Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/27"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 54: Line 54:
 
27. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033035.png ; $H ^ { * } ( X , \mathbf{C} )$ ; confidence 0.954
 
27. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033035.png ; $H ^ { * } ( X , \mathbf{C} )$ ; confidence 0.954
  
28. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001050.png ; $\chi  _ ( n )$ ; confidence 0.954
+
28. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001050.png ; $\chi  _ {( n )}$ ; confidence 0.954
  
 
29. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007070.png ; $\omega = \eta$ ; confidence 0.954
 
29. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007070.png ; $\omega = \eta$ ; confidence 0.954
Line 172: Line 172:
 
86. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520276.png ; $F ( A ) h _ { 0 }$ ; confidence 0.952
 
86. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520276.png ; $F ( A ) h _ { 0 }$ ; confidence 0.952
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $\mathbf{A}$ ; confidence 0.952
  
 
88. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
 
88. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
Line 202: Line 202:
 
101. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101106.png ; $0 \leq n \leq q$ ; confidence 0.952
 
101. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101106.png ; $0 \leq n \leq q$ ; confidence 0.952
  
102. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013064.png ; $\zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in SP ^ { - } ( n ).$ ; confidence 0.952
+
102. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013064.png ; $\zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in \text{SP} ^ { - } ( n ).$ ; confidence 0.952
  
 
103. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007014.png ; $\Delta^{-}$ ; confidence 0.952
 
103. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007014.png ; $\Delta^{-}$ ; confidence 0.952
Line 242: Line 242:
 
121. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006017.png ; $\mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x },$ ; confidence 0.951
 
121. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006017.png ; $\mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x },$ ; confidence 0.951
  
122. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090168.png ; $\zeta \in \mu _ { p } \infty$ ; confidence 0.951
+
122. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090168.png ; $\zeta \in \mu _ { p ^ \infty}$ ; confidence 0.951
  
 
123. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500060.png ; $B ( y _ { i } , \epsilon ) \cap B ( y _ { j } , \epsilon ) = \emptyset$ ; confidence 0.951
 
123. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500060.png ; $B ( y _ { i } , \epsilon ) \cap B ( y _ { j } , \epsilon ) = \emptyset$ ; confidence 0.951
Line 276: Line 276:
 
138. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005025.png ; $x ^ { k + 1 } = x ^ { k } + \alpha _ { k } d ^ { k }$ ; confidence 0.951
 
138. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005025.png ; $x ^ { k + 1 } = x ^ { k } + \alpha _ { k } d ^ { k }$ ; confidence 0.951
  
139. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
+
139. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset \operatorname{SU} ( 2 )$ ; confidence 0.951
  
 
140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
 
140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
Line 290: Line 290:
 
145. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002040.png ; $\lambda = \left( \begin{array} { l } { n } \\ { 3 } \end{array} \right) p ^ { 3 }$ ; confidence 0.951
 
145. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002040.png ; $\lambda = \left( \begin{array} { l } { n } \\ { 3 } \end{array} \right) p ^ { 3 }$ ; confidence 0.951
  
146. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011023.png ; $\| . \| : G \rightarrow [ 0 , + \infty )$ ; confidence 0.951
+
146. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011023.png ; $\| \, . \, \| : G \rightarrow [ 0 , + \infty )$ ; confidence 0.951
  
 
147. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005030.png ; $H ^ { \infty } + C = \{ f + g : f \in H ^ { \infty } , g \in C \}$ ; confidence 0.951
 
147. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005030.png ; $H ^ { \infty } + C = \{ f + g : f \in H ^ { \infty } , g \in C \}$ ; confidence 0.951
Line 330: Line 330:
 
165. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021025.png ; $x \rightarrow G ( x , \alpha ).$ ; confidence 0.950
 
165. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021025.png ; $x \rightarrow G ( x , \alpha ).$ ; confidence 0.950
  
166. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067038.png ; $GL ^ { k } ( u )$ ; confidence 0.950
+
166. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067038.png ; $\operatorname{GL} ^ { k } ( u )$ ; confidence 0.950
  
 
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009033.png ; $1 / p ( \xi , \tau ) = p _ { 2 } ( \xi , \tau )$ ; confidence 0.950
 
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009033.png ; $1 / p ( \xi , \tau ) = p _ { 2 } ( \xi , \tau )$ ; confidence 0.950
Line 344: Line 344:
 
172. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016030.png ; $\mathcal{R} _ { \text{nd} } ( \Omega )$ ; confidence 0.950
 
172. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016030.png ; $\mathcal{R} _ { \text{nd} } ( \Omega )$ ; confidence 0.950
  
173. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004013.png ; $I ( u ) = \int _ { \Omega } F ( x , u ( x ) , \nabla u ( x ) , \ldots ) d x$ ; confidence 0.950
+
173. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004013.png ; $I ( u ) = \int _ { \Omega } F ( x , u ( x ) , \nabla u ( x ) , \ldots ) d x,$ ; confidence 0.950
  
 
174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026084.png ; $L ^ { 0 } ( \nu )$ ; confidence 0.950
 
174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026084.png ; $L ^ { 0 } ( \nu )$ ; confidence 0.950
Line 404: Line 404:
 
202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015047.png ; $\phi _ { X } ( Z ) = \int _ { X } \operatorname { etr } ( i Z X ^ { \prime } ) f _ { X } ( X ) d X$ ; confidence 0.950
 
