Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/16"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 16 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003097.png ; $H _ { E } ^ { * } X = H ^ { * } B E \otimes _ { F p } H ^ { * } X ^ { E }$ ; confidence 0.315
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290191.png ; $\mathfrak { M } = R _ { + }$ ; confidence 0.991
  
2. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001015.png ; $S _ { B } ( f ; x ) = \sum _ { k \in B } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.646
+
2. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002014.png ; $\| \phi \| = 1 - \frac { m } { r } + O ( r ^ { - 2 } ) , \| D _ { A } \phi \| = O ( r ^ { - 2 } ).$ ; confidence 0.991
  
3. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006088.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 ) \neq ( 0 , \ldots , 0 )$ ; confidence 0.197
+
3. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q1200502.png ; $x ^ { k + 1 } = x ^ { k } - [ D F ( x ^ { k } ) ] ^ { - 1 } F ( x ^ { k } ),$ ; confidence 0.991
  
4. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013026.png ; $f _ { 1 } , \dots , f _ { m } \in Q ( X _ { 1 } , \dots , X _ { n } )$ ; confidence 0.382
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006049.png ; $E \rightarrow 0$ ; confidence 0.991
  
5. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013082.png ; $f _ { 1 } , \dots , f _ { m } \in Z [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.237
+
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e1201407.png ; $\rho ( f )$ ; confidence 0.991
  
6. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170211.png ; $K ^ { * } \rightarrow \overline { K } \rightarrow K$ ; confidence 0.964
+
6. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900155.png ; $f = \sum _ { p } f _ { p }$ ; confidence 0.991
  
7. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019050.png ; $| X _ { A } ( t , z ) | \leq \beta _ { e } ^ { - \alpha ( t - z ) }$ ; confidence 0.470
+
7. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044017.png ; $D D X \simeq X$ ; confidence 0.991
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200704.png ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { x } ) |$ ; confidence 0.570
+
8. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001050.png ; $C ( n , d ) > 0$ ; confidence 0.991
  
9. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011045.png ; $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = Z$ ; confidence 0.732
+
9. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006019.png ; $u \in H ^ { 1 } ( \Omega )$ ; confidence 0.991
  
10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016049.png ; $\operatorname { cov } ( X ) = c \Sigma \otimes \Phi$ ; confidence 0.806
+
10. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003036.png ; $( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.991
  
11. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377012.png ; $x ^ { ( x ) } + a _ { x } - 1 z ^ { ( x - 1 ) } + \ldots + a _ { 0 } x = 0$ ; confidence 0.204
+
11. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025064.png ; $\operatorname { cot } \omega = \operatorname { cot } \alpha + \operatorname { cot } \beta + \operatorname { cot } \gamma,$ ; confidence 0.991
  
12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019043.png ; $\phi _ { n } ( z ) = M _ { n } ( z ) / \sqrt { M _ { n } - 1 } M _ { n }$ ; confidence 0.417
+
12. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001010.png ; $\alpha ( Z ) = 1$ ; confidence 0.991
  
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019027.png ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687
+
13. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006031.png ; $\mathcal{C} ( Y , X )$ ; confidence 0.991
  
14. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024011.png ; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi y d y$ ; confidence 0.944
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110052.png ; $A ^ { \prime }$ ; confidence 0.991
  
15. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025069.png ; $( \sigma _ { \varepsilon } ) _ { \varepsilon > 0 } \}$ ; confidence 0.965
+
15. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120159.png ; $T ( \nabla ) _ { \infty } : ( T ( H ( Y ) ) , \partial _ { \infty } ) \rightarrow \overline { B } ( Y )$ ; confidence 0.991
  
16. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006014.png ; $0 = \mu _ { 1 } ( \Omega ) \leq \mu _ { 2 } ( \Omega ) \leq$ ; confidence 0.992
+
16. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011026.png ; $\sigma ( \Gamma ) \subseteq B ( 0 , r )$ ; confidence 0.991
  
17. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663037.png ; $H _ { p } ^ { \prime } ( M _ { 1 } , \dots , M _ { n } ; \Omega )$ ; confidence 0.233
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070113.png ; $L ^ { p } ( \Omega )$ ; confidence 0.991
  
18. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520460.png ; $\{ Y : y _ { i } = 0 , \square i = i _ { 1 } , \dots , i _ { l } \}$ ; confidence 0.362
+
18. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006017.png ; $\rho ( x ) \geq 0$ ; confidence 0.991
  
19. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010120.png ; $i : \overline { H } ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ ; confidence 0.834
+
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046048.png ; $V _ { H } f$ ; confidence 0.991
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002011.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { D } ) ^ { T }$ ; confidence 0.735
+
20. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003032.png ; $\Lambda _ { + } ^ { 2 }$ ; confidence 0.991
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011028.png ; $\mathfrak { S } _ { w } \in Z [ x _ { 1 } , x _ { 2 } , \ldots ]$ ; confidence 0.153
+
21. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016013.png ; $\psi : [ 0 , \infty ) \rightarrow \mathbf{R}$ ; confidence 0.991
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014011.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { 2 m } )$ ; confidence 0.646
+
22. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016090.png ; $q ( \phi )$ ; confidence 0.991
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304803.png ; $D : \Gamma ( \alpha ) \rightarrow \Gamma ( \beta )$ ; confidence 0.998
+
23. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004016.png ; $\Delta ( G ) \leq \chi ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.991
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023035.png ; $O ( p , n ) = \{ H ( p \times n ) : H H ^ { \prime } = I _ { p } \}$ ; confidence 0.974
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029026.png ; $\operatorname { lim } _ { t \rightarrow \pm \infty } u ( s , t ) = x ^ { \pm }$ ; confidence 0.991
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024020.png ; $h * ( X _ { k } ) = h * ( \text { varprojlim } _ { k } X _ { k } )$ ; confidence 0.467
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290132.png ; $d = \operatorname { dim } A \geq 1$ ; confidence 0.991
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026021.png ; $D _ { t } f = ( ( n + 1 ) f ^ { ( n + 1 ) } ( t , . ) ) _ { n \in N _ { 0 } }$ ; confidence 0.300
+
26. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500065.png ; $\operatorname{log} M ( C , \epsilon )$ ; confidence 0.991
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620207.png ; $| q ( x ) | \leq \operatorname { const } / x ^ { \beta }$ ; confidence 0.452
+
27. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090185.png ; $G _ { \chi } ( T ) \in \mathbf{Z} _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.991
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320123.png ; $\operatorname { ev } _ { X } ( 1 \otimes \xi _ { i } ) = 0$ ; confidence 0.334
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059021.png ; $L ( z ) \geq 0$ ; confidence 0.991
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002015.png ; $T ^ { - } = \cap _ { N \geq 0 } \sigma ( X _ { n } : n \leq - N )$ ; confidence 0.528
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017040.png ; $\phi _ { t } = \phi ( t , S _ { t } )$ ; confidence 0.991
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005018.png ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028085.png ; $\phi _ { t } ( A ) = U _ { t } A V _ { - t }$ ; confidence 0.991
  
31. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050154.png ; $\sigma _ { Te } ( A , H ) = \sigma _ { T } ( L _ { i * } , Q ( H ) )$ ; confidence 0.056
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008080.png ; $n = 3$ ; confidence 0.991
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003017.png ; $\| \varphi \| = \int \int _ { R } | \varphi ( z ) | d x d y$ ; confidence 0.998
+
32. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013017.png ; $0 < \lambda \in \mathbf{Z} ( \theta )$ ; confidence 0.991
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006099.png ; $\rho _ { \text { atom } } ^ { TF } ( x ; N = \lambda Z , Z ) =$ ; confidence 0.409
+
33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019015.png ; $\rho = \sum \lambda _ { i } P _ { i } , \quad 0 \leq \lambda _ { i } \leq 1 , \sum \lambda _ { i } = 1$ ; confidence 0.991
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006034.png ; $( x ) = V ( x ) - \int _ { R ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y$ ; confidence 0.459
+
34. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003027.png ; $1 \mapsto 10$ ; confidence 0.991
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060118.png ; $\int _ { R ^ { 3 } } | \nabla \sqrt { \rho ( x ) } | ^ { 2 } d x$ ; confidence 0.395
+
35. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130123.png ; $( L _ { 0 } \approx 0 )$ ; confidence 0.991
  
