Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/31"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 31 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626
+
1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007014.png ; $Q _ { j } = X _ { j }$ ; confidence 0.924
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420135.png ; $V \rightarrow H \otimes V$ ; confidence 0.994
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051050.png ; $d = - H _ { c } ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.924
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022064.png ; $u \in W _ { p } ^ { m } ( \Omega )$ ; confidence 0.869
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290179.png ; $n _ { i } \geq 1$ ; confidence 0.924
  
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
+
4. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202306.png ; $[ K , L ] = - ( - 1 ) ^ { k l } [ L , K ],$ ; confidence 0.924
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a01246092.png ; $f = ( f _ { 1 } , \dots , f _ { n } )$ ; confidence 0.757
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007078.png ; $\lim \inf _{x \rightarrow \infty} \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924
  
6. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026086.png ; $g : B [ R ] \rightarrow B [ R ]$ ; confidence 0.979
+
6. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002043.png ; $u \in \overline { UM }$ ; confidence 0.924
  
7. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027056.png ; $\operatorname { Ext } ( X )$ ; confidence 0.842
+
7. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200501.png ; $x ^ { n } - y ^ { n } = z ^ { n }$ ; confidence 0.924
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027062.png ; $\operatorname { Ext } ( A )$ ; confidence 0.893
+
8. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006068.png ; $N _ { j } \in ( 0 , Z _ { j } )$ ; confidence 0.924
  
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051022.png ; $d ^ { T } \nabla f ( x _ { c } ) < 0$ ; confidence 0.928
+
9. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017570/b01757025.png ; $\lambda _ { 1 }$ ; confidence 0.924
  
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052051.png ; $x _ { y } \rightarrow x ^ { * }$ ; confidence 0.529
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300508.png ; $K ( m )$ ; confidence 0.924
  
11. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290201.png ; $d = \operatorname { dim } R$ ; confidence 0.994
+
11. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507015.png ; $\dim_{ \text{C} } M = 1$ ; confidence 0.924
  
12. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290148.png ; $\operatorname { dim } A = 1$ ; confidence 0.998
+
12. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752076.png ; $n _ { i j } > 0$ ; confidence 0.924
  
13. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029093.png ; $\operatorname { dim } A = d$ ; confidence 0.984
+
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018010.png ; $\sum _ { z : x \leq z \leq y } \mu ( x , z ) = 0 \text { if } x < y.$ ; confidence 0.924
  
14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053028.png ; $f _ { N } \rightarrow ^ { * } f$ ; confidence 0.604
+
14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040048.png ; $\varrho : H \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.924
  
15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300100.png ; $\psi _ { i - 1 } ( A _ { i } ^ { x } )$ ; confidence 0.747
+
15. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070106.png ; $C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} ) \oplus C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.923
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002024.png ; $\rho \rightarrow \infty$ ; confidence 0.997
+
16. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022017.png ; $( a , \eta ( a ) )$ ; confidence 0.923
  
17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200207.png ; $v _ { t } ( x ) = t ^ { - x } v ( x / t )$ ; confidence 0.585
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240497.png ; $\beta _ { 11 } = \beta _ { 21 }$ ; confidence 0.923
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007035.png ; $\{ H ^ { n } ( C , - ) : n \geq 0 \}$ ; confidence 0.699
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008081.png ; $D ( a , R ) =$ ; confidence 0.923
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008032.png ; $\Delta \in C ^ { n \times n }$ ; confidence 0.515
+
19. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d03213025.png ; $U \subset M$ ; confidence 0.923
  
20. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008046.png ; $A _ { 2 } \in C ^ { p \times m X }$ ; confidence 0.322
+
20. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015016.png ; $\varphi \in \mathcal{A} _ { N } ( \mathbf{R} ^ { n } )$ ; confidence 0.923
  
21. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008040.png ; $A _ { 2 } \in C ^ { m n \times p }$ ; confidence 0.553
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023066.png ; $x ^ { * } R y$ ; confidence 0.923
  
22. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006013.png ; $\{ A _ { 1 } , \dots , A _ { r } \}$ ; confidence 0.719
+
22. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010032.png ; $( z _ { j } , t _ { j } )$ ; confidence 0.923
  
23. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007041.png ; $n ( n - 2 ) - ( n - 1 ) ( n - 2 ) = n - 2$ ; confidence 1.000
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012013.png ; $v = ( v _ { j } )$ ; confidence 0.923
  
24. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070236.png ; $\mathfrak { D } ( C , C _ { i } )$ ; confidence 0.977
+
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006041.png ; $N = \int \rho$ ; confidence 0.923
  
25. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211062.png ; $\mu _ { 1 } , \dots , \mu _ { m }$ ; confidence 0.519
+
25. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353065.png ; $p ^ { m }$ ; confidence 0.923
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221103.png ; $p = ( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.868
+
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015052.png ; $\xi _ { 1 } \xi _ { 2 } \equiv \pi ( \xi _ { 1 } ) \xi _ { 2 }$ ; confidence 0.923
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014022.png ; $\sum _ { i = 1 } ^ { r } A _ { i } = J$ ; confidence 0.828
+
27. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080111.png ; $L _ { 2 } ( X )$ ; confidence 0.923
  
28. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014035.png ; $R = \{ ( i , j ) : a _ { i } , j = 1 \}$ ; confidence 0.589
+
28. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130120/t1301207.png ; $\operatorname { Ext } _ { A } ^ { 1 } ( T , T ) = 0$ ; confidence 0.923
  
29. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301508.png ; $D ( \Omega ) \rightarrow C$ ; confidence 0.974
+
29. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201309.png ; $| x | < 1$ ; confidence 0.923
  
30. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png ; $p \in \overline { A \cup q }$ ; confidence 0.983
+
30. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840157.png ; $x , y \in \mathcal{D} ( T )$ ; confidence 0.923
  
31. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327015.png ; $q \in \overline { A \cup p }$ ; confidence 0.740
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007077.png ; $Q ( x ) \geq  C \operatorname { log } x \operatorname { log } \operatorname { log } x / ( \operatorname { log } \operatorname { log } \operatorname { log } x ) ^ { 2 }$ ; confidence 0.923
  
32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180181.png ; $\Theta \in \otimes ^ { 2 } E$ ; confidence 0.965
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008057.png ; $X = \mathcal{H}$ ; confidence 0.923
  
33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180153.png ; $\gamma : E * \rightarrow E$ ; confidence 0.514
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120119.png ; $F \circ f \in \mathcal{A}$ ; confidence 0.923
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a0109505.png ; $n = \operatorname { dim } M$ ; confidence 0.293
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046015.png ; $C _ { G } ( x )$ ; confidence 0.923
  
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180246.png ; $\operatorname { Ric } ( g )$ ; confidence 0.965
+
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030075.png ; $K _ { 0 } ( \mathcal{O} _ { \infty } ) = \mathbf{Z}$ ; confidence 0.923
  
36. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180475.png ; $g | _ { D _ { 0 } } \times \{ 0 \}$ ; confidence 0.213
+
36. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923
  
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180486.png ; $x = ( x ^ { 1 } , \dots , x ^ { n } )$ ; confidence 0.660
+
37. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z ).$ ; confidence 0.923
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180164.png ; $\{ 1 , \dots , r , r + 1 , r + 2 \}$ ; confidence 0.603
+
38. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481908.png ; $\nu = 0$ ; confidence 0.923
  
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180338.png ; $C ( g ) = 0 \in \otimes ^ { 3 } E$ ; confidence 0.893
+
39. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017067.png ; $I$ ; confidence 0.923
  
40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019037.png ; $N ^ { \prime } / L ^ { \prime }$ ; confidence 0.514
+
40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260203.png ; $x e = x$ ; confidence 0.923
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019046.png ; $Ch ( D ) \in H _ { c } ^ { * } ( T M )$ ; confidence 0.595
+
41. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300309.png ; $N \in \mathbf{N} \backslash \{ 0 \}$ ; confidence 0.923
  
42. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019042.png ; $f : M \rightarrow B \Gamma$ ; confidence 0.990
+
42. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012027.png ; $Y _ { \text{obs} } = \mathcal{M} ( Y _ { \text{aug} } )$ ; confidence 0.923
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583035.png ; $u ( \lambda ) \not \equiv 0$ ; confidence 0.477
+
43. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080129.png ; $v = \operatorname { tanh } ( J / k _ { B } T )$ ; confidence 0.923
  
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026061.png ; $U _ { 0 } ^ { n } = U _ { j } ^ { n } = 0$ ; confidence 0.433
+
44. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140146.png ; $( I , \preceq )$ ; confidence 0.923
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231608.png ; $A \otimes A \rightarrow A$ ; confidence 0.975
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660124.png ; $x \in B$ ; confidence 0.923
  
46. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031027.png ; $\alpha \in N _ { 0 } ^ { \phi }$ ; confidence 0.487
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068048.png ; $Q ( n )$ ; confidence 0.923
  
47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031036.png ; $\alpha _ { l } \leq \dot { k }$ ; confidence 0.521
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014040/a01404036.png ; $\alpha ^ { \prime }$ ; confidence 0.923
  
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020126.png ; $\overline { q } \geq v ^ { * }$ ; confidence 0.725
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050157.png ; $c > 1$ ; confidence 0.923
  
49. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020241.png ; $\overline { u } _ { 1 } \geq 0$ ; confidence 0.920
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008027.png ; $A _ {i j } \in C ^ { n \times n }$ ; confidence 0.923
  
50. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200207.png ; $( u _ { 1 } ^ { * } , u _ { 2 } ^ { * } )$ ; confidence 0.952
+
50. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009048.png ; $G _ { \mu } ^ { * }$ ; confidence 0.922
  
51. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020183.png ; $\underline { v } = - \infty$ ; confidence 0.322
+
51. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003037.png ; $( a , b ) \mapsto a \square b ^ { * }$ ; confidence 0.922
  
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006032.png ; $s ^ { 2 = 4 \lambda } ( x , y ) p q$ ; confidence 0.622
+
52. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021028.png ; $\sum _ { i = 1 } ^ { k } A _ { i } A _ { i } ^ { T } = k m I _ { m }$ ; confidence 0.922
  
53. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024011.png ; $\beta _ { r } = f ( r ) ( x _ { 0 } )$ ; confidence 0.729
+
53. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050111.png ; $a , b , x$ ; confidence 0.922
  
54. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302408.png ; $\gamma ( t ) \rightarrow 0$ ; confidence 0.999
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080109.png ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922
  
55. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008060.png ; $( L ^ { H _ { i } } , w ^ { H _ { i } } )$ ; confidence 0.931
+
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202501.png ; $| \nabla L |$ ; confidence 0.922
  
56. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006012.png ; $\sum _ { A \in 2 } \Xi m ( A ) = 1$ ; confidence 0.658
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021011.png ; $\{ z \in \mathbf{C} : | z | < \epsilon \} \backslash ( - \infty , 0 ]$ ; confidence 0.922
  
57. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080136.png ; $\sigma ( F ^ { \prime } ( c ) )$ ; confidence 0.991
+
57. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010048.png ; $( i , \alpha )$ ; confidence 0.922
  
58. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016019.png ; $h _ { \gamma } = M _ { s } f _ { 2 }$ ; confidence 0.131
+
58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007012.png ; $\{ \mathbf{p} _ { j } , \mathbf{p} _ { k } \} = \{ \mathbf{q} _ { j } , \mathbf{q} _ { k } \} = 0 , \quad \{ \mathbf{p} _ { j } , \mathbf{q} _ { k } \} = \delta _ { j k }.$ ; confidence 0.922
  
59. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016032.png ; $\| g _ { y } \| \rightarrow 0$ ; confidence 0.372
+
59. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013040.png ; $\zeta _ { \lambda } ^ { \prime }$ ; confidence 0.922
  
60. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016033.png ; $\| h _ { y } \| \rightarrow 0$ ; confidence 0.408
+
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024050.png ; $< \varepsilon _ { i }$ ; confidence 0.922
  
61. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016017.png ; $f _ { 2 x + 1 } = f _ { 2 x } - h _ { x }$ ; confidence 0.869
+
61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070103.png ; $\zeta \in \mathbf{C} ^ { k }$ ; confidence 0.922
  
62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016016.png ; $f _ { 2 x } = f _ { 2 x - 1 } - g _ { x }$ ; confidence 0.660
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034089.png ; $S _ { H }$ ; confidence 0.922
  
63. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013065.png ; $\theta < \pi / 2 + \epsilon$ ; confidence 0.993
+
63. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
  
64. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150209.png ; $S ^ { 3 } \rightarrow S ^ { 2 }$ ; confidence 0.969
+
64. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620151.png ; $q _ { 2 } ( . ) \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.922
  
65. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013061.png ; $\theta > \pi / 2 - \epsilon$ ; confidence 0.990
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220147.png ; $r:K _ { 2 } ( X ) \rightarrow H ^ { 1 } ( X ( \mathbf{C} ) , \mathbf{R} ( 1 ) )$ ; confidence 0.922
  
66. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018028.png ; $H ^ { p } ( d \theta / 2 \pi )$ ; confidence 0.994
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333037.png ; $X \rightarrow Y$ ; confidence 0.922
  
67. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018023.png ; $\frac { 1 } { 2 \pi } d \theta$ ; confidence 1.000
+
67. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003034.png ; $\phi \in \Gamma ( V _ { + } )$ ; confidence 0.922
  
68. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017018.png ; $u \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.994
+
68. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201005.png ; $\mathbf{E} ^ { \prime }$ ; confidence 0.922
  
69. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023030.png ; $\nabla _ { Z } R = R - Z R Z ^ { * }$ ; confidence 0.870
+
69. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010061.png ; $( \Gamma _ { A } ) _ { s }$ ; confidence 0.922
  
70. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230144.png ; $J = ( I _ { p } \oplus - l _ { q } )$ ; confidence 0.479
+
70. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006012.png ; $T _ { A } M = \operatorname { Hom } ( C ^ { \infty } ( M , \mathbf{R} ) , A ),$ ; confidence 0.922
  
71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230178.png ; $\vec { G } _ { i } \Theta _ { i }$ ; confidence 0.192
+
71. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021045.png ; $O ( h ^ { k } )$ ; confidence 0.922
  
72. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202508.png ; $\{ x \in 1 ^ { 2 } : x _ { 1 } = 0 \}$ ; confidence 0.426
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400116.png ; $\varrho : B \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.922
  
73. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d12025012.png ; $X \rightarrow x - \phi ( x )$ ; confidence 0.336
+
73. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013030.png ; $\chi = 2 g \phi$ ; confidence 0.922
  
74. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029093.png ; $( \operatorname { mod } 1 )$ ; confidence 0.880
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025035.png ; $C _ { C A }$ ; confidence 0.922
  
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030015.png ; $( \tilde { B } ( t ) , t \geq 0 )$ ; confidence 0.547
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240484.png ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922
  
76. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203201.png ; $T : L ^ { 1 } \rightarrow X$ ; confidence 0.986
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040235.png ; $i \in I$ ; confidence 0.922
  
77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120120.png ; $f ( \theta , \phi , \alpha )$ ; confidence 1.000
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007075.png ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921
  
78. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012073.png ; $L ( \mu , \Sigma | Y _ { 0 b s } )$ ; confidence 0.459
+
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040117.png ; $X ^ { * } = X _ { c } ^ { * } \oplus X _ { s } ^ { * }$ ; confidence 0.921
  
79. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201205.png ; $\theta ^ { ( 0 ) } \in \Theta$ ; confidence 0.989
+
79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080114.png ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921
  
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012040.png ; $g = ( g _ { 1 } , \dots , g _ { N } )$ ; confidence 0.622
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005062.png ; $\cosh \delta = x ^ { 0 } y ^ { 0 } - \sum x ^ { t } y ^ { t }.$ ; confidence 0.921
  
81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012074.png ; $L ( \mu , \Sigma | Y _ { aug } )$ ; confidence 0.572
+
81. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012069.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 } \circ \phi _ { 4 }$ ; confidence 0.921
  
82. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002072.png ; $\pi _ { N } ( \alpha , \beta )$ ; confidence 0.729
+
82. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840208.png ; $( T _ { i j } ) _ { 1 } ^ { 2 }$ ; confidence 0.921
  
83. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002080.png ; $\varphi : X \rightarrow Y$ ; confidence 0.998
+
83. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028021.png ; $\Sigma ^ { n } \mathcal{A} / \{ Sq ^ { i } : 2 i > n \} \mathcal{A} \cong G ( n ).$ ; confidence 0.921
  
84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300209.png ; $( \varphi _ { j } ) _ { j \in N }$ ; confidence 0.523
+
84. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160113.png ; $( \phi _ { 1 } \vee \ldots \vee \phi _ { n } )$ ; confidence 0.921
  
85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006070.png ; $T _ { S } : T M \rightarrow T Y$ ; confidence 0.297
+
85. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002041.png ; $\Delta = \left( \begin{array} { l } { n } \\ { 4 } \end{array} \right) \left( \begin{array} { l } { 4 } \\ { 2 } \end{array} \right) p ^ { 5 }$ ; confidence 0.921
  
86. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006015.png ; $Y \times M \rightarrow T Y$ ; confidence 0.613
+
86. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016013.png ; $\mathfrak { A } = ( A , f _ { \mathfrak { A } } )$ ; confidence 0.921
  
87. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e1200602.png ; $m = \operatorname { dim } M$ ; confidence 0.978
+
87. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301208.png ; $x , y \in G _ { 1 }$ ; confidence 0.921
  
88. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007077.png ; $\{ p _ { | H } : M \in \Gamma \}$ ; confidence 0.082
+
88. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691020.png ; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) ).$ ; confidence 0.921
  
89. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120080/e1200806.png ; $\alpha : T A \rightarrow A$ ; confidence 0.952
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028036.png ; $[ \pi ( X _* ) , C ] \cong [ X , B C ]$ ; confidence 0.921
  
90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009014.png ; $S ^ { \sigma } = ( \rho , J / c )$ ; confidence 0.240
+
90. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008032.png ; $h _ { t } ( s ) = h ( ( s - t ) / \operatorname { log } | t | ) / \operatorname { log } | t | $ ; confidence 0.921
  
91. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009019.png ; $H = ( H _ { X } , H _ { y } , H _ { z } )$ ; confidence 0.967
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 1.$ ; confidence 0.921
  
92. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009018.png ; $E = ( E _ { X } , E _ { y } , E _ { z } )$ ; confidence 0.442
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022048.png ; $F _ { j } ( u ) = \int a _ { j } ( \xi ) M ( u , \xi ) d \xi ,$ ; confidence 0.921
  
93. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010037.png ; $G = \frac { 1 } { c } E \times B$ ; confidence 0.949
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037061.png ; $C _ { B _ { 2 } } ( f ) \geq 2 ^ { n } / n$ ; confidence 0.921
  
94. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004033.png ; $\vec { x } \cdot \vec { v } > 0$ ; confidence 0.670
+
94. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200405.png ; $f : \overline{P} \rightarrow \mathbf{C}$ ; confidence 0.921
  
95. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004030.png ; $( \Omega _ { + } - 1 ) \psi ( t )$ ; confidence 0.998
+
95. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005012.png ; $u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0.$ ; confidence 0.921
  
96. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004052.png ; $\vec { x } \cdot \vec { v } < 0$ ; confidence 0.625
+
96. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027022.png ; $E _ { [ \theta n ] } ( f ) = O ( E _ { n } ( f ) )$ ; confidence 0.921
  
97. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004050.png ; $\vec { x } \cdot \vec { v } > 0$ ; confidence 0.707
+
97. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019011.png ; $v \neq 0$ ; confidence 0.921
  
98. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500034.png ; $\cup _ { i = 1 } ^ { n } C _ { i } = C$ ; confidence 0.723
+
98. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080214.png ; $L = \partial ^ { n + 1 } - q _ { 1 } \partial ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.921
  
99. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023015.png ; $y = ( y ^ { 1 } , \dots , y ^ { m } )$ ; confidence 0.584
+
99. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016042.png ; $C ( S ) \otimes \pi _ { k } ( T ) + \pi _{\text{l}} ( S ) \otimes C ( T )$ ; confidence 0.921
  
100. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230180.png ; $\sigma ^ { 2 k ^ { * } } E ( L ) = 0$ ; confidence 0.945
+
100. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810138.png ; $x \notin S$ ; confidence 0.921
  
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023067.png ; $E ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.974
+
101. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260114.png ; $K ( \mathcal{H} )$ ; confidence 0.921
  
102. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026065.png ; $( \omega , \omega ^ { 2 } / 2 )$ ; confidence 0.994
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921
  
103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260100.png ; $P ( \theta , \mu _ { p _ { j } } )$ ; confidence 0.751
+
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320105.png ; $\operatorname { det } ( T )$ ; confidence 0.921
  
104. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007038.png ; $f \in C ^ { \infty } [ N , N + M ]$ ; confidence 0.995
+
104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021029.png ; $\mathbf{E} ^ { 2 }$ ; confidence 0.921
  
105. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007040.png ; $( k \in N , N \leq x \leq N + M )$ ; confidence 0.914
+
105. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507023.png ; $k \eta$ ; confidence 0.921
  
106. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027018.png ; $( \operatorname { log } m )$ ; confidence 0.998
+
106. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060145.png ; $B \gg Z ^ { 3 }$ ; confidence 0.921
  
107. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005042.png ; $\operatorname { deg } f = 1$ ; confidence 0.998
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006076.png ; $h ^ { I I } ( z )$ ; confidence 0.921
  
108. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007016.png ; $F ( 2,6 ) = \pi _ { 1 } ( M _ { 3 } )$ ; confidence 0.821
+
108. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c02325067.png ; $1 \leq i _ { 1 } < \ldots < i _ { k } \leq n$ ; confidence 0.921
  
109. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300704.png ; $a _ { i } + a _ { i + 1 } = a _ { i + 2 }$ ; confidence 0.649
+
109. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025024.png ; $C ( \beta )$ ; confidence 0.921
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009086.png ; $x = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.645
+
110. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025024.png ; $h ( x ) = \frac { ( 1 - x ^ { 2 } ) ^ { \pm 1 / 2 } } { \rho _ { m } ( x ) },$ ; confidence 0.921
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010064.png ; $\varphi \in C _ { 00 } ( G ; C )$ ; confidence 0.658
+
111. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030012.png ; $h : \mathbf{R} _ { + } \times \mathbf{R} ^ { n } \times \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.921
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301009.png ; $L _ { C } ^ { p ^ { \prime } } ( G )$ ; confidence 0.547
+
112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005066.png ; $\operatorname{ACS}$ ; confidence 0.921
  
113. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049049.png ; $\sigma _ { 1 } = \sigma _ { 2 }$ ; confidence 0.996
+
113. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016019.png ; $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.921
  
114. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013013.png ; $E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.992
+
114. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000137.png ; $S ( T , \alpha )$ ; confidence 0.920
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016031.png ; $\Gamma ( \xi \oplus \eta )$ ; confidence 0.999
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021900/c02190046.png ; $N > 1$ ; confidence 0.920
  
116. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110150.png ; $K \cap S _ { \infty } ^ { n - 1 }$ ; confidence 0.863
+
116. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201604.png ; $T X - I$ ; confidence 0.920
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011025.png ; $F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.984
+
117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020241.png ; $\overline { u } _ { 1 } \geq 0$ ; confidence 0.920
  
118. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016065.png ; $\mathfrak { Q } [ \Lambda ]$ ; confidence 0.169
+
118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200901.png ; $\nabla . E = \rho$ ; confidence 0.920
  
119. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016074.png ; $\mathfrak { B } [ \Lambda ]$ ; confidence 0.771
+
119. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008015.png ; $L w , K v$ ; confidence 0.920
  
120. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015088.png ; $A + T \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.983
+
120. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009019.png ; $\zeta z = \zeta _ { 1 } z _ { 1 } + \ldots + \zeta _ { n } z _ { n }$ ; confidence 0.920
  
121. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015084.png ; $A + K \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.999
+
121. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009032.png ; $G _ { \Omega } ( x , y )$ ; confidence 0.920
  
122. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024026.png ; $\{ A B C \} : = 1 / 2 ( A B C + C B A )$ ; confidence 0.998
+
122. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232051.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { 0 } ^ { 2 \pi } | f ( r e ^ { i \theta } ) - f ( e ^ { i \theta } ) | ^ { \delta } d \theta = 0,$ ; confidence 0.920
  
123. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911
+
123. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583064.png ; $A = ( I + T ) ( I - T ) ^ { - 1 } , \quad 1 \notin \sigma _ { p } ( T ),$ ; confidence 0.920
  
124. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202306.png ; $[ K , L ] = - ( - 1 ) ^ { k l } [ L , K ]$ ; confidence 0.924
+
124. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052014.png ; $F : X \rightarrow X$ ; confidence 0.920
  
125. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.678
+
125. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121061.png ; $\partial$ ; confidence 0.920
  
126. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024075.png ; $[ \overline { t } 0 , t _ { 0 } )$ ; confidence 0.469
+
126. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070101.png ; $h \in \operatorname { SPSH } ( \Omega \times \Omega ) , h < 0,$ ; confidence 0.920
  
127. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024084.png ; $[ \overline { t } 0 , t _ { 0 } ]$ ; confidence 0.417
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032034.png ; $n _ { S } < n$ ; confidence 0.920
  
128. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001086.png ; $\gamma , \delta \in F ^ { * }$ ; confidence 0.900
+
128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2i + 1} ( \mathcal{S} ) = 0$ ; confidence 0.920
  
129. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002030.png ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506
+
129. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t.$ ; confidence 0.920
  
130. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003082.png ; $\Gamma \subset \Omega$ ; confidence 0.987
+
130. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087670/s087670113.png ; $k = 8$ ; confidence 0.920
  
131. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040161.png ; $\nu _ { i } \rightarrow \nu$ ; confidence 0.469
+
131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070142.png ; $( h ( s , y ) , \delta _ { m } ( t - s ) ) _ { \mathcal{H} } = h ( t , y )$ ; confidence 0.920
  
132. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040165.png ; $p _ { M } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.334
+
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080133.png ; $\Lambda _ { G }$ ; confidence 0.920
  
133. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040140.png ; $f \in G _ { 0 } ^ { s } ( \Omega )$ ; confidence 0.849
+
133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003033.png ; $\{ x : f ( x ) > \alpha \}$ ; confidence 0.920
  
134. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004091.png ; $u \in D _ { s } ^ { \prime } ( U )$ ; confidence 0.968
+
134. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300203.png ; $\mathbf{p} = \{ p _ { i } : i \in \Gamma \}$ ; confidence 0.920
  
135. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005044.png ; $\tau = \varepsilon ^ { 2 } t$ ; confidence 0.993
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032037.png ; $\mathcal{I} = \langle x \otimes y - B ( x \otimes y ) \rangle$ ; confidence 0.920
  
136. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337012.png ; $f _ { G } ^ { \prime } ( x _ { 0 } )$ ; confidence 0.984
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030050.png ; $r ( x , t | x _ { 0 } , \sigma ( Y ( u ) , u \leq t ) ) =$ ; confidence 0.920
  
137. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g0433208.png ; $u \in C _ { 0 } ^ { \infty } ( G )$ ; confidence 0.754
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b130020115.png ; $J B ^ { * }$ ; confidence 0.920
  
138. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601079.png ; $n = \operatorname { dim } W$ ; confidence 0.988
+
138. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230152.png ; $\phi _ { t } ^ { k }$ ; confidence 0.920
  
139. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010105.png ; $\tau \in Wh \pi _ { 1 } M _ { 0 }$ ; confidence 0.669
+
139. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002010.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) > 0$ ; confidence 0.920
  
140. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950
+
140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230102.png ; $X \rightarrow Y \leftarrow X ^ { + }$ ; confidence 0.920
  
141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002010.png ; $I \subset \{ 1 , \dots , n \}$ ; confidence 0.593
+
141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300303.png ; $h_{ i , j } = s _ { i  + j - 1 }$ ; confidence 0.920
  
142. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002092.png ; $\{ s _ { j } ( T ) \} _ { j \geq 0 }$ ; confidence 0.863
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085034.png ; $K G$ ; confidence 0.920
  
143. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020160.png ; $| \nu ( t ) - \nu ( - t ) | \leq 1$ ; confidence 0.999
+
143. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014061.png ; $r < 1 < R$ ; confidence 0.920
  
144. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020158.png ; $| \nu ( t ) - \nu ( - t ) | \leq 2$ ; confidence 0.999
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010079.png ; $T = T _ { \varphi } + C$ ; confidence 0.920
  
145. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020126.png ; $f \in BMOA = BMO \cap H ^ { 2 }$ ; confidence 0.817
+
145. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005024.png ; $Kn = \frac { \lambda } { l }.$ ; confidence 0.920
  
146. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002014.png ; $\alpha j = \hat { \phi } ( j )$ ; confidence 0.721
+
146. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007080.png ; $U \in \operatorname{SGL} _ { n } ( \Gamma )$ ; confidence 0.919
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a01361020.png ; $x \rightarrow \pm \infty$ ; confidence 0.986
+
147. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003039.png ; $V ( T , F _ { \theta } ) = \int \operatorname { IF } ( x ; T , F _ { \theta } ) ^ { 2 } d F _ { \theta } ( x )$ ; confidence 0.919
  
148. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005027.png ; $L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.997
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028011.png ; $\operatorname { sn } ( u | k )$ ; confidence 0.919
  
149. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004029.png ; $V _ { \xi } \subseteq ^ { * } W$ ; confidence 0.207
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040575.png ; $\operatorname{S}5 ^ { S }$ ; confidence 0.919
  
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011033.png ; $\Gamma \subseteq B ( 0,1 )$ ; confidence 1.000
+
150. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040199.png ; $\operatorname { spt } ( \| \nu \| ) \cap B ( a , ( 1 - \epsilon ) R )$ ; confidence 0.919
  
151. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201104.png ; $\int _ { \Gamma } f ( z ) d z = 0$ ; confidence 1.000
+
151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012016.png ; $\operatorname{codom}_{G'} \circ d _ { A } = d _ { 0 } \circ \operatorname{codom}_{G}$ ; confidence 0.919
  
152. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011050.png ; $f \in C ( \partial \Omega )$ ; confidence 0.999
+
152. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162043.png ; $\operatorname { Re } z > 0$ ; confidence 0.919
  
153. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012048.png ; $\varphi : Z \rightarrow Z$ ; confidence 0.993
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040728.png ; $P \subseteq P ^ { \prime }$ ; confidence 0.919
  
154. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012012.png ; $D ( \phi ) = 1 _ { Y } - \nabla f$ ; confidence 0.451
+
154. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005022.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) < 0$ ; confidence 0.919
  
155. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301306.png ; $k = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004029.png ; $\sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } =$ ; confidence 0.919
  
156. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h1201509.png ; $\operatorname { Re } C ( X )$ ; confidence 0.992
+
156. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012059.png ; $d_Y$ ; confidence 0.919
  
157. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200101.png ; $W ^ { 1 } L _ { \Phi } ( \Omega )$ ; confidence 0.871
+
157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012017.png ; $T _ { n } ( . ) = Z _ { n } (\, . \, ; 0 )$ ; confidence 0.919
  
158. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001027.png ; $\Phi _ { 1 } \prec \Phi _ { 2 }$ ; confidence 0.993
+
158. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023022.png ; $X \sim \operatorname { LS } _ { p , n } ( \phi )$ ; confidence 0.919
  
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001080.png ; $d _ { ( 3,1 ^ { n - 3 } ) } ( L ( T ) )$ ; confidence 0.535
+
159. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004070.png ; $w _ { 2 } = ( 1 - \operatorname { sign } ( c ) ) / 2$ ; confidence 0.919
  
160. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001085.png ; $d _ { \lambda } ( x I _ { n } - A )$ ; confidence 0.769
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070115.png ; $d ( Q )$ ; confidence 0.919
  
161. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001064.png ; $\{ v _ { 1 } , \dots , v _ { N } \}$ ; confidence 0.459
+
161. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006058.png ; $N \geq Z$ ; confidence 0.919
  
162. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030180.png ; $\phi \in H ^ { 2 m } ( \Gamma )$ ; confidence 0.967
+
162. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017058.png ; $( k , \Sigma )$ ; confidence 0.919
  
163. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005067.png ; $q ( x ) = - 2 d A _ { + } ( x , x ) / d x$ ; confidence 0.968
+
163. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300505.png ; $\operatorname { Im } T = K J K ^ { * }$ ; confidence 0.919
  
164. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005090.png ; $q ( x ) = - 2 d A _ { - } ( x , x ) / d x$ ; confidence 0.895
+
164. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200105.png ; $g _ { \alpha } ( t ) = \frac { 1 } { 2 \sqrt { \pi \alpha } } e ^ { - t ^ { 2 } / ( 4 \alpha ) } , \alpha > 0.$ ; confidence 0.919
  
165. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005070.png ; $r ( - k ) = \overline { r ( k ) }$ ; confidence 0.669
+
165. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120130.png ; $H \equiv - \frac { \partial ^ { 2 } } { \partial \theta . \partial \theta } \int f ( \theta , \phi ) d \phi | _ { \theta = \theta ^ { * } },$ ; confidence 0.919
  
166. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005077.png ; $k \rightarrow \pm \infty$ ; confidence 0.995
+
166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004020.png ; $U _ { \xi } \subset _{*} U _ { \eta }$ ; confidence 0.919
  
167. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005020.png ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708
+
167. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195023.png ; $f _ { l }$ ; confidence 0.919
  
168. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007050.png ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789
+
168. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002016.png ; $\phi / \| \phi \|$ ; confidence 0.919
  
169. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i1200808.png ; $M = \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.886
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021080.png ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ] \Rightarrow \tilde{\mathcal{L}}$ ; confidence 0.919
  
170. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008016.png ; $( \alpha : \beta : \gamma )$ ; confidence 0.990
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ],$ ; confidence 0.919
  
171. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090168.png ; $\zeta \in \mu _ { p } \infty$ ; confidence 0.951
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037015.png ; $x , y \in \mathcal{D}$ ; confidence 0.919
  
172. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090108.png ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420102.png ; $\beta : G \times G \rightarrow k ^ { * }$ ; confidence 0.919
  
173. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004013.png ; $z = \sqrt { t } - 1 / \sqrt { t }$ ; confidence 0.987
+
173. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840143.png ; $\operatorname { Im } [ T x , x ] \geq 0$ ; confidence 0.919
  
174. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040101.png ; $P _ { K } ( 1,0 ) = \alpha _ { 2 }$ ; confidence 0.635
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023840/c02384058.png ; $\| . \| _ { 2 }$ ; confidence 0.919
  
175. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007017.png ; $\Gamma ( \omega , \alpha )$ ; confidence 1.000
+
175. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100140.png ; $\| \rho \| _ { L ^ { p } ( R ^ { 2 } ) } \leq B _ { p } m ^ { - 2 / p } N ^ { 1 / p }$ ; confidence 0.919
  
176. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007064.png ; $\eta \in \partial \Delta$ ; confidence 0.998
+
176. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065057.png ; $S _ { 0 } = S _ { \mu }$ ; confidence 0.919
  
177. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005034.png ; $B = \sum _ { j = 1 } ^ { t } B _ { j }$ ; confidence 0.998
+
177. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304504.png ; $S _ { i } = \operatorname { rank } ( y _ { i } )$ ; confidence 0.919
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210502.png ; $n = \operatorname { dim } X$ ; confidence 0.985
+
178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008095.png ; $E = I _ { n }$ ; confidence 0.918
  
179. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002072.png ; $q = \frac { n 1 - n 2 } { n 1 + n 2 }$ ; confidence 0.350
+
179. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302703.png ; $S _ { k } ( f , x )$ ; confidence 0.918
  
180. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008078.png ; $( f - \kappa _ { p } ( f ) ) ( z ) =$ ; confidence 0.994
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004048.png ; $\lambda > 0$ ; confidence 0.918
  
181. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008027.png ; $\{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.743
+
181. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010083.png ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z ),$ ; confidence 0.918
  
182. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008023.png ; $Q ( \partial / \partial x )$ ; confidence 0.865
+
182. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300503.png ; $\operatorname { Im } T = ( T - T ^ { * } ) / 2 i$ ; confidence 0.918
  
183. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840363.png ; $T = i ( \square _ { - A } ^ { B } )$ ; confidence 0.672
+
183. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020179.png ; $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ ; confidence 0.918
  
184. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840379.png ; $L _ { 2 } = L _ { 2 } [ 0 , \infty )$ ; confidence 0.898
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png ; $\alpha_j$ ; confidence 0.918
  
185. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840313.png ; $J \dot { x } ( t ) = i H ( t ) x ( t )$ ; confidence 0.982
+
185. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000128.png ; $\lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0$ ; confidence 0.918
  
186. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840387.png ; $y = P ( A - \lambda I ) ^ { - 1 } f$ ; confidence 0.996
+
186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202604.png ; $\mathcal{S} ^ { \prime } ( \mathbf{R} )$ ; confidence 0.918
  
187. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507031.png ; $( \sqrt { - 2 } , \sqrt { - 3 } )$ ; confidence 0.997
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024089.png ; $g > 1$ ; confidence 0.918
  
188. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507032.png ; $( \sqrt { - 5 } , \sqrt { - 7 } )$ ; confidence 0.991
+
188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010036.png ; $R _ { \Gamma , n } = 1$ ; confidence 0.918
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702060.png ; $H ^ { i } ( X , F ) = H ^ { i } ( X , F )$ ; confidence 0.973
+
189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e1202409.png ; $\mathcal{O} _ { K }$ ; confidence 0.918
  
190. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001060.png ; $P = \{ x \in A : x \succeq 0 \}$ ; confidence 0.955
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918
  
191. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002018.png ; $\{ , e , - 1 , \vee , \wedge \}$ ; confidence 0.620
+
191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040102.png ; $R = \sum _ { n > 0 } R ^ { n }$ ; confidence 0.918
  
192. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002066.png ; $| x | = x ^ { + } ( x ^ { - } ) ^ { - 1 }$ ; confidence 0.937
+
192. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001033.png ; $|.| v$ ; confidence 0.918
  
193. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002015.png ; $x ( y \wedge z ) t = x y t / | x z t$ ; confidence 0.267
+
193. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004091.png ; $s ( D _ { 3_{1} } ) = 2$ ; confidence 0.918
  
194. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002014.png ; $x ( y \vee z ) t = x y t \vee x z t$ ; confidence 0.996
+
194. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005057.png ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.918
  
195. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003021.png ; $\| \mu \| = | \mu | ( \Omega )$ ; confidence 0.996
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004057.png ; $D _ { S }$ ; confidence 0.918
  
196. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004012.png ; $x _ { 1 } , \dots , x _ { n } \in G$ ; confidence 0.336
+
196. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013042.png ; $( \mathcal{T} , \mathcal{F} )$ ; confidence 0.918
  
197. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004017.png ; $l = \{ . , e , - 1 , v , \wedge \}$ ; confidence 0.382
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002031.png ; $c _ { \mu } f + T _ { \mu } f$ ; confidence 0.918
  
198. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004024.png ; $x ( y \vee z ) t = x y t \vee x z t$ ; confidence 0.996
+
198. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005099.png ; $( m _ { j } ^ { + } ) ^ { 2 }$ ; confidence 0.918
  
199. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000147.png ; $\Gamma \vdash ( M N ) : \tau$ ; confidence 0.996
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015052.png ; $Y = X$ ; confidence 0.918
  
200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918
  
201. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003023.png ; $S q ^ { n } x _ { n } = x _ { n } ^ { 2 }$ ; confidence 0.350
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220130.png ; $\{ s \in \mathbf{C} : i / 2 \leq \operatorname { Re } ( s ) \leq 1 + i / 2 \}$ ; confidence 0.918
  
202. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001023.png ; $f ( x ) \mapsto S _ { N } ( f ; x )$ ; confidence 0.937
+
202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007032.png ; $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi _{- 3} )$ ; confidence 0.918
  
203. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010057.png ; $L _ { \gamma , \gamma } ^ { 1 }$ ; confidence 0.813
+
203. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000102.png ; $I ( \rho ) = \frac { d \rho } { d ( \mu \times \mu ) }$ ; confidence 0.918
  
204. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006040.png ; $W _ { k } ^ { * } = 1 / D _ { k } ^ { * }$ ; confidence 0.985
+
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006023.png ; $Q ^ { + } Q ^ { - } ( Q ^ { + } \psi _ { \lambda } ) = \lambda ( Q ^ { + } \psi _ { \lambda } )$ ; confidence 0.918
  
205. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596103.png ; $q = ( r _ { 1 } , \dots , r _ { N } )$ ; confidence 0.753
+
205. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001041.png ; $i \in S$ ; confidence 0.918
  
206. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596102.png ; $p = ( p _ { 1 } , \dots , p _ { N } )$ ; confidence 0.859
+
206. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024019.png ; $f _{ ( 2 ) } ( x _ { 0 } )$ ; confidence 0.918
  
207. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008037.png ; $\operatorname { dim } l = 0$ ; confidence 0.534
+
207. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840132.png ; $[ T x , y ] = [ x , T ^ { + } y ]$ ; confidence 0.918
  
208. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008030.png ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499
+
208. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200105.png ; $g _ { \Phi } ( t ) = \Phi ^ { - 1 } ( t ) t ^ { - 1 - 1 / n }$ ; confidence 0.918
  
209. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l1300909.png ; $P _ { B } ( \delta , \lambda )$ ; confidence 0.605
+
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010154.png ; $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.918
  
210. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l1300904.png ; $\delta ^ { i } \lambda ^ { j }$ ; confidence 0.993
+
210. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017054.png ; $K _ { 0 } ^ { n + 1 } \searrow  K _ { 1 }$ ; confidence 0.917
  
211. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l13009010.png ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705
+
211. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005063.png ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) +$ ; confidence 0.917
  
212. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003013.png ; $U ^ { \prime } P T ^ { \prime }$ ; confidence 0.916
+
212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001083.png ; $0 \neq \mathcal{K} _ { 0 } \subset \mathcal{H} ( \pi )$ ; confidence 0.917
  
213. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013049.png ; $V ( Z _ { p } ) \neq \emptyset$ ; confidence 0.520
+
213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021013.png ; $C ^ { * } ( G )$ ; confidence 0.917
  
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015013.png ; $x \in A \mapsto [ x , a ] \in A$ ; confidence 0.657
+
214. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300906.png ; $\hbar = h / 2 \pi$ ; confidence 0.917
  
215. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015010.png ; $ad _ { \alpha } = [ \alpha , ]$ ; confidence 0.270
+
215. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012010.png ; $u , v \in C$ ; confidence 0.917
  
216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170183.png ; $\operatorname { dim } K = 3$ ; confidence 0.985
+
216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003057.png ; $\pi _ { 0 } \operatorname { Map } ( B E , X ) = [ B E , X ] = \operatorname { Hom } _ { \mathcal{K} } ( H ^ { * } X , H ^ { * } B E ).$ ; confidence 0.917
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170193.png ; $\tau \notin Wh ^ { * } ( \pi )$ ; confidence 0.518
+
217. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300309.png ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917
  
218. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001021.png ; $c : X \rightarrow \{ 0,1 \}$ ; confidence 0.576
+
218. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006029.png ; $\sigma ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A ).$ ; confidence 0.917
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153012.png ; $P ( x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.453
+
219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020106.png ; $Y \times K \simeq Z \times K$ ; confidence 0.917
  
220. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020940/c02094072.png ; $C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.704
+
220. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003047.png ; $\lambda = \omega ^ { 2 }$ ; confidence 0.917
  
221. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100127.png ; $\alpha , \beta \in \Delta$ ; confidence 0.994
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $[\mathbf{Z} _ { 32 } , \mathbf{Z} _ { 33 }]$ ; confidence 0.917
  
222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
+
222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010073.png ; $\mathbf{E} _ { 7 }$ ; confidence 0.917
  
223. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011056.png ; $\pi _ { 1 } ( \overline { M } )$ ; confidence 0.925
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950110.png ; $N - 1$ ; confidence 0.917
  
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007025.png ; $E [ m , s ] A ( f ) \Omega \neq 0$ ; confidence 0.753
+
224. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662027.png ; $q < n$ ; confidence 0.917
  
225. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013055.png ; $( N _ { * } ^ { 1 } , N _ { * } ^ { 2 } )$ ; confidence 0.878
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $\mathbf{Z} _ { 12 }$ ; confidence 0.917
  
226. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377018.png ; $[ a _ { i } ^ { - } , a _ { i } ^ { + } ]$ ; confidence 0.903
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } \textsf{P} ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
  
227. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230141.png ; $( ( X _ { n } , B _ { n } ) , f _ { n } )$ ; confidence 0.999
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104010.png ; $p k $ ; confidence 0.917
  
228. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230106.png ; $\operatorname { dim } X = 3$ ; confidence 0.995
+
228. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005034.png ; $k = k _ { c }$ ; confidence 0.917
  
229. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230156.png ; $D = \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.906
+
229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015031.png ; $D = \left\{ z \in \mathbf{C} ^ { n } : | z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1 \right\}$ ; confidence 0.917
  
230. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m1202707.png ; $w = ( w _ { 1 } , \dots , w _ { x } )$ ; confidence 0.637
+
230. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080157.png ; $T \mathcal{M} _ { g }$ ; confidence 0.917
  
231. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025077.png ; $u \in D ^ { \prime } ( R ^ { n } )$ ; confidence 0.853
+
231. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002015.png ; $( \int _ { - \infty } ^ { \infty } ( x - a ) ^ { 2 } | f ( x ) | ^ { 2 } d x ) ( \int _ { - \infty } ^ { \infty } ( y - b ) ^ { 2 } | \hat { f } ( y ) | ^ { 2 } d y ) \geq$ ; confidence 0.917
  
232. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025095.png ; $v \in L ^ { \infty } ( R ^ { n } )$ ; confidence 0.336
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025057.png ; $\operatorname{PG} ( 4,9 )$ ; confidence 0.917
  
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260158.png ; $b _ { 1 } b _ { 2 } = b _ { 2 } b _ { 1 }$ ; confidence 0.990
+
233. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752024.png ; $D \in M _ { n \times n } ( K )$ ; confidence 0.917
  
234. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260143.png ; $X = M ( A ) \oplus _ { Q ( A ) } B =$ ; confidence 0.746
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027084.png ; $Y ^ { * }$ ; confidence 0.917
  
235. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260193.png ; $B = ( B ^ { \perp } ) ^ { \perp }$ ; confidence 0.891
+
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027022.png ; $U ( t ) \equiv \textsf{E} N ( t ),$ ; confidence 0.917
  
236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260136.png ; $\tau : B \rightarrow Q ( A )$ ; confidence 0.997
+
236. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002021.png ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } },$ ; confidence 0.917
  
237. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180134.png ; $F - \operatorname { dim } E$ ; confidence 0.998
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300906.png ; $U _ { m + n } ( x ) = U _ { m + 1 } ( x ) U _ { n } ( x ) + U _ { m } ( x ) U _ { n - 1 } ( x );$ ; confidence 0.917
  
238. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180105.png ; $V - \operatorname { dim } U$ ; confidence 0.866
+
238. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840185.png ; $\rho ( \lambda ) = \sum _ { j = 1 } ^ { \kappa } [ d _ { j } / 2 ]$ ; confidence 0.917
  
239. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300304.png ; $\tau u _ { X X } = \rho u _ { t t }$ ; confidence 0.663
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020017.png ; $A v _ { i } = v _ { i  + 1}$ ; confidence 0.917
  
240. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663059.png ; $f \in H _ { p } ^ { p } ( \Omega )$ ; confidence 0.400
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029011.png ; $w _ { 2 } ( P _ { Y } ) \neq 0$ ; confidence 0.917
  
241. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d031730109.png ; $h = ( h _ { 1 } , \dots , h _ { n } )$ ; confidence 0.830
+
241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010055.png ; $L _ { \gamma , 1 } ^ { 1 } = L _ { \gamma , 1 }$ ; confidence 0.917
  
242. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666305.png ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788
+
242. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006022.png ; $( p - 1 ) p ^ { h } | 2 n$ ; confidence 0.917
  
243. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201109.png ; $\xi : R \rightarrow [ 0,1 ]$ ; confidence 0.998
+
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020132.png ; $X ^ { 1 } \vee S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.916
  
244. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011050.png ; $\forall \alpha \in ( 0,1 ]$ ; confidence 0.999
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120004.png ; $y \in \mathbf{R} ^ { x }$ ; confidence 0.916
  
245. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520246.png ; $\sum _ { i = 1 } ^ { m } d _ { i } = n$ ; confidence 0.971
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566027.png ; $N ^ { 2 }$ ; confidence 0.916
  
246. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520100.png ; $A , B \in M _ { n \times n } ( K )$ ; confidence 0.987
+
246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020020.png ; $\psi ( k , n ) > 0$ ; confidence 0.916
  
247. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520493.png ; $S , Y , Z \rightarrow U , V , W$ ; confidence 0.798
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055040.png ; $C ( N )$ ; confidence 0.916
  
248. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520488.png ; $\Phi ^ { ( 3 ) } = O ( | Z | ^ { 2 } )$ ; confidence 0.872
+
248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200807.png ; $b _ { p } ^ { ( 2 ) }$ ; confidence 0.916
  
249. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481902.png ; $\operatorname { div } v = 0$ ; confidence 0.963
+
249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200704.png ; $C ^ { n } ( \mathcal{C} , M )$ ; confidence 0.916
  
250. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001070.png ; $H ^ { 1 } ( D _ { R } ^ { \prime } )$ ; confidence 0.977
+
250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200169.png ; $\max _ r \operatorname { Re } G _ { 2 } ( r ) \geq A$ ; confidence 0.916
  
251. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001061.png ; $L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.992
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067083.png ; $\operatorname{GL} ^ { 1 } ( n ) = \operatorname{GL} ( n )$ ; confidence 0.916
  
252. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001088.png ; $\beta _ { p q } = \beta _ { q p }$ ; confidence 0.977
+
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049024.png ; $m : \Sigma \rightarrow [ 0 , \infty )$ ; confidence 0.916
  
253. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003015.png ; $\operatorname { Tr } ( X Y )$ ; confidence 0.976
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025014.png ; $C ( \beta ) = \prod _ { j = 1 } ^ { n } \frac { \operatorname { exp } ( z _ { j } ^ { T } ( T _ { j } ) \beta ) } { \sum _ { k \in R _ { j } } \operatorname { exp } ( z _ { k } ^ { T } ( T _ { j } ) \beta ) },$ ; confidence 0.916
  
254. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002012.png ; $L _ { 2 } ( R ; \omega ( \tau ) )$ ; confidence 0.934
+
254. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583077.png ; $H = K \oplus K ^ { \prime }$ ; confidence 0.916
  
255. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300404.png ; $A = \frac { 1 } { 2 } \Delta + b$ ; confidence 1.000
+
255. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007081.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916
  
256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005097.png ; $v = \Theta _ { \Delta } ( z ) u$ ; confidence 0.837
+
256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024052.png ; $x _ { t } ( \theta ) = x ( t + \theta ) , \theta \in J _ { t } \subseteq ( - \infty , 0 ],$ ; confidence 0.916
  
257. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005049.png ; $( A - z l ) x = K J \varphi _ { - }$ ; confidence 0.454
+
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916
  
258. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006048.png ; $A _ { 1 } A _ { 2 } = A _ { 2 } A _ { 1 }$ ; confidence 0.992
+
258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $\mathcal{S} ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
  
259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060158.png ; $V _ { \chi } \otimes \Delta$ ; confidence 0.986
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200100.png ; $\mathfrak { g } ^ { \alpha } \times \mathfrak { g } ^ { - \alpha }$ ; confidence 0.916
  
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006062.png ; $M = \operatorname { dim } E$ ; confidence 0.996
+
260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080208.png ; $b _ { 2 + } = 1$ ; confidence 0.916
  
261. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060179.png ; $( t _ { 1 } , t _ { 2 } ) \in R ^ { 2 }$ ; confidence 0.998
+
261. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002037.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ ; confidence 0.916
  
262. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008062.png ; $( l _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$ ; confidence 0.949
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003058.png ; $( \operatorname{FBL} ( X , Y ) , \operatorname{FBL} ( Y , X ) )$ ; confidence 0.916
  
263. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006063.png ; $W ^ { k } L _ { \Phi } ( \Omega )$ ; confidence 0.939
+
263. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001038.png ; $ \overset{\rightharpoonup}{ D }$ ; confidence 0.916
  
264. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006051.png ; $W ^ { k } E _ { \Phi } ( \Omega )$ ; confidence 0.961
+
264. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011019.png ; $\partial T ( h ) = \partial F \times S ^ { 1 }$ ; confidence 0.916
  
265. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013017.png ; $0 < \lambda \in Z ( \theta )$ ; confidence 0.991
+
265. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010027.png ; $W ^ { n } = ( M , g , \gamma )$ ; confidence 0.916
  
266. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007066.png ; $L _ { E } ^ { * } \equiv \infty$ ; confidence 0.956
+
266. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003051.png ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \Lambda }$ ; confidence 0.916
  
267. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007019.png ; $\operatorname { log } | f |$ ; confidence 0.999
+
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027028.png ; $P _ { m }$ ; confidence 0.916
  
268. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015027.png ; $\varphi : G \rightarrow H$ ; confidence 0.992
+
268. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008019.png ; $L _ { 1 } ( \hat { G } )$ ; confidence 0.916
  
269. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009042.png ; $\eta \in \partial \Omega$ ; confidence 1.000
+
269. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200209.png ; $\langle u - v , j \rangle \leq 0$ ; confidence 0.916
  
270. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100131.png ; $\Omega \subset C \times R$ ; confidence 0.990
+
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016045.png ; $J = \frac { 1 } { f } \left( \begin{array} { c c } { 1 } & { - \psi } \\ { - \psi } & { \psi ^ { 2 } + r ^ { 2 } f ^ { 2 } } \end{array} \right),$ ; confidence 0.916
  
271. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015029.png ; $\eta / r _ { 2 } \notin Z _ { n }$ ; confidence 0.569
+
271. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000160.png ; $\Gamma \vdash M : \sigma$ ; confidence 0.916
  
272. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015063.png ; $\nu _ { 1 } , \dots , \nu _ { 1 }$ ; confidence 0.411
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022027.png ; $e \in \mathbf{M}$ ; confidence 0.916
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620224.png ; $n = \operatorname { dim } T$ ; confidence 0.975
+
273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620117.png ; $\operatorname{Im} m_+ ( \lambda ) > 0$ ; confidence 0.916
  
274. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013054.png ; $\zeta _ { \lambda } ^ { \pi }$ ; confidence 0.630
+
274. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002036.png ; $\varphi _ { 1 } + \tilde { \varphi } _ { 2 }$ ; confidence 0.916
  
275. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014059.png ; $f \in C ^ { k - 1 } ( U _ { \rho } )$ ; confidence 0.990
+
275. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008088.png ; $\pm \left[ \operatorname { exp } ( \frac { 2 J } { k _ { B } T } ) \operatorname { cosh } ^ { 2 } ( \frac { H } { k _ { B } T } ) - 2 \operatorname { sinh } ( \frac { 2 J } { k _ { B } T } ) \right] ^ { 1 / 2 }.$ ; confidence 0.916
  
276. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301403.png ; $\hat { f } ( \alpha , p ) : = R f$ ; confidence 0.944
+
276. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003013.png ; $U ^ { \prime } P T ^ { \prime }$ ; confidence 0.916
  
277. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301409.png ; $p \in R _ { + } : = [ 0 , \infty )$ ; confidence 0.649
+
277. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005065.png ; $D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right).$ ; confidence 0.915
  
278. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201705.png ; $\delta _ { A , B } ( X ) = A X - X B$ ; confidence 0.776
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160107.png ; $A ( a , b )$ ; confidence 0.915
  
279. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017056.png ; $N _ { \epsilon } ^ { \prime }$ ; confidence 0.577
+
279. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t1301508.png ; $T _ { f }$ ; confidence 0.915
  
280. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002052.png ; $q ( G ( k , n ) ) \rightarrow C$ ; confidence 0.720
+
280. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840145.png ; $[ T x , T x ] \leq [ x , x ]$ ; confidence 0.915
  
281. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001040.png ; $f _ { 1 } , \dots , f _ { R } \in D$ ; confidence 0.375
+
281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023043.png ; $D _ { X } \in \operatorname { Der } _ { k } \wedge T _ { X } ^ { * } M$ ; confidence 0.915
  
282. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001058.png ; $G \leftrightarrow G ^ { c }$ ; confidence 0.969
+
282. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702065.png ; $\mathbf{Q}_l$ ; confidence 0.915
  
283. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001070.png ; $H = \{ g \in G : \tau ( g ) = g \}$ ; confidence 0.998
+
283. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029037.png ; $\underline{ \top } $ ; confidence 0.915
  
284. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001066.png ; $J \pi ( g ) = \pi ( \tau ( g ) ) J$ ; confidence 0.934
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211051.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } )$ ; confidence 0.915
  
285. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003034.png ; $\operatorname { Fun } ( M )$ ; confidence 0.487
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $[a , b]$ ; confidence 0.915
  
286. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005090.png ; $z _ { 1 } , z _ { 2 } , z _ { 3 } \in T$ ; confidence 0.994
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005028.png ; $\mathcal{H} _ { b } ( U )$ ; confidence 0.915
  
287. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050106.png ; $\rho = | \alpha - x | / | b - x |$ ; confidence 0.682
+
287. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004025.png ; $x ^ { T } = \prod _ { i \in T } x _ { i }$ ; confidence 0.915
  
288. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007038.png ; $g ^ { n } = 1 , E ^ { n } = F ^ { n } = 0$ ; confidence 0.898
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025017.png ; $L _ { 0 } = \mathcal{D}$ ; confidence 0.915
  
289. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007014.png ; $R _ { 12 } \equiv R \otimes 1$ ; confidence 0.998
+
289. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002045.png ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915
  
290. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008071.png ; $E [ C ] = \frac { R } { 1 - \rho }$ ; confidence 0.433
+
290. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021024.png ; $1 / \lambda$ ; confidence 0.915
  
291. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013027.png ; $\sigma ( A | _ { M } ) = \sigma$ ; confidence 0.471
+
291. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320183.png ; $K_i$ ; confidence 0.915
  
292. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232037.png ; $\operatorname { ln } \rho$ ; confidence 0.824
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010010.png ; $\hat { f } ( \alpha , p )$ ; confidence 0.915
  
293. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s1300207.png ; $g _ { t } : U M \rightarrow U M$ ; confidence 0.459
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031069.png ; $( \mathcal{Q} _ { 1 } , \mu _ { 1 } )$ ; confidence 0.915
  
294. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004016.png ; $\Gamma \backslash H ^ { * }$ ; confidence 0.997
+
294. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004021.png ; $\psi _ { \pm }$ ; confidence 0.915
  
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300705.png ; $\phi \mapsto \phi \circ f$ ; confidence 0.988
+
295. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005021.png ; $\operatorname{VMO} ( \mathbf{R} ^ { n } )$ ; confidence 0.915
  
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011050.png ; $Z [ x _ { 1 } , \ldots , x _ { N } ]$ ; confidence 0.345
+
296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010020.png ; $\square ^ { \prime } \Gamma$ ; confidence 0.915
  
297. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005081.png ; $S ( z ) = S _ { 1 } ( z ) S _ { 2 } ( z )$ ; confidence 0.988
+
297. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f1200205.png ; $\alpha \in A [ [ X ] ]$ ; confidence 0.915
  
298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005068.png ; $w _ { 1 } , \dots , w _ { N } \in D$ ; confidence 0.315
+
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060143.png ; $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$ ; confidence 0.915
  
299. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036011.png ; $\{ Y _ { t } , B _ { t } , 1 _ { t } \}$ ; confidence 0.938
+
299. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007019.png ; $P _ { k } = \hbar D _ { k } = \frac { \hbar } { i } \frac { \partial } { \partial x _ { k } }.$ ; confidence 0.915
  
300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037026.png ; $t = ( t _ { 1 } , \dots , t _ { k } )$ ; confidence 0.822
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040029.png ; $X ^ { P }$ ; confidence 0.915

Latest revision as of 20:36, 7 April 2020

List

1. w12007014.png ; $Q _ { j } = X _ { j }$ ; confidence 0.924

2. b12051050.png ; $d = - H _ { c } ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.924

3. b130290179.png ; $n _ { i } \geq 1$ ; confidence 0.924

4. f1202306.png ; $[ K , L ] = - ( - 1 ) ^ { k l } [ L , K ],$ ; confidence 0.924

5. a13007078.png ; $\lim \inf _{x \rightarrow \infty} \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924

6. s13002043.png ; $u \in \overline { UM }$ ; confidence 0.924

7. f1200501.png ; $x ^ { n } - y ^ { n } = z ^ { n }$ ; confidence 0.924

8. t12006068.png ; $N _ { j } \in ( 0 , Z _ { j } )$ ; confidence 0.924

9. b01757025.png ; $\lambda _ { 1 }$ ; confidence 0.924

10. d1300508.png ; $K ( m )$ ; confidence 0.924

11. k05507015.png ; $\dim_{ \text{C} } M = 1$ ; confidence 0.924

12. n06752076.png ; $n _ { i j } > 0$ ; confidence 0.924

13. m13018010.png ; $\sum _ { z : x \leq z \leq y } \mu ( x , z ) = 0 \text { if } x < y.$ ; confidence 0.924

14. b12040048.png ; $\varrho : H \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.924

15. e120070106.png ; $C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} ) \oplus C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.923

16. d11022017.png ; $( a , \eta ( a ) )$ ; confidence 0.923

17. a130240497.png ; $\beta _ { 11 } = \beta _ { 21 }$ ; confidence 0.923

18. d13008081.png ; $D ( a , R ) =$ ; confidence 0.923

19. d03213025.png ; $U \subset M$ ; confidence 0.923

20. c13015016.png ; $\varphi \in \mathcal{A} _ { N } ( \mathbf{R} ^ { n } )$ ; confidence 0.923

21. d12023066.png ; $x ^ { * } R y$ ; confidence 0.923

22. k12010032.png ; $( z _ { j } , t _ { j } )$ ; confidence 0.923

23. a12012013.png ; $v = ( v _ { j } )$ ; confidence 0.923

24. t12006041.png ; $N = \int \rho$ ; confidence 0.923

25. d03353065.png ; $p ^ { m }$ ; confidence 0.923

26. t12015052.png ; $\xi _ { 1 } \xi _ { 2 } \equiv \pi ( \xi _ { 1 } ) \xi _ { 2 }$ ; confidence 0.923

27. f120080111.png ; $L _ { 2 } ( X )$ ; confidence 0.923

28. t1301207.png ; $\operatorname { Ext } _ { A } ^ { 1 } ( T , T ) = 0$ ; confidence 0.923

29. p1201309.png ; $| x | < 1$ ; confidence 0.923

30. k055840157.png ; $x , y \in \mathcal{D} ( T )$ ; confidence 0.923

31. a13007077.png ; $Q ( x ) \geq C \operatorname { log } x \operatorname { log } \operatorname { log } x / ( \operatorname { log } \operatorname { log } \operatorname { log } x ) ^ { 2 }$ ; confidence 0.923

32. d13008057.png ; $X = \mathcal{H}$ ; confidence 0.923

33. b130120119.png ; $F \circ f \in \mathcal{A}$ ; confidence 0.923

34. b12046015.png ; $C _ { G } ( x )$ ; confidence 0.923

35. c12030075.png ; $K _ { 0 } ( \mathcal{O} _ { \infty } ) = \mathbf{Z}$ ; confidence 0.923

36. h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923

37. j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z ).$ ; confidence 0.923

38. h0481908.png ; $\nu = 0$ ; confidence 0.923

39. p12017067.png ; $I$ ; confidence 0.923

40. m130260203.png ; $x e = x$ ; confidence 0.923

41. d1300309.png ; $N \in \mathbf{N} \backslash \{ 0 \}$ ; confidence 0.923

42. e12012027.png ; $Y _ { \text{obs} } = \mathcal{M} ( Y _ { \text{aug} } )$ ; confidence 0.923

43. i120080129.png ; $v = \operatorname { tanh } ( J / k _ { B } T )$ ; confidence 0.923

44. t130140146.png ; $( I , \preceq )$ ; confidence 0.923

45. a011660124.png ; $x \in B$ ; confidence 0.923

46. a01068048.png ; $Q ( n )$ ; confidence 0.923

47. a01404036.png ; $\alpha ^ { \prime }$ ; confidence 0.923

48. a130050157.png ; $c > 1$ ; confidence 0.923

49. c12008027.png ; $A _ {i j } \in C ^ { n \times n }$ ; confidence 0.923

50. h13009048.png ; $G _ { \mu } ^ { * }$ ; confidence 0.922

51. j13003037.png ; $( a , b ) \mapsto a \square b ^ { * }$ ; confidence 0.922

52. w12021028.png ; $\sum _ { i = 1 } ^ { k } A _ { i } A _ { i } ^ { T } = k m I _ { m }$ ; confidence 0.922

53. q130050111.png ; $a , b , x$ ; confidence 0.922

54. a130080109.png ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922

55. c1202501.png ; $| \nabla L |$ ; confidence 0.922

56. f12021011.png ; $\{ z \in \mathbf{C} : | z | < \epsilon \} \backslash ( - \infty , 0 ]$ ; confidence 0.922

57. r13010048.png ; $( i , \alpha )$ ; confidence 0.922

58. w12007012.png ; $\{ \mathbf{p} _ { j } , \mathbf{p} _ { k } \} = \{ \mathbf{q} _ { j } , \mathbf{q} _ { k } \} = 0 , \quad \{ \mathbf{p} _ { j } , \mathbf{q} _ { k } \} = \delta _ { j k }.$ ; confidence 0.922

59. p13013040.png ; $\zeta _ { \lambda } ^ { \prime }$ ; confidence 0.922

60. s12024050.png ; $< \varepsilon _ { i }$ ; confidence 0.922

61. w120070103.png ; $\zeta \in \mathbf{C} ^ { k }$ ; confidence 0.922

62. s12034089.png ; $S _ { H }$ ; confidence 0.922

63. f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922

64. s130620151.png ; $q _ { 2 } ( . ) \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.922

65. b110220147.png ; $r:K _ { 2 } ( X ) \rightarrow H ^ { 1 } ( X ( \mathbf{C} ) , \mathbf{R} ( 1 ) )$ ; confidence 0.922

66. c02333037.png ; $X \rightarrow Y$ ; confidence 0.922

67. y12003034.png ; $\phi \in \Gamma ( V _ { + } )$ ; confidence 0.922

68. e1201005.png ; $\mathbf{E} ^ { \prime }$ ; confidence 0.922

69. r13010061.png ; $( \Gamma _ { A } ) _ { s }$ ; confidence 0.922

70. w12006012.png ; $T _ { A } M = \operatorname { Hom } ( C ^ { \infty } ( M , \mathbf{R} ) , A ),$ ; confidence 0.922

71. t13021045.png ; $O ( h ^ { k } )$ ; confidence 0.922

72. b120400116.png ; $\varrho : B \rightarrow \mathbf{C} ^ { * }$ ; confidence 0.922

73. d13013030.png ; $\chi = 2 g \phi$ ; confidence 0.922

74. b13025035.png ; $C _ { C A }$ ; confidence 0.922

75. a130240484.png ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922

76. a130040235.png ; $i \in I$ ; confidence 0.922

77. a13007075.png ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921

78. b120040117.png ; $X ^ { * } = X _ { c } ^ { * } \oplus X _ { s } ^ { * }$ ; confidence 0.921

79. c120080114.png ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921

80. l06005062.png ; $\cosh \delta = x ^ { 0 } y ^ { 0 } - \sum x ^ { t } y ^ { t }.$ ; confidence 0.921

81. d12012069.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 } \circ \phi _ { 4 }$ ; confidence 0.921

82. k055840208.png ; $( T _ { i j } ) _ { 1 } ^ { 2 }$ ; confidence 0.921

83. b13028021.png ; $\Sigma ^ { n } \mathcal{A} / \{ Sq ^ { i } : 2 i > n \} \mathcal{A} \cong G ( n ).$ ; confidence 0.921