202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015047.png ; $\phi _ { X } ( Z ) = \int _ { X } \operatorname { etr } ( i Z X ^ { \prime } ) f _ { X } ( X ) d X$ ; confidence 0.950
  
203. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300304.png ; $G = GL _ { 2 } / \mathbf{Q}$ ; confidence 0.950
+
203. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300304.png ; $G = \operatorname{GL} _ { 2 } / \mathbf{Q}$ ; confidence 0.950
  
 
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018023.png ; $\Gamma , \Delta \subseteq \text{Fm} _ { \mathcal{L} }$ ; confidence 0.950
 
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018023.png ; $\Gamma , \Delta \subseteq \text{Fm} _ { \mathcal{L} }$ ; confidence 0.950
Line 416: Line 416:
 
208. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202008.png ; $\lambda _ { r } > 0$ ; confidence 0.950
 
208. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202008.png ; $\lambda _ { r } > 0$ ; confidence 0.950
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007048.png ; $BS ( 2,3 )$ ; confidence 0.950
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007048.png ; $\operatorname{BS} ( 2,3 )$ ; confidence 0.950
  
 
210. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020106.png ; $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$ ; confidence 0.950
 
210. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020106.png ; $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$ ; confidence 0.950
Line 432: Line 432:
 
216. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003050.png ; $\{ w , v \} = \int \int _ { \Omega } [ A w ( x , y ) ] v ( x , y ) d x d y =$ ; confidence 0.949
 
216. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003050.png ; $\{ w , v \} = \int \int _ { \Omega } [ A w ( x , y ) ] v ( x , y ) d x d y =$ ; confidence 0.949
  
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210106.png ; $= z ^ { \lambda } \sum _ { j = 0 } ^ { \infty } z ^ { j } [ \sum _ { i + k = j } c _ { k } ( \lambda ) p _ { i } ( \lambda + k ) ] =$ ; confidence 0.949
+
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210106.png ; $= z ^ { \lambda } \sum _ { j = 0 } ^ { \infty } z ^ { j } \left[ \sum _ { i + k = j } c _ { k } ( \lambda ) p _ { i } ( \lambda + k ) \right] =$ ; confidence 0.949
  
 
218. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002038.png ; $x \varphi \preceq x \psi$ ; confidence 0.949
 
218. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002038.png ; $x \varphi \preceq x \psi$ ; confidence 0.949
Line 442: Line 442:
 
221. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b1102602.png ; $\rho / \lambda < 1$ ; confidence 0.949
 
221. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b1102602.png ; $\rho / \lambda < 1$ ; confidence 0.949
  
222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010037.png ; $\mathbf{G} = \frac { 1 } { c } \mathbf{E} \times \mathbf{B}$ ; confidence 0.949
+
222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010037.png ; $\mathbf{G} = \frac { 1 } { c } \mathbf{E} \times \mathbf{B},$ ; confidence 0.949
  
 
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620163.png ; $q ( x ) = \frac { - 8 \operatorname { sin } 2 x } { x } + 0 ( x ^ { - 2 } )$ ; confidence 0.949
 
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620163.png ; $q ( x ) = \frac { - 8 \operatorname { sin } 2 x } { x } + 0 ( x ^ { - 2 } )$ ; confidence 0.949
Line 456: Line 456:
 
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004043.png ; $\langle w , \zeta - z \rangle \neq 0$ ; confidence 0.949
 
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004043.png ; $\langle w , \zeta - z \rangle \neq 0$ ; confidence 0.949
  
229. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070128.png ; $= ( h (\, . \,  , y ) , h (\, . \, , x ) ) _ { \mathcal{H} }$ ; confidence 0.949
+
229. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070128.png ; $= ( h (\, . \,  , y ) , h (\, . \, , x ) ) _ { \mathcal{H} }.$ ; confidence 0.949
  
 
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040181.png ; $( x _ { n } ) \subset L _ { 1 }$ ; confidence 0.949
 
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040181.png ; $( x _ { n } ) \subset L _ { 1 }$ ; confidence 0.949
Line 536: Line 536:
 
268. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011022.png ; $( G , \| \, . \, \| )$ ; confidence 0.948
 
268. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011022.png ; $( G , \| \, . \, \| )$ ; confidence 0.948
  
269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f1201005.png ; $f ( \frac { a z + b } { c z + d } ) = ( c z + d ) ^ { k } f ( z ).$ ; confidence 0.948
+
269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f1201005.png ; $f \left( \frac { a z + b } { c z + d } \right) = ( c z + d ) ^ { k } f ( z ).$ ; confidence 0.948
  
 
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024098.png ; $[ H _ { f } ^ { 1 } ( K ; T ) : \mathbf{Z} _ { p } y ],$ ; confidence 0.948
 
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024098.png ; $[ H _ { f } ^ { 1 } ( K ; T ) : \mathbf{Z} _ { p } y ],$ ; confidence 0.948
Line 552: Line 552:
 
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $\mathcal{Z} = G / U ( 1 ) . K$ ; confidence 0.948
 
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $\mathcal{Z} = G / U ( 1 ) . K$ ; confidence 0.948
  
277. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
+
277. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $S ^ { 3 }$ ; confidence 0.948
  
 
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
 
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948

Revision as of 12:36, 4 April 2020

List

1. i130030158.png ; $\operatorname{ind} ( D ) \in K _ { 0 } ( C _ { r } ^ { * } ( \Gamma ) )$ ; confidence 0.954