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006031.png ; $[ \alpha ] + = \operatorname { max } \{ 0 , \alpha \}$ ; confidence 0.686
+
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070121.png ; $\eta ( q ) = q ^ { 1 / 24 } \prod _ { i = 1 } ^ { \infty } ( 1 - q ^ { i } )$ ; confidence 0.991
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007056.png ; $\operatorname { Tr } ( g | V _ { N } ) = \alpha _ { N } ( g )$ ; confidence 0.236
+
37. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040124.png ; $1 \leq s \leq m / ( m - 1 )$ ; confidence 0.991
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301303.png ; $p \cdot \operatorname { dim } _ { \Lambda } T \leq 1$ ; confidence 0.223
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028062.png ; $H ^ { n + 1 } ( G , A )$ ; confidence 0.991
  
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200214.png ; $G _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } P _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.978
+
39. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023095.png ; $[ \mathcal{L} ( K ) , \mathcal{L} ( L ) ] = \mathcal{L} ( [ K , L ] )$ ; confidence 0.991
  
40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020053.png ; $h ( m , k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } w _ { j }$ ; confidence 0.534
+
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023068.png ; $P + A$ ; confidence 0.991
  
41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200236.png ; $j | z _ { j } | = \operatorname { min } _ { j } | w _ { j } | = 1$ ; confidence 0.797
+
41. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006071.png ; $\| V \| _ { 2 } = \| V ^ { - 1 } \| _ { 2 } = 1$ ; confidence 0.991
  
42. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v0960403.png ; $X = \sum _ { i = 1 } ^ { m } \Psi ( \frac { s ( n ) } { m + n + 1 } )$ ; confidence 0.719
+
42. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008017.png ; $z = x + i y = r e ^ { i \theta }$ ; confidence 0.991
  
43. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020151.png ; $\operatorname { rd } \chi ( N _ { K } ( F ) ) \leq n - k - 2$ ; confidence 0.313
+
43. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002019.png ; $L ( \pi + x ) = \pi \operatorname { ln } 2 + L ( x ).$ ; confidence 0.991
  
44. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007016.png ; $( \vec { n } \cdot \nabla \phi ) = U \vec { n } \vec { x }$ ; confidence 0.518
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001087.png ; $z \mapsto ( z - \sqrt { - 1 } ) / ( z + \sqrt { - 1 } )$ ; confidence 0.991
  
45. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004051.png ; $\chi ^ { \prime } ( G ) \leq \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.994
+
45. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b017400141.png ; $( x , t )$ ; confidence 0.991
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w1200204.png ; $l _ { 1 } ( P , Q ) = \operatorname { inf } \{ E d ( X , Y ) \}$ ; confidence 0.246
+
46. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080138.png ; $\sigma ( F ^ { \prime } ( c ) ) \subset \Delta \cup \{ 1 \}$ ; confidence 0.991
  
47. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010025.png ; $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.769
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610124.png ; $K ( Y )$ ; confidence 0.991
  
48. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060146.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574
+
48. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354031.png ; $1 / p$ ; confidence 0.991
  
49. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011047.png ; $\underline { \Xi } = ( \overline { x } , \hat { \xi } )$ ; confidence 0.108
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470110.png ; $\{ x _ { i } \}$ ; confidence 0.991
  
50. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110216.png ; $m ( X ) \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } m ( Y )$ ; confidence 0.518
+
50. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001035.png ; $O ( \varepsilon ^ { 2 } ).$ ; confidence 0.991
  
51. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080150.png ; $( \overline { \partial } + \overline { A } ) \psi = 0$ ; confidence 0.995
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400102.png ; $0 \rightarrow G \times ^ { R } H _ { R } \rightarrow G \times ^ { R } V \rightarrow \xi \rightarrow 0.$ ; confidence 0.991
  
52. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080182.png ; $( \overline { \partial } + \mu \partial + D \psi = 0$ ; confidence 0.821
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018019.png ; $f \in \mathcal{A} ( X )$ ; confidence 0.991
  
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018073.png ; $E \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | )$ ; confidence 0.786
+
53. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002017.png ; $M _ { 11 } ( q ) \ddot { q } _ { 1 } + M _ { 12 } ( q ) \ddot { q } _ { 2 } + F _ { 1 } ( q , \dot { q } ) = \tau _ { 1 },$ ; confidence 0.991
  
54. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002019.png ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025041.png ; $N _ { k } ( t ) - \int _ { 0 } ^ { t } \lambda _ { k } ( s ) d s$ ; confidence 0.991
  
55. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010036.png ; $\exists x ( \forall y ( \neg y \in x ) \wedge x \in z )$ ; confidence 0.975
+
55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014018.png ; $D ( h )$ ; confidence 0.991
  
56. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003053.png ; $h ( t ) = \int _ { - \infty } ^ { \infty } R ( t - s ) f ( s ) d s$ ; confidence 1.000
+
56. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010027.png ; $P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \}$ ; confidence 0.991
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455
+
57. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007041.png ; $| u ( x , t ) |$ ; confidence 0.991
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945
+
58. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004019.png ; $\Delta ( G ) + \mu ( G )$ ; confidence 0.991
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007089.png ; $\{ ( \alpha _ { i } , \beta _ { i } ) : i = 1 , \ldots , k \}$ ; confidence 0.548
+
59. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595705.png ; $\xi ( s )$ ; confidence 0.991
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070117.png ; $A ( t ) u = L ( , t , D _ { x } ) \text { ufor } u \in D ( A ( t ) )$ ; confidence 0.745
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020098.png ; $\alpha \neq 0$ ; confidence 0.991
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006056.png ; $q ^ { \partial / I } = \operatorname { card } ( R / I )$ ; confidence 0.551
+
61. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300909.png ; $T _ { N } ( x )$ ; confidence 0.991
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948
+
62. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027036.png ; $= \frac { 1 } { 2 } + \sum _ { k = 1 } ^ { n - p } \operatorname { cos } k t + \sum _ { k = 1 } ^ { p } ( 1 - \frac { k } { p + 1 } ) \operatorname { cos } ( n - p + k ) t.$ ; confidence 0.991
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080100.png ; $X = \alpha + \frac { b V - c } { U ^ { 1 / k } } , Y = U ^ { 1 / k }$ ; confidence 0.968
+
63. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018044.png ; $H ^ { p } ( d m )$ ; confidence 0.991
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008025.png ; $f ( L ) = \alpha g ( L ; m , s ) , f ( R ) = \alpha g ( R ; m , s )$ ; confidence 0.996
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021088.png ; $\mathcal{L} ( \Lambda _ { n } | P _ { n } ) \Rightarrow N ( - \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.991
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026039.png ; $d V _ { A }$ ; confidence 0.991
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201509.png ; $( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022030.png ; $\Lambda ( M , s ) = \Lambda ( h ^ { i } ( X ) , s ) = L _ { \infty } ( M , s ) L ( M , s )$ ; confidence 0.991
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030056.png ; $( \mathfrak { S } ( T R _ { 1 } \ldots R _ { N } ) : n \in N )$ ; confidence 0.379
+
67. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270007.png ; $x > 1$ ; confidence 0.991
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066041.png ; $\| T _ { 1 } + \imath t ( f ) \| _ { \infty } \leq C \| f \|$ ; confidence 0.173
+
68. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003045.png ; $( Z \overline { f } ) ( t , w ) = \overline { ( Z f ) } ( t , - w ).$ ; confidence 0.991
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b130020108.png ; $x \circ ( y \circ x ^ { 2 } ) = ( x \circ y ) \circ x ^ { 2 }$ ; confidence 0.985
+
69. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011031.png ; $E ( G )$ ; confidence 0.991
  
