ; $a , b , x$ ; confidence 0.922
54. ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922
55. ; $| \nabla L |$ ; confidence 0.922
56. ; $\{ z \in \mathbf{C} : | z | < \epsilon \} \backslash ( - \infty , 0 ]$ ; confidence 0.922
57. ; $( i , \alpha )$ ; confidence 0.922
58. ; $\{ \mathbf{p} _ { j } , \mathbf{p} _ { k } \} = \{ \mathbf{q} _ { j } , \mathbf{q} _ { k } \} = 0 , \quad \{ \mathbf{p} _ { j } , \mathbf{q} _ { k } \} = \delta _ { j k }.$ ; confidence 0.922
59. ; $\zeta _ { \lambda } ^ { \prime }$ ; confidence 0.922
60. ; $< \varepsilon _ { i }$ ; confidence 0.922
61. ; $\zeta \in \mathbf{C} ^ { k }$ ; confidence 0.922
62. ; $S _ { H }$ ; confidence 0.922
63. ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
64. ; $q _ { 2 } ( . ) \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.922
65. ; $r:K _ { 2 } ( X ) \rightarrow H ^ { 1 } ( X ( \mathbf{C} ) , \mathbf{R} ( 1 ) )$ ; confidence 0.922
66. ; $X \rightarrow Y$ ; confidence 0.922
67. ; $\phi \in \Gamma ( V _ { + } )$ ; confidence 0.922
68. ; $\mathbf{E} ^ { \prime }$ ; confidence 0.922
69. ; $( \Gamma _ { A } ) _ { s }$ ; confidence 0.922
70. ; $T _ { A } M = \operatorname { Hom } ( C ^ { \infty } ( M , \mathbf{R} ) , A ),$ ; confidence 0.922
71. ; $O ( h ^ { k } )$ ; confidence 0.922
72. ; $\varrho : B \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.922
73. ; $\chi = 2 g \phi$ ; confidence 0.922
74. ; $C _ { C A }$ ; confidence 0.922
75. ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922
76. ; $i \in I$ ; confidence 0.922
77. ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921
78. ; $X ^ { * } = X _ { c } ^ { * } \oplus X _ { s } ^ { * }$ ; confidence 0.921
79. ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921
80. ; $\cosh \delta = x ^ { 0 } y ^ { 0 } - \sum x ^ { t } y ^ { t }.$ ; confidence 0.921
81. ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 } \circ \phi _ { 4 }$ ; confidence 0.921
82. ; $( T _ { i j } ) _ { 1 } ^ { 2 }$ ; confidence 0.921
83. ; $\Sigma ^ { n } \mathcal{A} / \{ Sq ^ { i } : 2 i > n \} \mathcal{A} \cong G ( n ).$ ; confidence 0.921
84. ; $( \phi _ { 1 } \vee \ldots \vee \phi _ { n } )$ ; confidence 0.921
85. ; $\Delta = \left( \begin{array} { l } { n } \\ { 4 } \end{array} \right) \left( \begin{array} { l } { 4 } \\ { 2 } \end{array} \right) p ^ { 5 }$ ; confidence 0.921
86. ; $\mathfrak { A } = ( A , f _ { \mathfrak { A } } )$ ; confidence 0.921
87. ; $x , y \in G _ { 1 }$ ; confidence 0.921
88. ; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) ).$ ; confidence 0.921
89. ; $[ \pi ( X _* ) , C ] \cong [ X , B C ]$ ; confidence 0.921
90. ; $h _ { t } ( s ) = h ( ( s - t ) / \operatorname { log } | t | ) / \operatorname { log } | t | $ ; confidence 0.921
91. ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 1.$ ; confidence 0.921
92. ; $F _ { j } ( u ) = \int a _ { j } ( \xi ) M ( u , \xi ) d \xi ,$ ; confidence 0.921