2. v096900120.png ; $U \in A$ ; confidence 0.954

3. a12015061.png ; $U ( n ) / ( U ( n _ { 1 } ) \times \ldots \times U ( n _ { k } ) )$ ; confidence 0.954

4. i12005047.png ; $\beta ( n , \alpha , \theta ; T )$ ; confidence 0.954

5. b12005076.png ; $\mathcal{P} ( \square ^ { n } E )$ ; confidence 0.954

6. a13008032.png ; $\frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }.$ ; confidence 0.954

7. s12034096.png ; $\alpha _ { H } : X \rightarrow \mathbf{Z}$ ; confidence 0.954

8. f13009082.png ; $F _ { n , r } ^ { ( k ) } ( x )$ ; confidence 0.954

9. o13001074.png ; $x _ { 3 } = f ( x ^ { \prime } ) , x ^ { \prime } = ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.954

10. z13002045.png ; $F \subset G _ { \tau }$ ; confidence 0.954

11. b13023033.png ; $u \in V$ ; confidence 0.954

12. k055840353.png ; $B > 0$ ; confidence 0.954

13. b12052061.png ; $( B + u v ^ { T } ) ^ { - 1 } = ( I - \frac { ( B ^ { - 1 } u ) v ^ { T } } { 1 + v ^ { T } B ^ { - 1 } u } ) B ^ { - 1 }.$ ; confidence 0.954

14. v09690084.png ; $0 \leq T \leq S$ ; confidence 0.954

15. x1200205.png ; $Q = Q _ { s } ( R )$ ; confidence 0.954

16. i12005045.png ; $\{ T ( n , \alpha ) : n \in \mathbf{N} , 0 < \alpha < 1 \}$ ; confidence 0.954

17. c11020072.png ; $\lambda \in \Lambda$ ; confidence 0.954

18. f04049040.png ; $s _ { 1 } ^ { 2 } = \frac { 1 } { m - 1 } \sum _ { i } ( X _ { i } - \overline{X} ) ^ { 2 } \quad \text { and } \quad s _ { 2 } ^ { 2 } = \frac { 1 } { n - 1 } \sum _ { j } ( Y _ { j } - \overline{Y} ) ^ { 2 },$ ; confidence 0.954

19. a130050296.png ; $G _ { k , q }$ ; confidence 0.954

20. f12023066.png ; $P \in L ^ { 2 }_\text { skew } ( V ; V )$ ; confidence 0.954

21. h046010146.png ; $M _ { 0 } \times \mathbf{R} ^ { 1 } \approx M _ { 1 } \times \mathbf{R} ^ { 1 }$ ; confidence 0.954

22. v120020180.png ; $F ( x ) = r \circ t ^ { - 1 } ( x ).$ ; confidence 0.954

23. c12031025.png ; $C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.954

24. v13005037.png ; $V \rightarrow ( \text { End } V ) [ [ x , x ^ { - 1 } ] ]$ ; confidence 0.954

25. s13065025.png ; $c _ { \mu } = \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) d \theta$ ; confidence 0.954

26. d120230155.png ; $R _ { i } - Z _ { i } R _ { i } Z _ { i } ^ { * } = G _ { i } J G _ { i } ^ { * },$ ; confidence 0.954

27. d03033035.png ; $H ^ { * } ( X , \mathbf{C} )$ ; confidence 0.954

28. i13001050.png ; $\chi _ {( n )}$ ; confidence 0.954

29. j13007070.png ; $\omega = \eta$ ; confidence 0.954

30. r130080132.png ; $u = A w$ ; confidence 0.954

31. t120050105.png ; $f : \mathbf{R} ^ { 5 } \rightarrow \mathbf{R} ^ { 5 }$ ; confidence 0.954

32. w12003034.png ; $\operatorname { dens } ( P _ { \alpha } ( X ) ) \leq \operatorname { card } ( \alpha )$ ; confidence 0.954

33. a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953

34. h1200209.png ; $\{ \hat { \phi } ( j ) \} _ { j \geq 0 }$ ; confidence 0.953

35. s12023057.png ; $X K$ ; confidence 0.953

36. v12002059.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) \notin G$ ; confidence 0.953

37. t12008035.png ; $H > 3$ ; confidence 0.953

38. b110220142.png ; $X = \operatorname { Spec } ( K )$ ; confidence 0.953

39. c12026047.png ; $\| \Delta \mathbf{V} \| ^ { 2 } = \sum _ { j = 1 } ^ { J } h | \Delta V _ { j } | ^ { 2 }$ ; confidence 0.953

40. c13005018.png ; $g : x \rightarrow x g$ ; confidence 0.953

41. a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953

42. g12004092.png ; $P ( x , D ) u \in G ^ { S } ( U )$ ; confidence 0.953

43. z13012031.png ; $| p ^ { ( k ) } ( \xi ) |$ ; confidence 0.953

44. l120100103.png ; $N _ { E } ( V )$ ; confidence 0.953

45. b12009019.png ; $| k ( t ) | = 1$ ; confidence 0.953

46. w13008031.png ; $\overline { u } ( x , t ) = \frac { 1 } { 2 } \sum _ { i = 0 } ^ { 2 g } \lambda _ { i } - \sum _ { j = 0 } ^ { g } \alpha _ { j }.$ ; confidence 0.953