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004011.png ; $\downarrow x \in X \text { and } \| x \| \leq \| y \|$ ; confidence 0.297
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007095.png ; $\alpha \geq 3$ ; confidence 0.991
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300908.png ; $F ( u ) = \int _ { R } ( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } ) d x$ ; confidence 0.819
+
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210131.png ; $w _ { 1 } \leq w _ { 2 }$ ; confidence 0.991
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013027.png ; $\int _ { G } f \overline { \partial } \varphi d A = 0$ ; confidence 0.996
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070200.png ; $r T = M ( T ) ^ { \lambda }$ ; confidence 0.991
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018018.png ; $x \leq y \Leftrightarrow \exists z : x = y + z ^ { 2 }$ ; confidence 0.972
+
73. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520421.png ; $\phi _ { i } = \lambda _ { i } y _ { i } a$ ; confidence 0.991
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020015.png ; $\theta H ^ { 2 } = \{ \theta ( z ) f ( z ) : f \in H ^ { 2 } \}$ ; confidence 0.999
+
74. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011060.png ; $F _ { j } ( z ) \chi _ { k } ( z )$ ; confidence 0.990
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202209.png ; $\int \operatorname { ln } f ( v ) Q ( f ) ( v ) d v \leq 0$ ; confidence 0.996
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200138.png ; $( G _ { i } | G _ { j } ) = 0$ ; confidence 0.990
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024020.png ; $f _ { \pm } \in A ( \overline { D } _ { \pm } , GL ( n , C ) )$ ; confidence 0.778
+
76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009054.png ; $\Lambda ^ { + } ( n , r )$ ; confidence 0.990
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036024.png ; $P ( p _ { x } , p _ { y } , p _ { z } ) d p _ { x } d p _ { y } d p _ { z } =$ ; confidence 0.603
+
77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015062.png ; $\xi \in \mathcal{A} _ { 0 }$ ; confidence 0.990
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019016.png ; $x ( h ) = ( h ^ { 2 } , h , h ^ { 3 / 2 } , h ^ { 1 / 2 } , h ^ { - 1 / 2 } )$ ; confidence 0.848
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727071.png ; $> 4$ ; confidence 0.990
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037062.png ; $C _ { E _ { 2 } } ( f ) \leq \frac { 2 ^ { n } } { n } ( 1 + o ( 1 ) )$ ; confidence 0.434
+
79. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002095.png ; $G = f \circ g ^ { - 1 } : Y \rightarrow Y$ ; confidence 0.990
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040036.png ; $g \times ^ { \varrho } f \in G \times ^ { \varrho } F$ ; confidence 0.621
+
80. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013036.png ; $\tau ( G ) = ( - 1 ) ^ { s + t } \operatorname { det } ( L ^ { * } )$ ; confidence 0.990
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042090.png ; $\Psi _ { V , W } ( v \otimes w ) = q ^ { p | w | } w \otimes v$ ; confidence 0.160
+
81. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001045.png ; $\mathcal{X} _ { t } ( q ) = q ( t )$ ; confidence 0.990
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042026.png ; $l _ { V } : V \rightarrow \underline { 1 } \otimes V$ ; confidence 0.880
+
82. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029028.png ; $f ( q ) = c / q ^ { 2 }$ ; confidence 0.990
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043033.png ; $S _ { 0 } . = . \circ \Psi _ { B , B } \circ ( S \otimes S )$ ; confidence 0.203
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547049.png ; $( M , \alpha )$ ; confidence 0.990
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302805.png ; $0 = Sq ^ { i } : H _ { n } X \rightarrow H _ { n - i } X , 2 i > n$ ; confidence 0.541
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021086.png ; $\Pi \subset \Delta ^ { + }$ ; confidence 0.990
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050027.png ; $\int _ { 0 } ^ { t } f ( W _ { s } ) d s = \int 1 ( t , x ) f ( x ) d x$ ; confidence 0.880
+
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021018.png ; $\Delta ^ { p }$ ; confidence 0.990
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205104.png ; $f ( x ^ { * } ) \leq f ( x ) \text { for all xnear } x ^ { * }$ ; confidence 0.354
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034079.png ; $f \in H ( M )$ ; confidence 0.990
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290155.png ; $p \in \operatorname { Spec } A \backslash \{ m \}$ ; confidence 0.300
+
87. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001010.png ; $\operatorname { deg } f _ { i } \leq d$ ; confidence 0.990
  
88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007012.png ; $d ^ { n } : C ^ { n } ( C , M ) \rightarrow C ^ { n + 1 } ( C , M )$ ; confidence 0.944
+
88. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232048.png ; $H ^ { \delta }$ ; confidence 0.990
  
89. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070240.png ; $\operatorname { ord } _ { T } ( d \tau _ { i } / d \tau )$ ; confidence 0.345
+
89. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000133.png ; $\mathcal{H} _ { \epsilon } ^ { \prime } ( \xi ) = \frac { 1 } { 2 } \sum _ { i = 1 } ^ { \infty } \operatorname { log } \operatorname { max } \left\{ \frac { \lambda _ { i } } { f ( \epsilon ) } , 1 \right\}$ ; confidence 0.990
  
90. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070265.png ; $2 g - 2 = \nu _ { 1 } ( 2 g _ { 1 } - 2 ) + \mathfrak { D } _ { 1 }$ ; confidence 0.993
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240494.png ; $k = 1$ ; confidence 0.990
  
91. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070245.png ; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i }$ ; confidence 0.943
+
91. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100108.png ; $\operatorname{supp} \psi \subset V$ ; confidence 0.990
  
92. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070199.png ; $\operatorname { ord } _ { T } ( r / s ) = \lambda - \mu$ ; confidence 0.675
+
92. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014048.png ; $f : \mathbf{F} _ { p } \rightarrow \mathbf{F} _ { p }$ ; confidence 0.990
  
93. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210012.png ; $\chi _ { x } ^ { 2 } = X _ { 1 } ^ { 2 } + \ldots + X _ { n } ^ { 2 }$ ; confidence 0.324
+
93. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007080.png ; $C ( K , \Omega ) =$ ; confidence 0.990
  
94. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016013.png ; $j = i \cdot a _ { i i } = \sum _ { k = 1 } ^ { i } n _ { k i } ^ { 2 }$ ; confidence 0.254
+
94. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065560/m065560229.png ; $| z | < \rho$ ; confidence 0.990
  
95. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170120.png ; $g ( z ) = z ^ { r } - ( a _ { 0 } + \ldots + a _ { r } - 1 ^ { r - 1 } )$ ; confidence 0.179
+
95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007075.png ; $n \neq 1$ ; confidence 0.990
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170116.png ; $Z ^ { \prime } = a _ { 0 } 1 + \ldots + a _ { r - 1 } Z ^ { r - 1 }$ ; confidence 0.174
+
96. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170104.png ; $t$ ; confidence 0.990
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017039.png ; $H ( k ) \equiv ( \beta _ { i + j } ) _ { 0 \leq i , j \leq k }$ ; confidence 0.974
+
97. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007026.png ; $\left( \begin{array} { c } { m + 2 } \\ { 2 } \end{array} \right) = \frac { ( m + 2 ) ( m + 1 ) } { 2 }$ ; confidence 0.990
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018064.png ; $E s ^ { 2 } + 2 F s t + G t ^ { 2 } \in C ^ { \infty } ( M ) [ s , t ]$ ; confidence 0.993
+
98. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024036.png ; $L ( \varepsilon )$ ; confidence 0.990
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c1302507.png ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.560
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152030.png ; $G ( x )$ ; confidence 0.990
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240340.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \Gamma = 0$ ; confidence 0.990
  
101. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016042.png ; $C ( S ) \otimes \pi _ { k } ( T ) + \pi ( S ) \otimes C ( T )$ ; confidence 0.921
+
101. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003075.png ; $\int _ { \Omega } \varphi d \mu$ ; confidence 0.990
  
102. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022020.png ; $\sum ^ { n _ { k = 1 } } c _ { k } ( b - a ) ^ { k } \| p _ { k } \| < 1$ ; confidence 0.360
+
102. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010012.png ; $N _ { p } ( f ) = ( \int _ { G } | f ( x ) | ^ { p } d m ( x ) ) ^ { 1 / p }$ ; confidence 0.990
  
103. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
+
103. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200302.png ; $x ^ { \prime } = f ( t , x )$ ; confidence 0.990
  
104. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018084.png ; $\operatorname { im } _ { \alpha } f g _ { \alpha } = f$ ; confidence 0.891
+
104. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024040.png ; $L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$ ; confidence 0.990
  
105. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029038.png ; $\sum _ { q = 1 } ^ { \infty } ( \varphi ( q ) f ( q ) ) ^ { k }$ ; confidence 0.976
+
105. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018095.png ; $x + t$ ; confidence 0.990
  
106. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031018.png ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199
+
106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023059.png ; $K \in \Omega ^ { k + 1 } ( M , T M )$ ; confidence 0.990
  
107. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012090.png ; $\operatorname { log } L ( \mu , \Sigma | Y _ { aug } )$ ; confidence 0.695
+
107. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002075.png ; $V _ { F } ( m )$ ; confidence 0.990
  
108. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015025.png ; $x \square ^ { i } ( t ) = x ^ { i } ( t ) + \xi ^ { i } ( t ) \eta$ ; confidence 0.387
+
108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009037.png ; $| f ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( H _ { K } ( \zeta ) + \epsilon | \zeta | ).$ ; confidence 0.990
  
109. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007044.png ; $| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } | ^ { 2 } \ll$ ; confidence 0.571
+
109. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012084.png ; $\phi _ { \infty } = \phi \Sigma _ { \infty } \phi$ ; confidence 0.990
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001021.png ; $f _ { 1 } = \operatorname { gcd } ( x ^ { \not y } - x , f )$ ; confidence 0.156
+
110. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018042.png ; $L ^ { p } ( X , m )$ ; confidence 0.990
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004023.png ; $\varphi : X \times W \rightarrow \overline { R }$ ; confidence 0.970
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080134.png ; $M _ { 0 } A ( G )$ ; confidence 0.990
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007027.png ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( C )$ ; confidence 0.496
+
112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003040.png ; $f \in \Delta$ ; confidence 0.990
  
113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100149.png ; $\operatorname { Res } _ { H } A _ { p } ( G ) = A _ { p } ( H )$ ; confidence 0.961
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301507.png ; $z ( \Gamma ) = x + i y$ ; confidence 0.990
  
114. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013025.png ; $( G , F ) \rightarrow \operatorname { Hom } ( G , X )$ ; confidence 0.859
+
114. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011032.png ; $c ^ { - 1 } \partial \mathbf{D} / \partial t$ ; confidence 0.990
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009067.png ; $\mu ^ { * } : H ( \Omega + K ) \rightarrow H ( \Omega )$ ; confidence 0.907
+
115. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221039.png ; $U _ { \lambda }$ ; confidence 0.990
  
116. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009068.png ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) )$ ; confidence 0.790
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010023.png ; $A : D ( A ) \subset X \rightarrow 2 ^ { X }$ ; confidence 0.990
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010014.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } c ( n ) e ^ { 2 \pi i n z }$ ; confidence 0.744
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067051.png ; $M _ { k } \times W$ ; confidence 0.990
  
118. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021092.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots$ ; confidence 0.774
+
118. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008014.png ; $W ( f )$ ; confidence 0.990
  
119. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021063.png ; $u ( z , \lambda _ { i } ) = z ^ { \lambda _ { i } } + \ldots$ ; confidence 0.910
+
119. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005095.png ; $\mathcal{B} \subseteq \mathcal{L} ( \mathcal{H} )$ ; confidence 0.990
  
120. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021031.png ; $L ( u ( z , \lambda ) ) = \pi ( \lambda ) z ^ { \lambda }$ ; confidence 0.987
+
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044031.png ; $R G \rightarrow k G$ ; confidence 0.990
  
121. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003017.png ; $( \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.993
+
121. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026029.png ; $\Gamma ^ { \pm }$ ; confidence 0.990
  
122. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006042.png ; $\sum _ { j = 1 } ^ { n } a _ { i , j } x _ { j } = \lambda x _ { i }$ ; confidence 0.579
+
122. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301008.png ; $0 \rightarrow H \rightarrow T _ { 1 } \rightarrow T _ { 2 } \rightarrow 0$ ; confidence 0.990
  
123. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010129.png ; $M _ { 1 } \times S ^ { N } \approx M _ { 2 } \times S ^ { N }$ ; confidence 0.985
+
123. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260113.png ; $q \delta _ { 0 } + p \delta _ { 1 }$ ; confidence 0.990
  
124. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010141.png ; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019085.png ; $7 / 17 = 0.4118 \dots$ ; confidence 0.990
  
125. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010146.png ; $M _ { 0 } \times R ^ { 1 } \approx M _ { 1 } \times R ^ { 1 }$ ; confidence 0.954
+
125. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010063.png ; $j ( z )$ ; confidence 0.990
  
126. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002028.png ; $t \in A = \{ 2010213,2111213,2212213,2313213$ ; confidence 0.979
+
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016017.png ; $i = 1 : j - 1$ ; confidence 0.990
  
127. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007058.png ; $B ( m , D , n ) < ( 2 m ( m + 1 ) ) ^ { 2 ^ { n - 2 } } D ^ { 2 ^ { n - 1 } }$ ; confidence 0.978
+
127. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007077.png ; $| f ( y ) | \leq \| f \| \| K ( x , y ) \| = 0$ ; confidence 0.990
  
128. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001010.png ; $\Phi ^ { * } ( t ) = \int _ { 0 } ^ { t + 1 } g _ { \Phi } ( s ) d s$ ; confidence 0.214
+
128. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025041.png ; $h ( x ) = x ^ { \alpha } \operatorname { exp } ( - x )$ ; confidence 0.990
  
129. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001042.png ; $t ^ { p } ( \operatorname { log } ( 1 + t ) ) ^ { \alpha }$ ; confidence 0.967
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012080.png ; $t \geq 0$ ; confidence 0.990
  
130. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002013.png ; $\overline { A } _ { 1 } , \dots , \overline { A } _ { N }$ ; confidence 0.114
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022039.png ; $f ( t , x , \xi ) \in \mathbf{R} ^ { p }$ ; confidence 0.990
  
131. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006029.png ; $s _ { j } : = \| f ( x , i k _ { j } ) \| ^ { - 2 } L ^ { 2 } ( R _ { + } )$ ; confidence 0.483
+
131. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006066.png ; $p _ { 0 } = 0 , p _ { 1 } = 1,$ ; confidence 0.990
  
132. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007040.png ; $\theta , w : = \sum _ { j = 1 } ^ { 3 } \theta _ { j } w _ { j }$ ; confidence 0.461
+
132. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020132.png ; $u ( e ^ { i \vartheta } ) = \operatorname { lim } _ { r \uparrow 1 } \operatorname { Re } f ( r e ^ { i \vartheta } )$ ; confidence 0.990
  
133. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280101.png ; $\{ \phi _ { t } \} _ { t \in G }$ ; confidence 0.990
  
134. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090219.png ; $g \in \operatorname { Gal } ( L ( k ^ { \prime } ) / k )$ ; confidence 0.392
+
134. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003028.png ; $\omega _ { 0 } \leq \alpha \leq \mu$ ; confidence 0.990
  
135. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001058.png ; $F ^ { \prime } ( z ) = \operatorname { det } J F ( z ) = 0$ ; confidence 0.999
+
135. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300307.png ; $\mathcal{V} = \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.990
  
136. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020160.png ; $H _ { t } = h ( B _ { \operatorname { min } } ( t , \tau ) )$ ; confidence 0.887
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013061.png ; $\theta > \pi / 2 - \epsilon$ ; confidence 0.990
  
137. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020193.png ; $Y _ { t } = h ( B _ { \operatorname { min } } ( t , \tau ) )$ ; confidence 0.657
+
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066010.png ; $\tau \in \mathbf{T}$ ; confidence 0.990
  
138. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020158.png ; $U _ { t } = u ( B _ { \operatorname { min } } ( t , \tau ) )$ ; confidence 0.849
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180508.png ; $C ^ { \infty } ( N )$ ; confidence 0.990
  
139. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001069.png ; $\sum _ { i = 1 } ^ { n + 1 } x _ { i } d y _ { i } - y _ { i } d x _ { i }$ ; confidence 0.996
+
139. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004099.png ; $( x \wedge y ^ { - 1 } x y ) \vee e = e$ ; confidence 0.990
  
140. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012036.png ; $\alpha _ { k } = \int _ { 0 } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.996
+
140. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300502.png ; $L ( \mathbf{a} )$ ; confidence 0.990
  
141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584079.png ; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f g d \sigma$ ; confidence 0.946
+
141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013014.png ; $f ( z ) = \int _ { G } f ( w ) \overline { k _ { z } ( w ) } d A ( w )$ ; confidence 0.990
  
142. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840169.png ; $\operatorname { dim } R ( E _ { \lambda } ) < \infty$ ; confidence 0.997
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004010.png ; $\Omega ( t ) \psi ( 0 )$ ; confidence 0.990
  
143. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020131.png ; $M ^ { \perp } \cap N ^ { \perp } = ( M \cup N ) ^ { \perp }$ ; confidence 0.800
+
143. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584015.png ; $[ \mathcal{K} _ { + } , \mathcal{K} _ { - } ] = \{ 0 \}$ ; confidence 0.990
  