93. ; $C _ { B _ { 2 } } ( f ) \geq 2 ^ { n } / n$ ; confidence 0.921
94. ; $f : \overline{P} \rightarrow \mathbf{C}$ ; confidence 0.921
95. ; $u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0.$ ; confidence 0.921
96. ; $E _ { [ \theta n ] } ( f ) = O ( E _ { n } ( f ) )$ ; confidence 0.921
97. ; $v \neq 0$ ; confidence 0.921
98. ; $L = \partial ^ { n + 1 } - q _ { 1 } \partial ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.921
99. ; $C ( S ) \otimes \pi _ { k } ( T ) + \pi _{\text{l}} ( S ) \otimes C ( T )$ ; confidence 0.921
100. ; $x \notin S$ ; confidence 0.921
101. ; $K ( \mathcal{H} )$ ; confidence 0.921
102. ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921
103. ; $\operatorname { det } ( T )$ ; confidence 0.921
104. ; $\mathbf{E} ^ { 2 }$ ; confidence 0.921
105. ; $k \eta$ ; confidence 0.921
106. ; $B \gg Z ^ { 3 }$ ; confidence 0.921
107. ; $h ^ { I I } ( z )$ ; confidence 0.921
108. ; $1 \leq i _ { 1 } < \ldots < i _ { k } \leq n$ ; confidence 0.921
109. ; $C ( \beta )$ ; confidence 0.921
110. ; $h ( x ) = \frac { ( 1 - x ^ { 2 } ) ^ { \pm 1 / 2 } } { \rho _ { m } ( x ) },$ ; confidence 0.921
111. ; $h : \mathbf{R} _ { + } \times \mathbf{R} ^ { n } \times \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.921
112. ; $\operatorname{ACS}$ ; confidence 0.921
113. ; $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.921
114. ; $S ( T , \alpha )$ ; confidence 0.920
115. ; $N > 1$ ; confidence 0.920
116. ; $T X - I$ ; confidence 0.920
117. ; $\overline { u } _ { 1 } \geq 0$ ; confidence 0.920
118. ; $\nabla . E = \rho$ ; confidence 0.920
119. ; $L w , K v$ ; confidence 0.920
120. ; $\zeta z = \zeta _ { 1 } z _ { 1 } + \ldots + \zeta _ { n } z _ { n }$ ; confidence 0.920
121. ; $G _ { \Omega } ( x , y )$ ; confidence 0.920
122. ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { 0 } ^ { 2 \pi } | f ( r e ^ { i \theta } ) - f ( e ^ { i \theta } ) | ^ { \delta } d \theta = 0,$ ; confidence 0.920
123. ; $A = ( I + T ) ( I - T ) ^ { - 1 } , \quad 1 \notin \sigma _ { p } ( T ),$ ; confidence 0.920
124. ; $F : X \rightarrow X$ ; confidence 0.920
125. ; $\partial$ ; confidence 0.920
126. ; $h \in \operatorname { SPSH } ( \Omega \times \Omega ) , h < 0,$ ; confidence 0.920
127. ; $n _ { S } < n$ ; confidence 0.920
128. ; $b _ { 2i + 1} ( \mathcal{S} ) = 0$ ; confidence 0.920
129. ; $x \preceq y \Rightarrow z x t \preceq x y t.$ ; confidence 0.920
130. ; $k = 8$ ; confidence 0.920
131. ; $( h ( s , y ) , \delta _ { m } ( t - s ) ) _ { \mathcal{H} } = h ( t , y )$ ; confidence 0.920
132. ; $\Lambda _ { G }$ ; confidence 0.920
133. ; $\{ x : f ( x ) > \alpha \}$ ; confidence 0.920
134. ; $\mathbf{p} = \{ p _ { i } : i \in \Gamma \}$ ; confidence 0.920
135. ; $\mathcal{I} = \langle x \otimes y - B ( x \otimes y ) \rangle$ ; confidence 0.920