47. e12012064.png ; $f ( y | \mu , \Sigma , \nu ) \propto$ ; confidence 0.953

48. i13001015.png ; $d \lambda$ ; confidence 0.953

49. m1201206.png ; $f : \square _ { R } A \rightarrow \square _ { R } R$ ; confidence 0.953

50. b13009018.png ; $d ( u , \phi ) ( t ) = \operatorname { inf } \{ \| u - \phi ( x - v t - c ) \| _ { 1 } : c \in \mathbf{R} \}$ ; confidence 0.953

51. k13006046.png ; $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ ; confidence 0.953

52. d1301707.png ; $u = 0 \text { in } \partial \Omega,$ ; confidence 0.953

53. c13001040.png ; $c ( x , t )$ ; confidence 0.953

54. w13011036.png ; $H = 3$ ; confidence 0.953

55. b120150110.png ; $d : \mathbf{N} \cup \{ 0 \} \rightarrow \mathbf{R}$ ; confidence 0.953

56. i13007010.png ; $q ( x ) \in L ^ { 2 }_\text { loc } ( \mathbf{R} ^ { 3 } ),$ ; confidence 0.953

57. l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953

58. f12017016.png ; $m _ { 1 } \neq 0$ ; confidence 0.953

59. r08232035.png ; $1 / \rho ^ { n - 2 }$ ; confidence 0.953

60. b13016052.png ; $C ( X , \tau ) : = \{ f \in C ( X ) : f ( \tau ( x ) ) = \overline { f ( x ) } , \forall x \in X \}.$ ; confidence 0.953

61. c12028024.png ; $A \otimes B$ ; confidence 0.953

62. f120110179.png ; $S _ { \infty } ^ { n - 1 } \times S ^ { n - 1 }$ ; confidence 0.953

63. a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953

64. v096900179.png ; $\zeta \in Z$ ; confidence 0.953

65. s13065053.png ; $S _ { k } ( 0 ) \in \mathbf{D}$ ; confidence 0.953

66. b13002085.png ; $J = H$ ; confidence 0.953

67. s13002044.png ; $u = g _ { t } ( v )$ ; confidence 0.953

68. y1200401.png ; $\nu = \{ \nu _ { X } \} _ { X \in \Omega }$ ; confidence 0.953

69. e120010117.png ; $e : X \rightarrow G B$ ; confidence 0.953

70. i1300104.png ; $d _ { \chi } ^ { G } : \mathbf{C} ^ { n \times n } \rightarrow \mathbf{C}$ ; confidence 0.953

71. f12010059.png ; $j = 1728 J$ ; confidence 0.952

72. e1200806.png ; $\alpha : T A \rightarrow A$ ; confidence 0.952

73. k12005067.png ; $0 < - ( K _ { X } + B ) , g ( \mathbf{P} ^ { 1 } ) \leq 2 d$ ; confidence 0.952

74. e12023022.png ; $\sigma : M \rightarrow E$ ; confidence 0.952

75. b130200127.png ; $\operatorname{dim} G _ { i } < \infty$ ; confidence 0.952

76. e120240110.png ; $H ^ { 1 } ( G ( \overline { \mathbf{Q} } / \mathbf{Q} ( \xi _ { L } ) ) ; T ( k - r ) ),$ ; confidence 0.952

77. d1200207.png ; $( u _ { 1 } ^ { * } , u _ { 2 } ^ { * } )$ ; confidence 0.952

78. h12002046.png ; $\mathcal{P}_ {-}$ ; confidence 0.952

79. f13029088.png ; $( Y , \mathcal{S} )$ ; confidence 0.952

80. i13005029.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 ) , x \rightarrow \infty ,$ ; confidence 0.952

81. d13018083.png ; $\alpha \mapsto \operatorname { sup } \{ \| f g _ { \alpha } \| / \| f \| : f \in I _ { E } \}$ ; confidence 0.952

82. o13005064.png ; $H : \mathfrak { F } \rightarrow \mathfrak { G }$ ; confidence 0.952

83. b12004042.png ; $\| f \| = \| g \|$ ; confidence 0.952

84. s1301309.png ; $\operatorname { char } ( F ) = 0$ ; confidence 0.952

85. j120020105.png ; $\| \varphi \| _ { * } \leq 1$ ; confidence 0.952

86. n067520276.png ; $F ( A ) h _ { 0 }$ ; confidence 0.952

87. a130240135.png ; $\mathbf{A}$ ; confidence 0.952

88. j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952

89. f130290175.png ; $\mathbf{R} ( M )$ ; confidence 0.952

90. w1201304.png ; $\sigma _ { c } ( T )$ ; confidence 0.952

91. a01012074.png ; $R > 1$ ; confidence 0.952

92. k13005010.png ; $f ( x , v , t )$ ; confidence 0.952

93. q12008016.png ; $\textsf{E} [ T _ { p } ]$ ; confidence 0.952

94. k12008025.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) - ( f ) )$ ; confidence 0.952

95. b1301708.png ; $d _ { 2 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r - \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }.$ ; confidence 0.952

96. e120190114.png ; $d ( x , m ) = \rho$ ; confidence 0.952

97. b11002034.png ; $U \times V$ ; confidence 0.952

98. n067520208.png ; $\epsilon _ { p + 1 } = \ldots = \epsilon _ { r } = - 1$ ; confidence 0.952

99. m13013087.png ; $\prod _ { i , j } l _ { i j } ^ { m _ { i j } }$ ; confidence 0.952