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005031.png ; $f , g \in L _ { 1 } ( R _ { + } ; e ^ { - \beta x } / \sqrt { x } )$ ; confidence 0.404
+
144. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580161.png ; $t = t ( s )$ ; confidence 0.990
  
145. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300409.png ; $[ x y [ u v w ] ] = [ [ x y u ] v w ] + [ u [ x y v ] w ] + [ u v [ x y w ] ]$ ; confidence 0.862
+
145. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033065.png ; $n \leq 2,000,000$ ; confidence 0.990
  
146. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201009.png ; $V _ { - } ( x ) : = \operatorname { max } \{ - V ( x ) , 0 \}$ ; confidence 0.949
+
146. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005053.png ; $x ^ { t }$ ; confidence 0.990
  
147. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010075.png ; $K _ { N } : = n ( 2 / L _ { 1 , R } ) ^ { 2 / N } ( n + 2 ) ^ { - 1 - 2 / n }$ ; confidence 0.266
+
147. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015039.png ; $\eta \in \mathcal{A} ^ { \prime }$ ; confidence 0.990
  
148. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100145.png ; $\| \rho \| _ { L ^ { p } ( R ^ { n } ) } \leq A _ { N } N ^ { 1 / p }$ ; confidence 0.534
+
148. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030127.png ; $W_-$ ; confidence 0.990
  
149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010040.png ; $L _ { \frac { 3 } { 2 } , n } = L _ { \frac { 3 } { 2 } } ^ { c } , x$ ; confidence 0.093
+
149. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090357.png ; $G _ { K } ( V )$ ; confidence 0.990
  
150. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004021.png ; $\psi _ { p - 2 } ( z ) f ( z ) + \phi _ { p - 1 } ( z ) g _ { k } ( z )$ ; confidence 0.976
+
150. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019024.png ; $\varphi ( t , x ) \in L$ ; confidence 0.990
  
151. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120134.png ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562
+
151. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260158.png ; $b _ { 1 } b _ { 2 } = b _ { 2 } b _ { 1 }$ ; confidence 0.990
  
152. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010056.png ; $B f = R ^ { * } ( a _ { e } \otimes \hat { f } ) : = A \hat { f }$ ; confidence 0.846
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024097.png ; $y = \alpha + \beta t +\text{error}$ ; confidence 0.990
  
153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l1201505.png ; $[ \alpha , [ b , c ] ] = [ [ \alpha , b ] , c ] + [ b , [ a , c ] ]$ ; confidence 0.678
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300902.png ; $u ( x , t ) : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.990
  
154. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016010.png ; $L G _ { C } = \{ \gamma : S ^ { 1 } \rightarrow G _ { C } \}$ ; confidence 0.970
+
154. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002069.png ; $P ^ { 1 } \times P ^ { 1 }$ ; confidence 0.990
  
155. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170108.png ; $\langle a , b | a ^ { p } b ^ { q } , a ^ { r } b ^ { s } \rangle$ ; confidence 0.371
+
155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150122.png ; $F ( x ) = y$ ; confidence 0.990
  
156. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019016.png ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t$ ; confidence 0.781
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030012.png ; $\eta + q$ ; confidence 0.990
  
157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003064.png ; $\hat { \sigma } = S _ { n } = MAD _ { i = 1 } ^ { n } ( x _ { i } )$ ; confidence 0.057
+
157. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001055.png ; $\Gamma u = u$ ; confidence 0.990
  
158. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200404.png ; $\vec { F } = q ( \vec { E } + \vec { v } \times \vec { B } )$ ; confidence 0.998
+
158. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030167.png ; $\phi = 1 \in H ^ { 0 } ( \Gamma )$ ; confidence 0.990
  
159. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007011.png ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928
+
159. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090117.png ; $\Gamma ( A _ { 2 } )$ ; confidence 0.990
  
160. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201103.png ; $p : T ( h ) \rightarrow S ^ { 1 } = [ 0,1 ] / \{ 0 \sim 1 \}$ ; confidence 0.997
+
160. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023056.png ; $i ( [ K , L ] ^ { \wedge } ) = [ i _ { K } , i _ { L } ]$ ; confidence 0.990
  
161. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130128.png ; $2 \beta N _ { 0 } + \gamma \xi ^ { p } - \varepsilon > 0$ ; confidence 0.968
+
161. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054090/j05409033.png ; $\Delta _ { 0 } = 1$ ; confidence 0.990
  
162. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011026.png ; $| \operatorname { arg } x | < ( m + n - 1 / 2 ) ( p + q ) \pi$ ; confidence 0.982
+
162. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044021.png ; $X \mapsto D X$ ; confidence 0.990
  
163. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027035.png ; $z _ { 1 } , \dots , z _ { x } , 1 / z _ { 1 } , \dots , 1 / z _ { x }$ ; confidence 0.267
+
163. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014024.png ; $r ( x ) = H ( x + 1 ) - H ( x - 1 ).$ ; confidence 0.990
  
164. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025080.png ; $( x , \varepsilon ) \in R ^ { n } \times ( 0 , \infty )$ ; confidence 0.945
+
164. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011081.png ; $\approx \rho \frac { V ^ { 2 } } { l } \left[ 1.587 \frac { U } { V } - 0.628 ( \frac { U } { V } ) ^ { 2 } \right],$ ; confidence 0.990
  
165. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260144.png ; $= \{ ( m , b ) \in M ( A ) \oplus B : \pi ( m ) = \tau ( b ) \}$ ; confidence 0.828
+
165. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001037.png ; $U = O _ { 1 } ( m )$ ; confidence 0.990
  
166. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002049.png ; $\mu = \sum _ { x = 1 } ^ { \infty } n ^ { - 3 } \delta _ { n }$ ; confidence 0.482
+
166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110187.png ; $G ^ { \sigma }$ ; confidence 0.990
  
167. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006043.png ; $\Phi = ( \Phi ^ { \prime } \Phi ^ { \prime \prime } )$ ; confidence 0.557
+
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005013.png ; $U \subset E$ ; confidence 0.990
  
168. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014029.png ; $\| x \| = \operatorname { dist } ( x , Z ) = | x - N ( x ) |$ ; confidence 0.472
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020016.png ; $\theta ( z )$ ; confidence 0.990
  
169. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070104.png ; $\operatorname { SPSH } ( \Omega \times \Omega )$ ; confidence 0.587
+
169. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200106.png ; $R _ { 23 } = 1 \otimes _ { k } R$ ; confidence 0.990
  
170. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009014.png ; $x \in B ( x _ { 0 } , r ) , \xi \in \partial B ( x _ { 0 } , r )$ ; confidence 0.672
+
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006091.png ; $R _ { j } ^ { 0 } \in \mathbf{R} ^ { 3 }$ ; confidence 0.990
  
171. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100175.png ; $f _ { j } ^ { * } d \theta / 2 \pi \rightarrow \mu _ { z }$ ; confidence 0.735
+
171. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300801.png ; $D = \{ ( x , y ) \in \mathbf{R} ^ { 2 } : x ^ { 2 } + y ^ { 2 } \leq 1 \}$ ; confidence 0.990
  
172. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002020.png ; $( 1 - P ) | \phi \rangle / \| ( 1 - P ) | \phi \rangle \|$ ; confidence 0.528
+
172. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png ; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990
  
173. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001028.png ; $- \infty < t _ { 1 } \leq \ldots \leq t _ { n } < \infty$ ; confidence 0.937
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a1200203.png ; $A \subset Y$ ; confidence 0.990
  
174. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001014.png ; $\sum _ { i } R _ { j i } ( g ^ { - 1 } ) \varphi _ { i } ( g [ f ] )$ ; confidence 0.976
+
174. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022035.png ; $L y = g$ ; confidence 0.990
  
175. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005028.png ; $M = \lambda ( K ) : = [ \mu ^ { - 1 } ( \pi K / 2 ) ] ^ { - 2 } - 1$ ; confidence 0.995
+
175. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003026.png ; $[ T ^ { * } M ]$ ; confidence 0.990
  
176. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004063.png ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932
+
176. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840354.png ; $C = C ^ { * }$ ; confidence 0.990
  
177. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013033.png ; $P _ { \sigma } P _ { \tau } = 0 = P _ { \tau } P _ { \sigma }$ ; confidence 0.988
+
177. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021052.png ; $2 / ( 3 N / 2 )$ ; confidence 0.990
  
178. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002028.png ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x$ ; confidence 0.698
+
178. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014059.png ; $f \in C ^ { k - 1 } ( U _ { \rho } )$ ; confidence 0.990
  
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300709.png ; $s \in S , u , v \in H , \phi : S \times H \rightarrow S$ ; confidence 0.380
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025037.png ; $h ( x ) = ( 1 - x ^ { 2 } ) ^ { \lambda - 1 / 2 }$ ; confidence 0.990
  
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s1200406.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { l } )$ ; confidence 0.747
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027021.png ; $\operatorname{ind}( T - \lambda ) = 0$ ; confidence 0.990
  
181. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018037.png ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032059.png ; $F ( r s , r t ) = r F ( s , t )$ ; confidence 0.990
  
182. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018017.png ; $( \alpha + \beta ) ^ { * } = \alpha ^ { * } + \beta ^ { * }$ ; confidence 0.999
+
182. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003085.png ; $V \subset \Omega \backslash \Gamma$ ; confidence 0.990
  
183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510151.png ; $\cup \{ u \in V : \sigma ( u ) = \infty ( K ) , 0 \in K \}$ ; confidence 0.857
+
183. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001076.png ; $\tau ( A ) \subseteq R$ ; confidence 0.990
  
184. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510141.png ; $L \oplus \dot { k } = \{ 1 \oplus \dot { k } : 1 \in L \}$ ; confidence 0.365
+
184. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404909.png ; $\nu _ { 1 } > 2$ ; confidence 0.990
  
185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
+
185. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086430/s0864307.png ; $\alpha ^ { \prime } \subset \alpha$ ; confidence 0.990
  
186. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026069.png ; $\Phi ( t ) = \int _ { 0 } ^ { t } K ( t , s ) \phi ( s ) d B ( s + )$ ; confidence 0.999
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102209.png ; $H _ { DR } ( X )$ ; confidence 0.990
  
187. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059030.png ; $\{ Q _ { n } ( z ) \in \Lambda _ { n } : n = 0,1 , \ldots \}$ ; confidence 0.486
+
187. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018028.png ; $N - 1 / 2$ ; confidence 0.990
  
188. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t1300403.png ; $D y ( x ) : = y ^ { \prime } ( x ) + y ( x ) = 0,0 \leq x \leq 1$ ; confidence 0.733
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021068.png ; $\theta _ { \lambda }$ ; confidence 0.990
  
189. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005089.png ; $\sigma _ { T } ( L _ { i z } , B ) = \sigma _ { B } ( \alpha )$ ; confidence 0.464
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041062.png ; $z > 1$ ; confidence 0.990
  
190. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005029.png ; $\Sigma ^ { i , j , k } ( f ) \subset \Sigma ^ { i , j } ( f )$ ; confidence 0.845
+
190. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006036.png ; $k B _ { 1 } ( h / k ) = G _ { 1 } + 1 / 2$ ; confidence 0.990
  
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \dots p _ { s } ^ { z _ { s } }$ ; confidence 0.642
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014036.png ; $T _ { \phi \psi } = T _ { \phi } T _ { \psi }$ ; confidence 0.990
  
192. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015052.png ; $\xi _ { 1 } \xi _ { 2 } \equiv \pi ( \xi _ { 1 } ) \xi _ { 2 }$ ; confidence 0.923
+
192. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005060.png ; $A _ { + } ( x , y ) + F _ { + } ( x + y ) + \int _ { x } ^ { \infty } A ( x , t ) F _ { + } ( t , y ) d t = 0,$ ; confidence 0.990
  
193. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356044.png ; $N _ { f } = \{ x \in \mathfrak { N } _ { f } : s ( x , x ) = 0 \}$ ; confidence 0.593
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204303.png ; $\eta : \underline { 1 } \rightarrow B$ ; confidence 0.990
  
194. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200156.png ; $| g ( k ) | \geq ( \frac { n } { 8 e ( m + n ) } ) ^ { n } | g ( 0 ) |$ ; confidence 0.996
+
194. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v1200308.png ; $\mu \ll \lambda$ ; confidence 0.990
  
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200190.png ; $\kappa \leq | \operatorname { arc } z _ { j } | < \pi$ ; confidence 0.352
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002024.png ; $( - q )$ ; confidence 0.990
  
196. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200227.png ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k }$ ; confidence 0.580
+
196. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020180.png ; $V _ { t } ^ { j }$ ; confidence 0.990
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021079.png ; $\times ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | } - r ( s )$ ; confidence 0.296
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040147.png ; $\square \varphi \rightarrow \psi \in T$ ; confidence 0.990
  
198. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960303.png ; $\dot { x } = v , \quad \dot { v } = - x + \mu ( 1 - x ^ { 2 } ) v$ ; confidence 0.910
+
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009037.png ; $\{ f , g \} _ { P } = P ( d f , d g )$ ; confidence 0.990
  
199. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020182.png ; $\overline { D } \square ^ { n + 1 } \subset E ^ { n + 1 }$ ; confidence 0.618
+
199. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200404.png ; $A \subseteq_{*} B$ ; confidence 0.990
  
200. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020109.png ; $\Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \}$ ; confidence 0.982
+
200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012088.png ; $M = K_{totS }$ ; confidence 0.990
  
201. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011078.png ; $d M _ { 2 } = \rho \frac { \Gamma \dot { b } } { l } ( V - U )$ ; confidence 0.722
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016860/b0168607.png ; $f \equiv 0$ ; confidence 0.990
  
202. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011083.png ; $( x , \xi ) \mapsto ( T x , \square ^ { t } T ^ { - 1 } \xi )$ ; confidence 0.934
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019042.png ; $f : M \rightarrow B \Gamma$ ; confidence 0.990
  
203. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090107.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } I _ { n } ( g _ { n } )$ ; confidence 0.978
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020022.png ; $e ^ { i t }$ ; confidence 0.990
  
204. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011021.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } a _ { n } g ( S ^ { n } y )$ ; confidence 0.686
+
204. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001078.png ; $0 \leq c \leq q - 2$ ; confidence 0.990
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011033.png ; $f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon }$ ; confidence 0.614
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010077.png ; $L ^ { 2 } ( \mathbf{R} ^ { n N } )$ ; confidence 0.990
  
206. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006014.png ; $P ( \overline { B } ( t , \omega ) = B ( t , \omega ) ) = 1$ ; confidence 0.816
+
206. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017078.png ; $\Delta u + k ^ { 2 } u = 0$ ; confidence 0.990
  
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202004.png ; $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ ; confidence 0.510
+
207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100124.png ; $[ \epsilon ( x ) ]$ ; confidence 0.990
  
208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021043.png ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707
+
208. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005038.png ; $t ( k ) = \frac { 1 } { \alpha ( k ) }.$ ; confidence 0.990
  
209. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017071.png ; $\| \sum _ { j = 0 } ^ { \infty } K _ { j } \| ^ { 2 } = \infty$ ; confidence 0.995
+
209. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020144.png ; $( x \wedge y ^ { - 1 } x ^ { - 1 } y ) \vee e = e$ ; confidence 0.990
  
210. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010113.png ; $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.968
+
210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022032.png ; $b \leq \infty$ ; confidence 0.990
  
211. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001017.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$ ; confidence 0.996
+
211. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009029.png ; $| \mathcal{F} \mu ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( H _ { K } ( \zeta ) + \epsilon | \zeta | ),$ ; confidence 0.990
  
212. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008022.png ; $V _ { N } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { x } ^ { m } ( r )$ ; confidence 0.625
+
212. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010029.png ; $C ( t ) = ( 4 K B - A ^ { 2 } ) / 4 f ( t ) ^ { 2 }$ ; confidence 0.990
  
213. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011036.png ; $G _ { N } ( x ) x \approx \mu _ { N } , x = f ( 1 , x ) , f ( 2 , x )$ ; confidence 0.324
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240172.png ; $\gamma _ { j } = 0$ ; confidence 0.990
  
214. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011027.png ; $G _ { N } ( x ) = \sum _ { i = 1 } ^ { N } 1 \{ f _ { i n } \geq x \}$ ; confidence 0.687
+
214. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006027.png ; $\mathbf{R} _ { + } : = [ 0 , \infty )$ ; confidence 0.990
  