84. f110160113.png ; $( \phi _ { 1 } \vee \ldots \vee \phi _ { n } )$ ; confidence 0.921

85. j13002041.png ; $\Delta = \left( \begin{array} { l } { n } \\ { 4 } \end{array} \right) \left( \begin{array} { l } { 4 } \\ { 2 } \end{array} \right) p ^ { 5 }$ ; confidence 0.921

86. f11016013.png ; $\mathfrak { A } = ( A , f _ { \mathfrak { A } } )$ ; confidence 0.921

87. h1301208.png ; $x , y \in G _ { 1 }$ ; confidence 0.921

88. v09691020.png ; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) ).$ ; confidence 0.921

89. c12028036.png ; $[ \pi ( X _* ) , C ] \cong [ X , B C ]$ ; confidence 0.921

90. m13008032.png ; $h _ { t } ( s ) = h ( ( s - t ) / \operatorname { log } | t | ) / \operatorname { log } | t | $ ; confidence 0.921

91. a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 1.$ ; confidence 0.921

92. b12022048.png ; $F _ { j } ( u ) = \int a _ { j } ( \xi ) M ( u , \xi ) d \xi ,$ ; confidence 0.921

93. b12037061.png ; $C _ { B _ { 2 } } ( f ) \geq 2 ^ { n } / n$ ; confidence 0.921

94. i1200405.png ; $f : \overline{P} \rightarrow \mathbf{C}$ ; confidence 0.921

95. h12005012.png ; $u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0.$ ; confidence 0.921

96. d03027022.png ; $E _ { [ \theta n ] } ( f ) = O ( E _ { n } ( f ) )$ ; confidence 0.921

97. e12019011.png ; $v \neq 0$ ; confidence 0.921

98. w130080214.png ; $L = \partial ^ { n + 1 } - q _ { 1 } \partial ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.921

99. d12016042.png ; $C ( S ) \otimes \pi _ { k } ( T ) + \pi _{\text{l}} ( S ) \otimes C ( T )$ ; confidence 0.921

100. g043810138.png ; $x \notin S$ ; confidence 0.921

101. m130260114.png ; $K ( \mathcal{H} )$ ; confidence 0.921

102. a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921

103. s120320105.png ; $\operatorname { det } ( T )$ ; confidence 0.921

104. m12021029.png ; $\mathbf{E} ^ { 2 }$ ; confidence 0.921

105. k05507023.png ; $k \eta$ ; confidence 0.921

106. t120060145.png ; $B \gg Z ^ { 3 }$ ; confidence 0.921

107. l12006076.png ; $h ^ { I I } ( z )$ ; confidence 0.921

108. c02325067.png ; $1 \leq i _ { 1 } < \ldots < i _ { k } \leq n$ ; confidence 0.921

109. c13025024.png ; $C ( \beta )$ ; confidence 0.921

110. s12025024.png ; $h ( x ) = \frac { ( 1 - x ^ { 2 } ) ^ { \pm 1 / 2 } } { \rho _ { m } ( x ) },$ ; confidence 0.921

111. d12030012.png ; $h : \mathbf{R} _ { + } \times \mathbf{R} ^ { n } \times \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.921

112. d12005066.png ; $\operatorname{ACS}$ ; confidence 0.921

113. m12016019.png ; $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.921

114. e035000137.png ; $S ( T , \alpha )$ ; confidence 0.920

115. c02190046.png ; $N > 1$ ; confidence 0.920

116. f1201604.png ; $T X - I$ ; confidence 0.920

117. d120020241.png ; $\overline { u } _ { 1 } \geq 0$ ; confidence 0.920

118. e1200901.png ; $\nabla . E = \rho$ ; confidence 0.920

119. d11008015.png ; $L w , K v$ ; confidence 0.920

120. f12009019.png ; $\zeta z = \zeta _ { 1 } z _ { 1 } + \ldots + \zeta _ { n } z _ { n }$ ; confidence 0.920

121. p13009032.png ; $G _ { \Omega } ( x , y )$ ; confidence 0.920

122. r08232051.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { 0 } ^ { 2 \pi } | f ( r e ^ { i \theta } ) - f ( e ^ { i \theta } ) | ^ { \delta } d \theta = 0,$ ; confidence 0.920

123. c02583064.png ; $A = ( I + T ) ( I - T ) ^ { - 1 } , \quad 1 \notin \sigma _ { p } ( T ),$ ; confidence 0.920

124. f04052014.png ; $F : X \rightarrow X$ ; confidence 0.920

125. d03121061.png ; $\partial$ ; confidence 0.920

126. p130070101.png ; $h \in \operatorname { SPSH } ( \Omega \times \Omega ) , h < 0,$ ; confidence 0.920

127. a11032034.png ; $n _ { S } < n$ ; confidence 0.920

128. t120010124.png ; $b _ { 2i + 1} ( \mathcal{S} ) = 0$ ; confidence 0.920

129. p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t.$ ; confidence 0.920

130. s087670113.png ; $k = 8$ ; confidence 0.920

131. r130070142.png ; $( h ( s , y ) , \delta _ { m } ( t - s ) ) _ { \mathcal{H} } = h ( t , y )$ ; confidence 0.920

132. f120080133.png ; $\Lambda _ { G }$ ; confidence 0.920

133. d12003033.png ; $\{ x : f ( x ) > \alpha \}$ ; confidence 0.920

134. j1300203.png ; $\mathbf{p} = \{ p _ { i } : i \in \Gamma \}$ ; confidence 0.920

135. s12032037.png ; $\mathcal{I} = \langle x \otimes y - B ( x \otimes y ) \rangle$ ; confidence 0.920

136. d12030050.png ; $r ( x , t | x _ { 0 } , \sigma ( Y ( u ) , u \leq t ) ) =$ ; confidence 0.920

137. b130020115.png ; $J B ^ { * }$ ; confidence 0.920

138. e120230152.png ; $\phi _ { t } ^ { k }$ ; confidence 0.920

139. k13002010.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) > 0$ ; confidence 0.920

140. m130230102.png ; $X \rightarrow Y \leftarrow X ^ { + }$ ; confidence 0.920

141. h1300303.png ; $h_{ i , j } = s _ { i + j - 1 }$ ; confidence 0.920

142. b11085034.png ; $K G$ ; confidence 0.920

143. f12014061.png ; $r < 1 < R$ ; confidence 0.920

144. b13010079.png ; $T = T _ { \varphi } + C$ ; confidence 0.920

145. k13005024.png ; $Kn = \frac { \lambda } { l }.$ ; confidence 0.920

146. z13007080.png ; $U \in \operatorname{SGL} _ { n } ( \Gamma )$ ; confidence 0.919

147. m12003039.png ; $V ( T , F _ { \theta } ) = \int \operatorname { IF } ( x ; T , F _ { \theta } ) ^ { 2 } d F _ { \theta } ( x )$ ; confidence 0.919

148. a13028011.png ; $\operatorname { sn } ( u | k )$ ; confidence 0.919

149. a130040575.png ; $\operatorname{S}5 ^ { S }$ ; confidence 0.919

150. g130040199.png ; $\operatorname { spt } ( \| \nu \| ) \cap B ( a , ( 1 - \epsilon ) R )$ ; confidence 0.919

151. d12012016.png ; $\operatorname{codom}_{G'} \circ d _ { A } = d _ { 0 } \circ \operatorname{codom}_{G}$ ; confidence 0.919

152. i05162043.png ; $\operatorname { Re } z > 0$ ; confidence 0.919

153. a130040728.png ; $P \subseteq P ^ { \prime }$ ; confidence 0.919

154. g12005022.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) < 0$ ; confidence 0.919

155. c13004029.png ; $\sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } =$ ; confidence 0.919

156. h12012059.png ; $d_Y$ ; confidence 0.919

157. z13012017.png ; $T _ { n } ( . ) = Z _ { n } (\, . \, ; 0 )$ ; confidence 0.919

158. s12023022.png ; $X \sim \operatorname { LS } _ { p , n } ( \phi )$ ; confidence 0.919

159. l12004070.png ; $w _ { 2 } = ( 1 - \operatorname { sign } ( c ) ) / 2$ ; confidence 0.919

160. c130070115.png ; $d ( Q )$ ; confidence 0.919

161. t12006058.png ; $N \geq Z$ ; confidence 0.919

162. w13017058.png ; $( k , \Sigma )$ ; confidence 0.919

163. o1300505.png ; $\operatorname { Im } T = K J K ^ { * }$ ; confidence 0.919

164. g1200105.png ; $g _ { \alpha } ( t ) = \frac { 1 } { 2 \sqrt { \pi \alpha } } e ^ { - t ^ { 2 } / ( 4 \alpha ) } , \alpha > 0.$ ; confidence 0.919

165. e120120130.png ; $H \equiv - \frac { \partial ^ { 2 } } { \partial \theta . \partial \theta } \int f ( \theta , \phi ) d \phi | _ { \theta = \theta ^ { * } },$ ; confidence 0.919

166. h12004020.png ; $U _ { \xi } \subset _{*} U _ { \eta }$ ; confidence 0.919

167. d03195023.png ; $f _ { l }$ ; confidence 0.919

168. m13002016.png ; $\phi / \| \phi \|$ ; confidence 0.919

169. c12021080.png ; $\mathcal{L} [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ] \Rightarrow \tilde{\mathcal{L}}$ ; confidence 0.919

170. a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ],$ ; confidence 0.919

171. s13037015.png ; $x , y \in \mathcal{D}$ ; confidence 0.919

172. b120420102.png ; $\beta : G \times G \rightarrow k ^ { * }$ ; confidence 0.919

173. k055840143.png ; $\operatorname { Im } [ T x , x ] \geq 0$ ; confidence 0.919

174. c02384058.png ; $\| . \| _ { 2 }$ ; confidence 0.919

175. l120100140.png ; $\| \rho \| _ { L ^ { p } ( R ^ { 2 } ) } \leq B _ { p } m ^ { - 2 / p } N ^ { 1 / p }$ ; confidence 0.919

176. s13065057.png ; $S _ { 0 } = S _ { \mu }$ ; confidence 0.919

177. s1304504.png ; $S _ { i } = \operatorname { rank } ( y _ { i } )$ ; confidence 0.919

178. c12008095.png ; $E = I _ { n }$ ; confidence 0.918

179. d0302703.png ; $S _ { k } ( f , x )$ ; confidence 0.918

180. b12004048.png ; $\lambda > 0$ ; confidence 0.918

181. f12010083.png ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z ),$ ; confidence 0.918

182. o1300503.png ; $\operatorname { Im } T = ( T - T ^ { * } ) / 2 i$ ; confidence 0.918

183. v120020179.png ; $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ ; confidence 0.918

184. a010210115.png ; $\alpha_j$ ; confidence 0.918

185. e035000128.png ; $\lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0$ ; confidence 0.918