100. n067520290.png ; $U : \mathcal{H} \rightarrow \mathcal{L} _ { \rho } ^ { 2 }$ ; confidence 0.952

101. m1101106.png ; $0 \leq n \leq q$ ; confidence 0.952

102. p13013064.png ; $\zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in \text{SP} ^ { - } ( n ).$ ; confidence 0.952

103. w13007014.png ; $\Delta^{-}$ ; confidence 0.952

104. h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952

105. b01737053.png ; $\alpha < 1$ ; confidence 0.952

106. i1200107.png ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t = \infty$ ; confidence 0.952

107. r13005024.png ; $g : h \mapsto g h$ ; confidence 0.952

108. g12005025.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) = 0$ ; confidence 0.952

109. l12009076.png ; $\hbar \neq 0$ ; confidence 0.952

110. i13006094.png ; $\Gamma _ { 2 x } ( 2 x , 0 )$ ; confidence 0.952

111. t09356046.png ; $\mathfrak { N } _ { f } / N _ { f }$ ; confidence 0.952

112. t12006028.png ; $\rho \in L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.951

113. c120170158.png ; $k \leq [ n / 2 ] + 1$ ; confidence 0.951

114. d11008041.png ; $\delta ( w | v ) = d ( w | v )$ ; confidence 0.951

115. m12011035.png ; $\cup S ^ { n } \subset S ^ { n + 2 }$ ; confidence 0.951

116. k055840340.png ; $[ x , y ] = ( G x , y )$ ; confidence 0.951

117. c120300119.png ; $O _ { \infty }$ ; confidence 0.951

118. t12020037.png ; $g _ { 1 } ( k )$ ; confidence 0.951

119. l11003034.png ; $L _ { 1 } ( \mathcal{E} )$ ; confidence 0.951

120. m130260243.png ; $I ( B )$ ; confidence 0.951

121. n13006017.png ; $\mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x },$ ; confidence 0.951

122. i130090168.png ; $\zeta \in \mu _ { p ^ \infty}$ ; confidence 0.951

123. e03500060.png ; $B ( y _ { i } , \epsilon ) \cap B ( y _ { j } , \epsilon ) = \emptyset$ ; confidence 0.951

124. a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951

125. m12007055.png ; $\theta _ { 0 } = 1.3247 \ldots > 1$ ; confidence 0.951

126. f13019031.png ; $L u = \operatorname { sin } ( x ) \frac { d ^ { 2 } u } { d x ^ { 2 } } - ( \frac { d u } { d x } ) ^ { 2 }$ ; confidence 0.951

127. s12004055.png ; $s _ { \lambda ^ { \prime } } = \operatorname { det } ( e _ { \lambda _ { i } - i + j } ).$ ; confidence 0.951

128. b12009014.png ; $| u | < 1$ ; confidence 0.951

129. z13012030.png ; $Z _ { n } ( x ; - \sigma ) = ( - 1 ) ^ { n } Z _ { n } ( - x ; \sigma )$ ; confidence 0.951

130. m13020048.png ; $T ^ { * } \mathbf{R} ^ { 3 }$ ; confidence 0.951

131. k12007020.png ; $\mathcal{R} ( t ) = I$ ; confidence 0.951

132. a0116208.png ; $p = \infty$ ; confidence 0.951

133. s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951

134. s1304903.png ; $r : P \rightarrow \mathbf{N}$ ; confidence 0.951

135. h0460104.png ; $M _ { 0 } , M _ { 1 }$ ; confidence 0.951

136. h12012081.png ; $f _ { \infty } = f - \Sigma _ { \infty } \phi$ ; confidence 0.951

137. e13003035.png ; $\mathcal{C} _ { C } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.951

138. q12005025.png ; $x ^ { k + 1 } = x ^ { k } + \alpha _ { k } d ^ { k }$ ; confidence 0.951

139. t12001061.png ; $\Gamma \subset \operatorname{SU} ( 2 )$ ; confidence 0.951

140. m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951

141. h13012027.png ; $x , y \in E _ { 1 }$ ; confidence 0.951

142. d13018045.png ; $E _ { 1 } \cap E _ { 2 }$ ; confidence 0.951

143. b110220102.png ; $( X _ { \text{C} } , A ( j ) )$ ; confidence 0.951

144. i1300608.png ; $L _ { 1,1 } : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty , q = \overline { q } \right\},$ ; confidence 0.951

145. j13002040.png ; $\lambda = \left( \begin{array} { l } { n } \\ { 3 } \end{array} \right) p ^ { 3 }$ ; confidence 0.951

146. d12011023.png ; $\| \, . \, \| : G \rightarrow [ 0 , + \infty )$ ; confidence 0.951

147. v11005030.png ; $H ^ { \infty } + C = \{ f + g : f \in H ^ { \infty } , g \in C \}$ ; confidence 0.951

148. a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951

149. b13019056.png ; $\mathcal{L} = \mathcal{L} _ { k , q }$ ; confidence 0.951

150. z13003029.png ; $\theta _ { 3 } ( z , q ) = \sum _ { k = - \infty } ^ { \infty } q ^ { k ^ { 2 } } e ^ { - 2 \pi i k z }.$ ; confidence 0.951

151. w12010012.png ; $\nabla T$ ; confidence 0.951

152. l120170131.png ; $K ^ { 2 } \times I$ ; confidence 0.951

153. s120340171.png ; $H : \Sigma \times M \rightarrow \mathbf{R}$ ; confidence 0.951