136. ; $r ( x , t | x _ { 0 } , \sigma ( Y ( u ) , u \leq t ) ) =$ ; confidence 0.920
137. ; $J B ^ { * }$ ; confidence 0.920
138. ; $\phi _ { t } ^ { k }$ ; confidence 0.920
139. ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) > 0$ ; confidence 0.920
140. ; $X \rightarrow Y \leftarrow X ^ { + }$ ; confidence 0.920
141. ; $h_{ i , j } = s _ { i + j - 1 }$ ; confidence 0.920
142. ; $K G$ ; confidence 0.920
143. ; $r < 1 < R$ ; confidence 0.920
144. ; $T = T _ { \varphi } + C$ ; confidence 0.920
145. ; $Kn = \frac { \lambda } { l }.$ ; confidence 0.920
146. ; $U \in \operatorname{SGL} _ { n } ( \Gamma )$ ; confidence 0.919
147. ; $V ( T , F _ { \theta } ) = \int \operatorname { IF } ( x ; T , F _ { \theta } ) ^ { 2 } d F _ { \theta } ( x )$ ; confidence 0.919
148. ; $\operatorname { sn } ( u | k )$ ; confidence 0.919
149. ; $\operatorname{S}5 ^ { S }$ ; confidence 0.919
150. ; $\operatorname { spt } ( \| \nu \| ) \cap B ( a , ( 1 - \epsilon ) R )$ ; confidence 0.919
151. ; $\operatorname{codom}_{G'} \circ d _ { A } = d _ { 0 } \circ \operatorname{codom}_{G}$ ; confidence 0.919
152. ; $\operatorname { Re } z > 0$ ; confidence 0.919
153. ; $P \subseteq P ^ { \prime }$ ; confidence 0.919
154. ; $\operatorname { Re } \mu _ { 0 } ( k , R ) < 0$ ; confidence 0.919
155. ; $\sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } =$ ; confidence 0.919
156. ; $d_Y$ ; confidence 0.919
157. ; $T _ { n } ( . ) = Z _ { n } (\, . \, ; 0 )$ ; confidence 0.919
158. ; $X \sim \operatorname { LS } _ { p , n } ( \phi )$ ; confidence 0.919
159. ; $w _ { 2 } = ( 1 - \operatorname { sign } ( c ) ) / 2$ ; confidence 0.919
160. ; $d ( Q )$ ; confidence 0.919
161. ; $N \geq Z$ ; confidence 0.919
162. ; $( k , \Sigma )$ ; confidence 0.919
163. ; $\operatorname { Im } T = K J K ^ { * }$ ; confidence 0.919
164. ; $g _ { \alpha } ( t ) = \frac { 1 } { 2 \sqrt { \pi \alpha } } e ^ { - t ^ { 2 } / ( 4 \alpha ) } , \alpha > 0.$ ; confidence 0.919
165. ; $H \equiv - \frac { \partial ^ { 2 } } { \partial \theta . \partial \theta } \int f ( \theta , \phi ) d \phi | _ { \theta = \theta ^ { * } },$ ; confidence 0.919
166. ; $U _ { \xi } \subset _{*} U _ { \eta }$ ; confidence 0.919
167. ; $f _ { l }$ ; confidence 0.919
168. ; $\phi / \| \phi \|$ ; confidence 0.919
169. ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ] \Rightarrow \tilde{\mathcal{L}}$ ; confidence 0.919
170. ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ],$ ; confidence 0.919
171. ; $x , y \in \mathcal{D}$ ; confidence 0.919
172. ; $\beta : G \times G \rightarrow k ^ { * }$ ; confidence 0.919
173. ; $\operatorname { Im } [ T x , x ] \geq 0$ ; confidence 0.919
174. ; $\| . \| _ { 2 }$ ; confidence 0.919
175. ; $\| \rho \| _ { L ^ { p } ( R ^ { 2 } ) } \leq B _ { p } m ^ { - 2 / p } N ^ { 1 / p }$ ; confidence 0.919
176. ; $S _ { 0 } = S _ { \mu }$ ; confidence 0.919