215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
+
215. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006031.png ; $V Y$ ; confidence 0.990
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013051.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , Y _ { n } )$ ; confidence 0.990
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040615.png ; $h = \operatorname { mng } s _ { P } , \mathfrak { N }$ ; confidence 0.754
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004043.png ; $s _ { \lambda } = \sum _ { \mu } K _ { \lambda \mu } m _ { \mu }.$ ; confidence 0.990
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025021.png ; $D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - D _ { 2 } D _ { 1 } \in D$ ; confidence 0.984
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009064.png ; $( P \times P ) / G$ ; confidence 0.990
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021099.png ; $B _ { k } = M _ { 1 } \supset \ldots \supset M _ { s } = 0$ ; confidence 0.934
+
219. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100131.png ; $\Omega \subset \mathbf{C} \times \mathbf{R}$ ; confidence 0.990
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w , \lambda )$ ; confidence 0.626
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052022.png ; $\omega \in \Omega$ ; confidence 0.990
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066040.png ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001026.png ; $= \frac { \partial u } { \partial \xi } - 2 \lambda \operatorname { sin } ( \frac { u ( \xi , \eta ) + u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { 2 } ),$ ; confidence 0.990
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066049.png ; $T : D ( R ^ { n } ) \rightarrow D ^ { \prime } ( R ^ { n } )$ ; confidence 0.662
+
222. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005040.png ; $A ( \xi , \tau ) : \mathbf{R} ^ { n } \times \mathbf{R} ^ { + } \rightarrow \mathbf{C}$ ; confidence 0.990
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003035.png ; $e ^ { 2 \pi i m n a k b } e ^ { 2 \pi i m b x } g ( \gamma - m b )$ ; confidence 0.135
+
223. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003011.png ; $\mu ( z ) ( d \overline{z} / d z )$ ; confidence 0.990
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040143.png ; $| x | = | x _ { 0 } | ^ { 1 - \theta } | x _ { 1 } | ^ { \theta }$ ; confidence 0.874
+
224. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010079.png ; $A _ { p } ( G ) ^ { \prime }$ ; confidence 0.990
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004010.png ; $x \in L ^ { 0 } ( \mu ) , y \in X , | x | \leq | y | \mu - a . e$ ; confidence 0.853
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030104.png ; $\{ ( x _ { i } , x _ { i } ^ { * } ) : i \in I \} \subset X \times X ^ { * }$ ; confidence 0.990
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005041.png ; $\Pi ( \phi ) \equiv \phi | _ { E } * \subset E ^ { * * }$ ; confidence 0.806
+
226. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011062.png ; $\sigma _ { j } = \pm 1$ ; confidence 0.990
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022028.png ; $L _ { \infty } ( M , s ) = L _ { \infty } ( h ^ { i } ( X ) , s )$ ; confidence 0.980
+
227. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080204.png ; $t _ { S } ^ { H }$ ; confidence 0.990
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150137.png ; $( k _ { 1 } , \dots , k _ { w } ) \in ( N \cup \{ 0 \} ) ^ { m }$ ; confidence 0.101
+
228. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201002.png ; $\mathbf{F} = q \mathbf{E} ^ { \prime },$ ; confidence 0.990
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017037.png ; $I _ { \alpha } ( x ) = c _ { \alpha } | x | ^ { \alpha - x }$ ; confidence 0.806
+
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008016.png ; $( \alpha : \beta : \gamma )$ ; confidence 0.990
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301503.png ; $\gamma = | \partial z / \partial \Gamma | ^ { - 1 }$ ; confidence 0.911
+
230. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007051.png ; $\phi _ { \eta } ( F ( z ) ) \leq d ( \omega ) \phi _ { \omega } ( z )$ ; confidence 0.990
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030043.png ; $A \psi ( ; \eta ) = \lambda \psi ( ; \eta ) inR ^ { N }$ ; confidence 0.468
+
231. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010062.png ; $H _ { k } ( X , G )$ ; confidence 0.990
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036017.png ; $P ( p _ { x } , p _ { y } , p _ { z } ) d p _ { x } d p _ { y } d p _ { z }$ ; confidence 0.644
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027034.png ; $\{ \psi _ { n } \} \subset Y$ ; confidence 0.990
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200167.png ; $V ^ { \lambda } : = \{ v \in V : h , v = \lambda ( h ) v \}$ ; confidence 0.346
+
233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030077.png ; $n = m$ ; confidence 0.990
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042030.png ; $\Psi _ { V Q W , Z } = \Psi _ { V , Z } \circ \Psi _ { W , Z }$ ; confidence 0.376
+
234. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018015.png ; $\alpha \mapsto \alpha ^ { * }$ ; confidence 0.990
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043047.png ; $[ m ] _ { q } ! = [ m ] _ { q } [ m - 1 ] _ { q } \ldots [ 1 ] _ { q }$ ; confidence 0.758
+
235. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g0430204.png ; $\pi _ { k } : M _ { k } \rightarrow M$ ; confidence 0.990
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022088.png ; $| F ( u ) | \leq C _ { 1 } \rho ^ { 2 - N / p } | u | _ { p , 2 , T }$ ; confidence 0.888
+
236. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002037.png ; $1 \leq i < j < k \leq n$ ; confidence 0.990
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302305.png ; $H _ { n } \cong L _ { n } \times \ldots \times L _ { n }$ ; confidence 0.897
+
237. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190197.png ; $\Phi _ { 2 } = ( h _ { 3 } , h _ { 2 } , p , W _ { 2 } ^ { + } )$ ; confidence 0.990
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044068.png ; $T _ { H } ^ { G } ( \alpha ) = \sum _ { j } g _ { j } ^ { - 1 } a g$ ; confidence 0.548
+
238. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584057.png ; $x , y \in \mathcal{H}$ ; confidence 0.990
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026066.png ; $\operatorname { deg } _ { B } [ f , \Omega , C _ { i } ]$ ; confidence 0.900
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202308.png ; $\Omega ^ { 0 } ( M ; T M ) = \Gamma ( T M ) = \mathcal{X} ( M )$ ; confidence 0.990
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051093.png ; $( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947
+
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001024.png ; $\xi ^ { \prime } ( \xi , \eta ) = \xi , \quad \eta ^ { \prime } ( \xi , \eta ) = \eta,$ ; confidence 0.990
  
241. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002068.png ; $x ^ { \prime \prime } = ( x _ { k } + 1 , \dots , x _ { N } )$ ; confidence 0.371
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020046.png ; $\mathcal{H} ( \theta )$ ; confidence 0.990
  
242. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003023.png ; $f \in \operatorname { Car } | _ { 0 C } ( I \times G )$ ; confidence 0.114
+
242. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045071.png ; $\Pi ( u , v ) = u v$ ; confidence 0.990
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004024.png ; $\psi ^ { ( R ) } ( z ) = ( - 1 ) ^ { N + 1 } n ! \zeta ( n + 1 , z )$ ; confidence 0.190
+
243. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016070.png ; $x \neq y$ ; confidence 0.990
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008098.png ; $T _ { p q } = T _ { 10 } T _ { p - 1 , q } + T _ { 01 } T _ { p , q - 1 }$ ; confidence 0.991
+
244. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520225.png ; $A \rightarrow C ^ { T } A C$ ; confidence 0.990
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201308.png ; $( M ) \leq v , | \text { sec. curv. } M | \leq \kappa$ ; confidence 0.201
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027051.png ; $X \mapsto \operatorname { Ext } ( X )$ ; confidence 0.990
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016029.png ; $\| A \| _ { 2 } = \| R ^ { T } R \| _ { 2 } = \| R \| _ { 2 } ^ { 2 }$ ; confidence 0.991
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040329.png ; $E ( x , y )$ ; confidence 0.990
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010027.png ; $( C ) \int _ { A } f d m = ( C ) \int f \cdot \chi _ { A } d m$ ; confidence 0.640
+
247. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051093.png ; $O ( \operatorname { log } ( | V | + | E | ) )$ ; confidence 0.990
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180309.png ; $A ^ { 2 } E \otimes A ^ { 2 } E \subset \otimes ^ { 4 } E$ ; confidence 0.327
+
248. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027097.png ; $\eta _ { 0 } = \{ Z ( u ) : 0 \leq u < T _ { 0 } \}$ ; confidence 0.990
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026015.png ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0 , \quad 1 \leq n \leq N$ ; confidence 0.646
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950134.png ; $2 r - 1$ ; confidence 0.990
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026033.png ; $\| V \| ^ { 2 } = \sum _ { j = 1 } ^ { J - 1 } h | V _ { j } | ^ { 2 }$ ; confidence 0.948
+
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230131.png ; $K _ { X ^ { \prime } } + B ^ { \prime }$ ; confidence 0.990
  