154. l11003038.png ; $L _ { 2 } ( \mathcal{E} )$ ; confidence 0.951

155. e12016048.png ; $J \mapsto J ^ { \prime }$ ; confidence 0.951

156. c1202705.png ; $p \in \Omega$ ; confidence 0.951

157. i130060163.png ; $f ( x , k ) = e ^ { i k x } + \int _ { x } ^ { \infty } A ( x , y ) e ^ { i k y } d y$ ; confidence 0.951

158. a1302506.png ; $\{ x y z \} = \{ y x z \},$ ; confidence 0.951

159. f120080161.png ; $\mathcal{L} ( L _ { q } ( X ) )$ ; confidence 0.951

160. r08232043.png ; $J ( 0 ) = u ( x _ { 0 } )$ ; confidence 0.951

161. l057000145.png ; $\Gamma \vdash M : ( \sigma \rightarrow \tau )$ ; confidence 0.951

162. m13013028.png ; $\tau ( G )$ ; confidence 0.950

163. d03225028.png ; $k + 2$ ; confidence 0.950

164. e13006044.png ; $W ( t , U ) = \{ f \in \mathcal{A} ( X , Y ) : f t ( A ) \subseteq U \}$ ; confidence 0.950

165. d13021025.png ; $x \rightarrow G ( x , \alpha ).$ ; confidence 0.950

166. s09067038.png ; $\operatorname{GL} ^ { k } ( u )$ ; confidence 0.950

167. b12009033.png ; $1 / p ( \xi , \tau ) = p _ { 2 } ( \xi , \tau )$ ; confidence 0.950

168. a13032057.png ; $\theta = p$ ; confidence 0.950

169. s13059012.png ; $\Lambda = \cup _ { n = 0 } ^ { \infty } \Lambda _ { n }$ ; confidence 0.950

170. s130510142.png ; $\infty ( L _ { 1 } )$ ; confidence 0.950

171. e13006051.png ; $\omega \notin X$ ; confidence 0.950

172. r13016030.png ; $\mathcal{R} _ { \text{nd} } ( \Omega )$ ; confidence 0.950

173. y12004013.png ; $I ( u ) = \int _ { \Omega } F ( x , u ( x ) , \nabla u ( x ) , \ldots ) d x,$ ; confidence 0.950

174. e12026084.png ; $L ^ { 0 } ( \nu )$ ; confidence 0.950

175. b11106060.png ; $\| \phi \|$ ; confidence 0.950

176. e03500049.png ; $r < n$ ; confidence 0.950

177. a13026022.png ; $p \geq 5$ ; confidence 0.950

178. v13011037.png ; $U = \frac { \Gamma } { 2 l } \operatorname { coth } \frac { \pi b } { l },$ ; confidence 0.950

179. s13059049.png ; $\sum d _ { n }$ ; confidence 0.950

180. d13003014.png ; $\exists \lambda > 0 \forall N \in \mathbf{N} , N > 2 : \psi _ { N } \in C ^ { \lambda N }.$ ; confidence 0.950

181. y12001040.png ; $A \otimes _ { k } A$ ; confidence 0.950

182. c120180335.png ; $C ( g )$ ; confidence 0.950

183. a01317021.png ; $x \leq 0$ ; confidence 0.950

184. n12012078.png ; $F ^ { 4 }$ ; confidence 0.950

185. a13006083.png ; $\overline { H }$ ; confidence 0.950

186. b12030013.png ; $q \in \mathbf{Z} ^ { N }$ ; confidence 0.950

187. h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950

188. p12013036.png ; $S ^ { \prime } = S ^ { ( 1 ) }$ ; confidence 0.950

189. a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s,$ ; confidence 0.950

190. m12019016.png ; $k = - 1 / 2$ ; confidence 0.950

191. b12051019.png ; $f ( x _ { c } + \lambda d ) \leq f ( x _ { c } ) + \alpha \lambda d ^ { T } \nabla f ( x _ { c } )$ ; confidence 0.950

192. b12051025.png ; $f ( x _ { c } + \lambda d ) < f ( x _ { c } )$ ; confidence 0.950

193. e03667019.png ; $s > s 0$ ; confidence 0.950

194. a12023087.png ; $C R$ ; confidence 0.950

195. a11079040.png ; $T > 0$ ; confidence 0.950

196. m13025050.png ; $( \varphi u ) ( \varphi v ) = F ^ { - 1 } ( F ( \varphi u ) ^ { * } F ( \varphi v ) )$ ; confidence 0.950

197. n12011032.png ; $\xi _ { i } ( y ) > 0$ ; confidence 0.950

198. o12005059.png ; $\Lambda _ { \varphi , w } ^ { * }$ ; confidence 0.950

199. m13013081.png ; $1 \leq i \leq \nu$ ; confidence 0.950

200. f12023071.png ; $\delta _ { P } ( A ) + [ A , A ] ^ { \wedge } / 2 = 0$ ; confidence 0.950

201. s13002030.png ; $I ( \gamma ) \subset R$ ; confidence 0.950

202. m12015047.png ; $\phi _ { X } ( Z ) = \int _ { X } \operatorname { etr } ( i Z X ^ { \prime } ) f _ { X } ( X ) d X$ ; confidence 0.950