177. ; $S _ { i } = \operatorname { rank } ( y _ { i } )$ ; confidence 0.919
178. ; $E = I _ { n }$ ; confidence 0.918
179. ; $S _ { k } ( f , x )$ ; confidence 0.918
180. ; $\lambda > 0$ ; confidence 0.918
181. ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z ),$ ; confidence 0.918
182. ; $\operatorname { Im } T = ( T - T ^ { * } ) / 2 i$ ; confidence 0.918
183. ; $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ ; confidence 0.918
184. ; $\alpha_j$ ; confidence 0.918
185. ; $\lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0$ ; confidence 0.918
186. ; $\mathcal{S} ^ { \prime } ( \mathbf{R} )$ ; confidence 0.918
187. ; $g > 1$ ; confidence 0.918
188. ; $R _ { \Gamma , n } = 1$ ; confidence 0.918
189. ; $\mathcal{O} _ { K }$ ; confidence 0.918
190. ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918
191. ; $R = \sum _ { n > 0 } R ^ { n }$ ; confidence 0.918
192. ; $|.| v$ ; confidence 0.918
193. ; $s ( D _ { 3_{1} } ) = 2$ ; confidence 0.918
194. ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.918
195. ; $D _ { S }$ ; confidence 0.918
196. ; $( \mathcal{T} , \mathcal{F} )$ ; confidence 0.918
197. ; $c _ { \mu } f + T _ { \mu } f$ ; confidence 0.918
198. ; $( m _ { j } ^ { + } ) ^ { 2 }$ ; confidence 0.918
199. ; $Y = X$ ; confidence 0.918
200. ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918
201. ; $\{ s \in \mathbf{C} : i / 2 \leq \operatorname { Re } ( s ) \leq 1 + i / 2 \}$ ; confidence 0.918
202. ; $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi _{- 3} )$ ; confidence 0.918
203. ; $I ( \rho ) = \frac { d \rho } { d ( \mu \times \mu ) }$ ; confidence 0.918
204. ; $Q ^ { + } Q ^ { - } ( Q ^ { + } \psi _ { \lambda } ) = \lambda ( Q ^ { + } \psi _ { \lambda } )$ ; confidence 0.918
205. ; $i \in S$ ; confidence 0.918
206. ; $f _{ ( 2 ) } ( x _ { 0 } )$ ; confidence 0.918
207. ; $[ T x , y ] = [ x , T ^ { + } y ]$ ; confidence 0.918
208. ; $g _ { \Phi } ( t ) = \Phi ^ { - 1 } ( t ) t ^ { - 1 - 1 / n }$ ; confidence 0.918
209. ; $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.918
210. ; $K _ { 0 } ^ { n + 1 } \searrow K _ { 1 }$ ; confidence 0.917
211. ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) +$ ; confidence 0.917
212. ; $0 \neq \mathcal{K} _ { 0 } \subset \mathcal{H} ( \pi )$ ; confidence 0.917
213. ; $C ^ { * } ( G )$ ; confidence 0.917
214. ; $\hbar = h / 2 \pi$ ; confidence 0.917
215. ; $u , v \in C$ ; confidence 0.917
216. ; $\pi _ { 0 } \operatorname { Map } ( B E , X ) = [ B E , X ] = \operatorname { Hom } _ { \mathcal{K} } ( H ^ { * } X , H ^ { * } B E ).$ ; confidence 0.917
217. ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917
218. ; $\sigma ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A ).$ ; confidence 0.917
219. ; $Y \times K \simeq Z \times K$ ; confidence 0.917
220. ; $\lambda = \omega ^ { 2 }$ ; confidence 0.917