186. s1202604.png ; $\mathcal{S} ^ { \prime } ( \mathbf{R} )$ ; confidence 0.918

187. a01024089.png ; $g > 1$ ; confidence 0.918

188. l12010036.png ; $R _ { \Gamma , n } = 1$ ; confidence 0.918

189. e1202409.png ; $\mathcal{O} _ { K }$ ; confidence 0.918

190. a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918

191. s120040102.png ; $R = \sum _ { n > 0 } R ^ { n }$ ; confidence 0.918

192. s13001033.png ; $|.| v$ ; confidence 0.918

193. j13004091.png ; $s ( D _ { 3_{1} } ) = 2$ ; confidence 0.918

194. l06005057.png ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.918

195. b12004057.png ; $D _ { S }$ ; confidence 0.918

196. t13013042.png ; $( \mathcal{T} , \mathcal{F} )$ ; confidence 0.918

197. c12002031.png ; $c _ { \mu } f + T _ { \mu } f$ ; confidence 0.918

198. i13005099.png ; $( m _ { j } ^ { + } ) ^ { 2 }$ ; confidence 0.918

199. f12015052.png ; $Y = X$ ; confidence 0.918

200. a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918

201. b110220130.png ; $\{ s \in \mathbf{C} : i / 2 \leq \operatorname { Re } ( s ) \leq 1 + i / 2 \}$ ; confidence 0.918

202. m12007032.png ; $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi _{- 3} )$ ; confidence 0.918

203. e035000102.png ; $I ( \rho ) = \frac { d \rho } { d ( \mu \times \mu ) }$ ; confidence 0.918

204. d12006023.png ; $Q ^ { + } Q ^ { - } ( Q ^ { + } \psi _ { \lambda } ) = \lambda ( Q ^ { + } \psi _ { \lambda } )$ ; confidence 0.918

205. m13001041.png ; $i \in S$ ; confidence 0.918

206. d03024019.png ; $f _{ ( 2 ) } ( x _ { 0 } )$ ; confidence 0.918

207. k055840132.png ; $[ T x , y ] = [ x , T ^ { + } y ]$ ; confidence 0.918

208. i1200105.png ; $g _ { \Phi } ( t ) = \Phi ^ { - 1 } ( t ) t ^ { - 1 - 1 / n }$ ; confidence 0.918

209. o130010154.png ; $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.918

210. l12017054.png ; $K _ { 0 } ^ { n + 1 } \searrow K _ { 1 }$ ; confidence 0.917

211. v13005063.png ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) +$ ; confidence 0.917

212. q12001083.png ; $0 \neq \mathcal{K} _ { 0 } \subset \mathcal{H} ( \pi )$ ; confidence 0.917

213. f13021013.png ; $C ^ { * } ( G )$ ; confidence 0.917

214. m1300906.png ; $\hbar = h / 2 \pi$ ; confidence 0.917

215. r13012010.png ; $u , v \in C$ ; confidence 0.917

216. l12003057.png ; $\pi _ { 0 } \operatorname { Map } ( B E , X ) = [ B E , X ] = \operatorname { Hom } _ { \mathcal{K} } ( H ^ { * } X , H ^ { * } B E ).$ ; confidence 0.917

217. e1300309.png ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917

218. g13006029.png ; $\sigma ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A ).$ ; confidence 0.917

219. e120020106.png ; $Y \times K \simeq Z \times K$ ; confidence 0.917

220. n13003047.png ; $\lambda = \omega ^ { 2 }$ ; confidence 0.917

221. a130240506.png ; $[\mathbf{Z} _ { 32 } , \mathbf{Z} _ { 33 }]$ ; confidence 0.917

222. r13010073.png ; $\mathbf{E} _ { 7 }$ ; confidence 0.917

223. a012950110.png ; $N - 1$ ; confidence 0.917

224. e03662027.png ; $q < n$ ; confidence 0.917

225. a130240518.png ; $\mathbf{Z} _ { 12 }$ ; confidence 0.917

226. b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } \textsf{P} ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917

227. b11104010.png ; $p k $ ; confidence 0.917

228. g12005034.png ; $k = k _ { c }$ ; confidence 0.917

229. t13015031.png ; $D = \left\{ z \in \mathbf{C} ^ { n } : | z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1 \right\}$ ; confidence 0.917

230. w130080157.png ; $T \mathcal{M} _ { g }$ ; confidence 0.917

231. u13002015.png ; $( \int _ { - \infty } ^ { \infty } ( x - a ) ^ { 2 } | f ( x ) | ^ { 2 } d x ) ( \int _ { - \infty } ^ { \infty } ( y - b ) ^ { 2 } | \hat { f } ( y ) | ^ { 2 } d y ) \geq$ ; confidence 0.917

232. a12025057.png ; $\operatorname{PG} ( 4,9 )$ ; confidence 0.917

233. n06752024.png ; $D \in M _ { n \times n } ( K )$ ; confidence 0.917

234. a13027084.png ; $Y ^ { * }$ ; confidence 0.917

235. b12027022.png ; $U ( t ) \equiv \textsf{E} N ( t ),$ ; confidence 0.917

236. k13002021.png ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } },$ ; confidence 0.917

237. f1300906.png ; $U _ { m + n } ( x ) = U _ { m + 1 } ( x ) U _ { n } ( x ) + U _ { m } ( x ) U _ { n - 1 } ( x );$ ; confidence 0.917

238. k055840185.png ; $\rho ( \lambda ) = \sum _ { j = 1 } ^ { \kappa } [ d _ { j } / 2 ]$ ; confidence 0.917

239. f12020017.png ; $A v _ { i } = v _ { i + 1}$ ; confidence 0.917

240. a13029011.png ; $w _ { 2 } ( P _ { Y } ) \neq 0$ ; confidence 0.917

241. l12010055.png ; $L _ { \gamma , 1 } ^ { 1 } = L _ { \gamma , 1 }$ ; confidence 0.917

242. v12006022.png ; $( p - 1 ) p ^ { h } | 2 n$ ; confidence 0.917

243. e120020132.png ; $X ^ { 1 } \vee S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.916

244. a0120004.png ; $y \in \mathbf{R} ^ { x }$ ; confidence 0.916

245. b01566027.png ; $N ^ { 2 }$ ; confidence 0.916

246. t12020020.png ; $\psi ( k , n ) > 0$ ; confidence 0.916

247. b12055040.png ; $C ( N )$ ; confidence 0.916

248. q1200807.png ; $b _ { p } ^ { ( 2 ) }$ ; confidence 0.916

249. c1200704.png ; $C ^ { n } ( \mathcal{C} , M )$ ; confidence 0.916

250. t120200169.png ; $\max _ r \operatorname { Re } G _ { 2 } ( r ) \geq A$ ; confidence 0.916

251. s09067083.png ; $\operatorname{GL} ^ { 1 } ( n ) = \operatorname{GL} ( n )$ ; confidence 0.916

252. b12049024.png ; $m : \Sigma \rightarrow [ 0 , \infty )$ ; confidence 0.916

253. c13025014.png ; $C ( \beta ) = \prod _ { j = 1 } ^ { n } \frac { \operatorname { exp } ( z _ { j } ^ { T } ( T _ { j } ) \beta ) } { \sum _ { k \in R _ { j } } \operatorname { exp } ( z _ { k } ^ { T } ( T _ { j } ) \beta ) },$ ; confidence 0.916

254. c02583077.png ; $H = K \oplus K ^ { \prime }$ ; confidence 0.916

255. j13007081.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916

256. f12024052.png ; $x _ { t } ( \theta ) = x ( t + \theta ) , \theta \in J _ { t } \subseteq ( - \infty , 0 ],$ ; confidence 0.916

257. t120010109.png ; $m > 3$ ; confidence 0.916

258. t120010133.png ; $\mathcal{S} ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916

259. b130200100.png ; $\mathfrak { g } ^ { \alpha } \times \mathfrak { g } ^ { - \alpha }$ ; confidence 0.916

260. w130080208.png ; $b _ { 2 + } = 1$ ; confidence 0.916

261. h12002037.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ ; confidence 0.916

262. b13003058.png ; $( \operatorname{FBL} ( X , Y ) , \operatorname{FBL} ( Y , X ) )$ ; confidence 0.916

263. k13001038.png ; $ \overset{\rightharpoonup}{ D }$ ; confidence 0.916

264. m12011019.png ; $\partial T ( h ) = \partial F \times S ^ { 1 }$ ; confidence 0.916

265. w12010027.png ; $W ^ { n } = ( M , g , \gamma )$ ; confidence 0.916

266. g13003051.png ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \Lambda }$ ; confidence 0.916

267. e12027028.png ; $P _ { m }$ ; confidence 0.916

268. f12008019.png ; $L _ { 1 } ( \hat { G } )$ ; confidence 0.916

269. m1200209.png ; $\langle u - v , j \rangle \leq 0$ ; confidence 0.916

270. e12016045.png ; $J = \frac { 1 } { f } \left( \begin{array} { c c } { 1 } & { - \psi } \\ { - \psi } & { \psi ^ { 2 } + r ^ { 2 } f ^ { 2 } } \end{array} \right),$ ; confidence 0.916

271. l057000160.png ; $\Gamma \vdash M : \sigma$ ; confidence 0.916

272. m13022027.png ; $e \in \mathbf{M}$ ; confidence 0.916

273. s130620117.png ; $\operatorname{Im} m_+ ( \lambda ) > 0$ ; confidence 0.916

274. j12002036.png ; $\varphi _ { 1 } + \tilde { \varphi } _ { 2 }$ ; confidence 0.916

275. i12008088.png ; $\pm \left[ \operatorname { exp } ( \frac { 2 J } { k _ { B } T } ) \operatorname { cosh } ^ { 2 } ( \frac { H } { k _ { B } T } ) - 2 \operatorname { sinh } ( \frac { 2 J } { k _ { B } T } ) \right] ^ { 1 / 2 }.$ ; confidence 0.916

276. l06003013.png ; $U ^ { \prime } P T ^ { \prime }$ ; confidence 0.916

277. t13005065.png ; $D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right).$ ; confidence 0.915

278. c110160107.png ; $A ( a , b )$ ; confidence 0.915

279. t1301508.png ; $T _ { f }$ ; confidence 0.915

280. k055840145.png ; $[ T x , T x ] \leq [ x , x ]$ ; confidence 0.915

281. f12023043.png ; $D _ { X } \in \operatorname { Der } _ { k } \wedge T _ { X } ^ { * } M$ ; confidence 0.915

282. l05702065.png ; $\mathbf{Q}_l$ ; confidence 0.915

283. f13029037.png ; $\underline{ \top } $ ; confidence 0.915

284. c02211051.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } )$ ; confidence 0.915

285. a12003011.png ; $[a , b]$ ; confidence 0.915

286. b12005028.png ; $\mathcal{H} _ { b } ( U )$ ; confidence 0.915

287. s12004025.png ; $x ^ { T } = \prod _ { i \in T } x _ { i }$ ; confidence 0.915

288. a13025017.png ; $L _ { 0 } = \mathcal{D}$ ; confidence 0.915

289. h13002045.png ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915

290. e12021024.png ; $1 / \lambda$ ; confidence 0.915

291. c027320183.png ; $K_i$ ; confidence 0.915

292. l13010010.png ; $\hat { f } ( \alpha , p )$ ; confidence 0.915

293. a13031069.png ; $( \mathcal{Q} _ { 1 } , \mu _ { 1 } )$ ; confidence 0.915

294. e13004021.png ; $\psi _ { \pm }$ ; confidence 0.915

295. v11005021.png ; $\operatorname{VMO} ( \mathbf{R} ^ { n } )$ ; confidence 0.915

296. w12010020.png ; $\square ^ { \prime } \Gamma$ ; confidence 0.915

297. f1200205.png ; $\alpha \in A [ [ X ] ]$ ; confidence 0.915

298. t120060143.png ; $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$ ; confidence 0.915

299. w12007019.png ; $P _ { k } = \hbar D _ { k } = \frac { \hbar } { i } \frac { \partial } { \partial x _ { k } }.$ ; confidence 0.915

300. s13040029.png ; $X ^ { P }$ ; confidence 0.915

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/31. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/31&oldid=44441