203. e1300304.png ; $G = \operatorname{GL} _ { 2 } / \mathbf{Q}$ ; confidence 0.950

204. a13018023.png ; $\Gamma , \Delta \subseteq \text{Fm} _ { \mathcal{L} }$ ; confidence 0.950

205. b12017044.png ; $L _ { \alpha } ^ { p } = F _ { \alpha } ^ { p , 2 }$ ; confidence 0.950

206. l12007018.png ; $v _ { t } = L ^ { t } v _ { 0 }$ ; confidence 0.950

207. r1301207.png ; $[ x , y ] = \{ u \in E : x \prec u \prec y \}$ ; confidence 0.950

208. s1202008.png ; $\lambda _ { r } > 0$ ; confidence 0.950

209. b13007048.png ; $\operatorname{BS} ( 2,3 )$ ; confidence 0.950

210. v120020106.png ; $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$ ; confidence 0.950

211. e120070134.png ; $\tilde { H } _ { 1 }$ ; confidence 0.950

212. b13026072.png ; $\Delta \backslash f ( \partial \Omega )$ ; confidence 0.950

213. j120020222.png ; $\lambda ( S ) \leq K. h$ ; confidence 0.950

214. i13003040.png ; $\text{ind}_{ g } ( P )$ ; confidence 0.950

215. m13026070.png ; $( a \lambda )$ ; confidence 0.950

216. n13003050.png ; $\{ w , v \} = \int \int _ { \Omega } [ A w ( x , y ) ] v ( x , y ) d x d y =$ ; confidence 0.949

217. f120210106.png ; $= z ^ { \lambda } \sum _ { j = 0 } ^ { \infty } z ^ { j } \left[ \sum _ { i + k = j } c _ { k } ( \lambda ) p _ { i } ( \lambda + k ) \right] =$ ; confidence 0.949

218. l11002038.png ; $x \varphi \preceq x \psi$ ; confidence 0.949

219. f120150215.png ; $A \in \Phi _ { - } ( D ( A ) , Y )$ ; confidence 0.949

220. c130070148.png ; $k ( C )$ ; confidence 0.949

221. b1102602.png ; $\rho / \lambda < 1$ ; confidence 0.949

222. e12010037.png ; $\mathbf{G} = \frac { 1 } { c } \mathbf{E} \times \mathbf{B},$ ; confidence 0.949

223. s130620163.png ; $q ( x ) = \frac { - 8 \operatorname { sin } 2 x } { x } + 0 ( x ^ { - 2 } )$ ; confidence 0.949

224. d13006065.png ; $\downarrow$ ; confidence 0.949

225. c11040011.png ; $H x \preceq H y$ ; confidence 0.949

226. a130040800.png ; $g : \mathbf{B} \mapsto \mathbf{D}$ ; confidence 0.949

227. e13005013.png ; $( x - y ) ^ { - a }$ ; confidence 0.949

228. c12004043.png ; $\langle w , \zeta - z \rangle \neq 0$ ; confidence 0.949

229. r130070128.png ; $= ( h (\, . \, , y ) , h (\, . \, , x ) ) _ { \mathcal{H} }.$ ; confidence 0.949

230. b120040181.png ; $( x _ { n } ) \subset L _ { 1 }$ ; confidence 0.949

231. s13036010.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \text{l} _ { t } , t \geq 0,$ ; confidence 0.949

232. f04049041.png ; $\overline{X} = \sum _ { i } X _ { i } / m$ ; confidence 0.949

233. q13003016.png ; $1 - P _ { 0 } ^ { ( 1 ) }$ ; confidence 0.949

234. a13029086.png ; $\cong QH ^ { * } ( \mathcal{M} ( Q ) ).$ ; confidence 0.949

235. p13010055.png ; $H ^ { p } ( K , \mathbf{C} )$ ; confidence 0.949

236. o13008062.png ; $( l _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$ ; confidence 0.949

237. f12010068.png ; $L ( s ) = \sum _ { n = 1 } ^ { \infty } c ( n ) n ^ { - s } , \operatorname { Re } s > k.$ ; confidence 0.949

238. l13004018.png ; $\operatorname{Inn} \, \operatorname{Der}A$ ; confidence 0.949

239. h13012035.png ; $p \neq 1$ ; confidence 0.949

240. s120050110.png ; $S _ { 0 } ( z )$ ; confidence 0.949

241. b01535096.png ; $A \subset X$ ; confidence 0.949

242. d12020012.png ; $\zeta ( s ) = \sum _ { m \leq x } m ^ { - s } + \frac { x ^ { 1 - s } } { s - 1 } + O ( x ^ { - \sigma } )$ ; confidence 0.949

243. s13047014.png ; $N ( ( T - \lambda I ) ^ { n } )$ ; confidence 0.949

244. m12013016.png ; $0 < K \leq C$ ; confidence 0.949

245. a01201092.png ; $k > 0$ ; confidence 0.949

246. b12016067.png ; $s = x _ { 1 } + x _ { 2 } + x _ { 3 }$ ; confidence 0.949

247. g120040115.png ; $s > m / ( m - 1 )$ ; confidence 0.949

248. w13009084.png ; $g \in C ^ { \prime }$ ; confidence 0.949

249. l1201009.png ; $V _ { - } ( x ) : = \operatorname { max } \{ - V ( x ) , 0 \}$ ; confidence 0.949