221. ; $[\mathbf{Z} _ { 32 } , \mathbf{Z} _ { 33 }]$ ; confidence 0.917
222. ; $\mathbf{E} _ { 7 }$ ; confidence 0.917
223. ; $N - 1$ ; confidence 0.917
224. ; $q < n$ ; confidence 0.917
225. ; $\mathbf{Z} _ { 12 }$ ; confidence 0.917
226. ; $U ( t ) = \sum _ { 1 } ^ { \infty } \textsf{P} ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
227. ; $p k $ ; confidence 0.917
228. ; $k = k _ { c }$ ; confidence 0.917
229. ; $D = \left\{ z \in \mathbf{C} ^ { n } : | z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1 \right\}$ ; confidence 0.917
230. ; $T \mathcal{M} _ { g }$ ; confidence 0.917
231. ; $( \int _ { - \infty } ^ { \infty } ( x - a ) ^ { 2 } | f ( x ) | ^ { 2 } d x ) ( \int _ { - \infty } ^ { \infty } ( y - b ) ^ { 2 } | \hat { f } ( y ) | ^ { 2 } d y ) \geq$ ; confidence 0.917
232. ; $\operatorname{PG} ( 4,9 )$ ; confidence 0.917
233. ; $D \in M _ { n \times n } ( K )$ ; confidence 0.917
234. ; $Y ^ { * }$ ; confidence 0.917
235. ; $U ( t ) \equiv \textsf{E} N ( t ),$ ; confidence 0.917
236. ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } },$ ; confidence 0.917
237. ; $U _ { m + n } ( x ) = U _ { m + 1 } ( x ) U _ { n } ( x ) + U _ { m } ( x ) U _ { n - 1 } ( x );$ ; confidence 0.917
238. ; $\rho ( \lambda ) = \sum _ { j = 1 } ^ { \kappa } [ d _ { j } / 2 ]$ ; confidence 0.917
239. ; $A v _ { i } = v _ { i + 1}$ ; confidence 0.917
240. ; $w _ { 2 } ( P _ { Y } ) \neq 0$ ; confidence 0.917
241. ; $L _ { \gamma , 1 } ^ { 1 } = L _ { \gamma , 1 }$ ; confidence 0.917
242. ; $( p - 1 ) p ^ { h } | 2 n$ ; confidence 0.917
243. ; $X ^ { 1 } \vee S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.916
244. ; $y \in \mathbf{R} ^ { x }$ ; confidence 0.916
245. ; $N ^ { 2 }$ ; confidence 0.916
246. ; $\psi ( k , n ) > 0$ ; confidence 0.916
247. ; $C ( N )$ ; confidence 0.916
248. ; $b _ { p } ^ { ( 2 ) }$ ; confidence 0.916
249. ; $C ^ { n } ( \mathcal{C} , M )$ ; confidence 0.916
250. ; $\max _ r \operatorname { Re } G _ { 2 } ( r ) \geq A$ ; confidence 0.916
251. ; $\operatorname{GL} ^ { 1 } ( n ) = \operatorname{GL} ( n )$ ; confidence 0.916
252. ; $m : \Sigma \rightarrow [ 0 , \infty )$ ; confidence 0.916
253. ; $C ( \beta ) = \prod _ { j = 1 } ^ { n } \frac { \operatorname { exp } ( z _ { j } ^ { T } ( T _ { j } ) \beta ) } { \sum _ { k \in R _ { j } } \operatorname { exp } ( z _ { k } ^ { T } ( T _ { j } ) \beta ) },$ ; confidence 0.916
254. ; $H = K \oplus K ^ { \prime }$ ; confidence 0.916
255. ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916
256. ; $x _ { t } ( \theta ) = x ( t + \theta ) , \theta \in J _ { t } \subseteq ( - \infty , 0 ],$ ; confidence 0.916
257. ; $m > 3$ ; confidence 0.916
258. ; $\mathcal{S} ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
259. ; $\mathfrak { g } ^ { \alpha } \times \mathfrak { g } ^ { - \alpha }$ ; confidence 0.916
260. ; $b _ { 2 + } = 1$ ; confidence 0.916
261. ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ ; confidence 0.916
262. ; $( \operatorname{FBL} ( X , Y ) , \operatorname{FBL} ( Y , X ) )$ ; confidence 0.916
263. ; $ \overset{\rightharpoonup}{ D }$ ; confidence 0.916
264. ; $\partial T ( h ) = \partial F \times S ^ { 1 }$ ; confidence 0.916
265. ; $W ^ { n } = ( M , g , \gamma )$ ; confidence 0.916
266. ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \Lambda }$ ; confidence 0.916
267. ; $P _ { m }$ ; confidence 0.916
268. ; $L _ { 1 } ( \hat { G } )$ ; confidence 0.916
269. ; $\langle u - v , j \rangle \leq 0$ ; confidence 0.916
270. ; $J = \frac { 1 } { f } \left( \begin{array} { c c } { 1 } & { - \psi } \\ { - \psi } & { \psi ^ { 2 } + r ^ { 2 } f ^ { 2 } } \end{array} \right),$ ; confidence 0.916
271. ; $\Gamma \vdash M : \sigma$ ; confidence 0.916
272. ; $e \in \mathbf{M}$ ; confidence 0.916
273. ; $\operatorname{Im} m_+ ( \lambda ) > 0$ ; confidence 0.916
274. ; $\varphi _ { 1 } + \tilde { \varphi } _ { 2 }$ ; confidence 0.916
275. ; $\pm \left[ \operatorname { exp } ( \frac { 2 J } { k _ { B } T } ) \operatorname { cosh } ^ { 2 } ( \frac { H } { k _ { B } T } ) - 2 \operatorname { sinh } ( \frac { 2 J } { k _ { B } T } ) \right] ^ { 1 / 2 }.$ ; confidence 0.916
276. ; $U ^ { \prime } P T ^ { \prime }$ ; confidence 0.916
277. ; $D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right).$ ; confidence 0.915
278. ; $A ( a , b )$ ; confidence 0.915
279. ; $T _ { f }$ ; confidence 0.915
280. ; $[ T x , T x ] \leq [ x , x ]$ ; confidence 0.915
281. ; $D _ { X } \in \operatorname { Der } _ { k } \wedge T _ { X } ^ { * } M$ ; confidence 0.915
282. ; $\mathbf{Q}_l$ ; confidence 0.915
283. ; $\underline{ \top } $ ; confidence 0.915
284. ; $X ^ { 2 } ( \tilde { \theta } _ { n } )$ ; confidence 0.915
285. ; $[a , b]$ ; confidence 0.915
286. ; $\mathcal{H} _ { b } ( U )$ ; confidence 0.915
287. ; $x ^ { T } = \prod _ { i \in T } x _ { i }$ ; confidence 0.915
288. ; $L _ { 0 } = \mathcal{D}$ ; confidence 0.915
289. ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915
290. ; $1 / \lambda$ ; confidence 0.915
291. ; $K_i$ ; confidence 0.915
292. ; $\hat { f } ( \alpha , p )$ ; confidence 0.915
293. ; $( \mathcal{Q} _ { 1 } , \mu _ { 1 } )$ ; confidence 0.915
294. ; $\psi _ { \pm }$ ; confidence 0.915
295. ; $\operatorname{VMO} ( \mathbf{R} ^ { n } )$ ; confidence 0.915
296. ; $\square ^ { \prime } \Gamma$ ; confidence 0.915
297. ; $\alpha \in A [ [ X ] ]$ ; confidence 0.915
298. ; $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$ ; confidence 0.915
299. ; $P _ { k } = \hbar D _ { k } = \frac { \hbar } { i } \frac { \partial } { \partial x _ { k } }.$ ; confidence 0.915
300. ; $X ^ { P }$ ; confidence 0.915
Maximilian Janisch/latexlist/latex/NoNroff/31. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/31&oldid=44519