250. e03550047.png ; $\xi ^ { \prime }$ ; confidence 0.949

251. l12006019.png ; $f \in \mathcal{H}$ ; confidence 0.949

252. i13005062.png ; $\left\{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : 1 \leq j \leq J \right\}$ ; confidence 0.949

253. a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s;$ ; confidence 0.948

254. a13022017.png ; $h : Z \rightarrow C$ ; confidence 0.948

255. h04773078.png ; $s > r$ ; confidence 0.948

256. t12006090.png ; $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$ ; confidence 0.948

257. t120200203.png ; $I = [ m + 1 , m + ( n + k ) ( 3 + \pi / k ) ]$ ; confidence 0.948

258. m13013053.png ; $\nu ^ { 2 } \tau ( G ) = \operatorname { det } ( J + L )$ ; confidence 0.948

259. b12004015.png ; $\| x \| \leq \| y \|$ ; confidence 0.948

260. i13009051.png ; $1 + r _ { 2 } ( k ) + \delta _ { p } ( k )$ ; confidence 0.948

261. s12032070.png ; $p | q$ ; confidence 0.948

262. d03128042.png ; $Z \rightarrow X$ ; confidence 0.948

263. m120100144.png ; $\mathbf{S} ^ { 3 } \times \mathbf{S} ^ { 1 }$ ; confidence 0.948

264. m13011083.png ; $D \mathbf{v} / D t$ ; confidence 0.948

265. i13007055.png ; $u : = u ( x , y ) : = u ( x , y , k _ { 0 } )$ ; confidence 0.948

266. s13048037.png ; $H _ { S } ^ { 1 } ( D ) = \text { coker } D$ ; confidence 0.948

267. c12017012.png ; $\gamma = ( \gamma _ { i j } ) _ { i , j \geq 0 }$ ; confidence 0.948

268. d12011022.png ; $( G , \| \, . \, \| )$ ; confidence 0.948

269. f1201005.png ; $f \left( \frac { a z + b } { c z + d } \right) = ( c z + d ) ^ { k } f ( z ).$ ; confidence 0.948

270. e12024098.png ; $[ H _ { f } ^ { 1 } ( K ; T ) : \mathbf{Z} _ { p } y ],$ ; confidence 0.948

271. i13003010.png ; $\operatorname{ind} ( P )$ ; confidence 0.948

272. c13009038.png ; $O ( N )$ ; confidence 0.948

273. a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0,$ ; confidence 0.948

274. c12030017.png ; $S , S ^ { \prime } \in \mathcal{H}$ ; confidence 0.948

275. t12006092.png ; $N = \lambda Z$ ; confidence 0.948

276. t120010101.png ; $\mathcal{Z} = G / U ( 1 ) . K$ ; confidence 0.948

277. t12001064.png ; $S ^ { 3 }$ ; confidence 0.948

278. b12014039.png ; $a ( z )$ ; confidence 0.948

279. i130060139.png ; $q ( x ) \in L _ { 1,1 } \cap L ^ { 2 } ( \mathbf{R} _ { + } )$ ; confidence 0.948

280. o130060160.png ; $V _ { \mathcal{X} }$ ; confidence 0.948

281. c12026063.png ; $C = 1$ ; confidence 0.948

282. e12009022.png ; $F _ { \mu \nu } = g _ { \mu \alpha } g _ { \nu \beta } F ^ { \alpha \beta }$ ; confidence 0.948

283. l12004096.png ; $t = 0.20$ ; confidence 0.948

284. c12026033.png ; $\| \mathbf{V} \| ^ { 2 } = \sum _ { j = 1 } ^ { J - 1 } h | V _ { j } | ^ { 2 }$ ; confidence 0.948

285. t12013075.png ; $\operatorname { Jac } ( C )$ ; confidence 0.948

286. h12003012.png ; $T ^ { * } M \otimes \varphi ^ { - 1 } T N$ ; confidence 0.948

287. n067520308.png ; $L _ { 2 } ( M , \sigma )$ ; confidence 0.948

288. c021620447.png ; $B \subset E$ ; confidence 0.948

289. m12023036.png ; $g ( y ) \geq g ( x ) + \langle y - x , \xi \rangle$ ; confidence 0.948

290. c120180497.png ; $( x , r )$ ; confidence 0.948

291. t120200174.png ; $A = \frac { 1 } { 6 n } \operatorname { min } _ { n \leq x \leq 2 n } \left( \frac { x } { 4 e ( m + x ) } \right) ^ { x } \left| \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } \right|.$ ; confidence 0.948

292. l12005028.png ; $\sqrt { 2 / \pi } F ( \tau ) G ( \tau )$ ; confidence 0.948

293. b01695026.png ; $p ( n )$ ; confidence 0.948

294. x12003024.png ; $f ( x ) = - \frac { 1 } { \pi } \int _ { 0 } ^ { \infty } \frac { d F _ { x } ( q ) } { q }.$ ; confidence 0.948

295. s13048013.png ; $\alpha _ { 1 } = \beta$ ; confidence 0.948

296. b13012022.png ; $\sum _ { k } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.948

297. x12001083.png ; $\mathbf{C} _ { S } ( R ) = \mathbf{C} _ { S } ( Q )$ ; confidence 0.948

298. d03024023.png ; $f _{( r - 1 )} ( x _ { 0 } )$ ; confidence 0.948

299. h12002060.png ; $\phi \in H ^ { \infty } + C$ ; confidence 0.948

300. a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/27. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/27&oldid=45133