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020242.png ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789
+
251. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520285.png ; $K _ { \rho } F = \xi F ( \xi )$ ; confidence 0.990
  
252. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200602.png ; $\psi ( x , \lambda ) , \varphi ( x , \mu ) \in C ^ { 2 }$ ; confidence 0.998
+
252. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013022.png ; $F \in \mathcal{F}$ ; confidence 0.990
  
253. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003011.png ; $\operatorname { supp } ( \psi _ { N } ) = [ 0,2 N - 1 ]$ ; confidence 0.996
+
253. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008098.png ; $\delta _ { j m }$ ; confidence 0.990
  
254. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008070.png ; $d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = \delta ( w _ { i } | v )$ ; confidence 0.780
+
254. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001035.png ; $\operatorname{Orth} ( A )$ ; confidence 0.990
  
255. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101802.png ; $u \rho ^ { \prime } ( u ) = - \rho ( u - 1 ) \quad ( u > 1 )$ ; confidence 0.997
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430145.png ; $H _ { 1 } = B \rtimes H$ ; confidence 0.990
  
256. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019024.png ; $0 < \lambda _ { 1 } \leq \lambda _ { 2 } \leq \ldots$ ; confidence 0.893
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032044.png ; $r = ( 1 - \theta ) / \theta$ ; confidence 0.990
  
257. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017073.png ; $\Omega _ { t } = t \Omega _ { 1 } + ( 1 - t ) \Omega _ { 2 }$ ; confidence 0.999
+
257. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060177.png ; $y \geq x \geq a$ ; confidence 0.990
  
258. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022056.png ; $\sum _ { i = 0 } ^ { m } ( p _ { m } - i y ^ { ( i ) } ) ^ { ( i ) } = 0$ ; confidence 0.674
+
258. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021024.png ; $P _ { n } ( A ) = 0$ ; confidence 0.990
  
259. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028056.png ; $\overline { D } _ { m } \subset D _ { m + 1 } \subset D$ ; confidence 0.833
+
259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023029.png ; $\sigma ^ { 1 } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) ),$ ; confidence 0.990
  
260. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028035.png ; $f \in A _ { 0 } ( \overline { C } ^ { n } \backslash D )$ ; confidence 0.888
+
260. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023037.png ; $[ D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - ( - 1 ) ^ { k _ { 1 } k _ { 2 } } D _ { 2 } D _ { 1 }$ ; confidence 0.990
  
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012085.png ; $Y _ { aug } = \{ ( y _ { i } , q _ { i } ) : i = 1 , \ldots , n \}$ ; confidence 0.321
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318024.png ; $( u , v )$ ; confidence 0.990
  
262. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300107.png ; $f ^ { \rho } \in I : = ( f _ { 1 } , \dots , f _ { \infty } )$ ; confidence 0.250
+
262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001032.png ; $T _ { \lambda } = T ( I + \lambda T ) ^ { - 1 }.$ ; confidence 0.990
  
263. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007063.png ; $F | _ { - k } ^ { V } M = F + p _ { M } , \forall M \in \Gamma$ ; confidence 0.156
+
263. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003045.png ; $\mathcal{A} ( \Omega ) = \mathcal{B} / \mathcal{I} _ { 0 }$ ; confidence 0.990
  
264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009025.png ; $F ^ { \mu \nu , \nu } = F ^ { \mu \nu } , , \nu = S ^ { \mu }$ ; confidence 0.700
+
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b1202406.png ; $\delta = \operatorname { diag } ( z ^ { k _ { i } } )$ ; confidence 0.989
  
265. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011033.png ; $\frac { \partial q f } { \partial t } + \nabla J = 0$ ; confidence 0.934
+
265. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008013.png ; $\int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0.$ ; confidence 0.989
  
266. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000108.png ; $\pi \{ ( x , y ) : \rho ( x , y ) \leq \epsilon / 2 \} = 1$ ; confidence 0.993
+
266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026088.png ; $\Lambda ( \mu )$ ; confidence 0.989
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190203.png ; $d ( x , y ) = \sqrt { 1 + x ^ { 2 } } \sqrt { 1 + y ^ { 2 } } - x y$ ; confidence 0.818
+
267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080176.png ; $F B$ ; confidence 0.989
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023055.png ; $= \int _ { a } ^ { b } E ( L ) ( \sigma ^ { 2 } ( x ) ) z ( x ) d x$ ; confidence 0.681
+
268. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700080.png ; $f : \mathbf{N} \rightarrow \mathbf{N} $ ; confidence 0.989
  
269. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021029.png ; $\sigma ( L _ { C } ^ { \infty } ( G ) , L _ { C } ^ { 1 } ( G ) )$ ; confidence 0.852
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034043.png ; $K \subset D$ ; confidence 0.989
  
270. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080149.png ; $\varphi = \sum _ { k = 1 } ^ { \infty } f _ { k } * g _ { k }$ ; confidence 0.554
+
270. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550044.png ; $( x _ { 0 } , \xi _ { 0 } )$ ; confidence 0.989
  
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010057.png ; $( 2 / \pi ) \operatorname { sin } ^ { 2 } \phi d \phi$ ; confidence 0.925
+
271. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005095.png ; $q ( x ) = 0$ ; confidence 0.989
  
272. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010061.png ; $j ( z ) = q ^ { - 1 } + 744 + 196884 q + 21493760 q ^ { 2 } +$ ; confidence 0.983
+
272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028030.png ; $B \rightarrow C$ ; confidence 0.989
  
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021045.png ; $c _ { 1 } ( \lambda ) , \ldots , c _ { j } - 1 ( \lambda )$ ; confidence 0.264
+
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011089.png ; $f ( x ) = \sum _ { \sigma } F _ { \sigma } ( x + i \Gamma _ { \sigma } 0 ),$ ; confidence 0.989
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023032.png ; $D ( \Omega ^ { l } ( M ) ) \subset \Omega ^ { k + l } ( M )$ ; confidence 0.994
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016014.png ; $p = x _ { 1 } + \frac { 1 } { 2 } x _ { 3 } , \quad q = x _ { 2 } + \frac { 1 } { 2 } x _ { 3 }$ ; confidence 0.989
  
275. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g1300606.png ; $p _ { n } ( z ) : = \operatorname { det } \{ z I - A \}$ ; confidence 0.968
+
275. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004084.png ; $f \in L _ { 1 } + L _ { \infty }$ ; confidence 0.989
  
276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004057.png ; $x \xi : = x _ { 1 } \xi _ { 1 } + \ldots + x _ { n } \xi _ { n }$ ; confidence 0.708
+
276. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m1301308.png ; $M = [ m _ { i j } ]$ ; confidence 0.989
  
277. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602011.png ; $y ( t ) = \int _ { 0 } ^ { t } g ( t - \tau ) x ( \tau ) d \tau$ ; confidence 0.992
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006033.png ; $\frac { d u } { d t } + A u = f ( t ) , t \in [ 0 , T ],$ ; confidence 0.989
  
278. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h1300707.png ; $[ k ^ { p } ( a _ { 1 } , \dots , a _ { s } ) : k ^ { p } ] = p ^ { s }$ ; confidence 0.519
+
278. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200501.png ; $\frac { \partial \psi } { \partial t } = \mathcal{L} _ { R } \psi + \mathcal{N} ( \psi ),$ ; confidence 0.989
  
279. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001051.png ; $\overline { d } _ { \langle k , 1 ^ { n - k } \rangle }$ ; confidence 0.438
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066086.png ; $m > 1$ ; confidence 0.989
  
280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004038.png ; $f = \sum _ { j = 1 } ^ { n } f _ { j } d \overline { z _ { j } }$ ; confidence 0.908
+
280. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007028.png ; $A \varphi _ { j } = \lambda _ { j } \varphi _ { j }$ ; confidence 0.989
  
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005074.png ; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$ ; confidence 0.554
+
281. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201204.png ; $( + + + - )$ ; confidence 0.989
  
282. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005029.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 ) , x \rightarrow \infty$ ; confidence 0.952
+
282. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807040.png ; $T ^ { 2 } = n ( \overline{X} - \mu ) ^ { \prime } S ^ { - 1 } ( \overline{X} - \mu ),$ ; confidence 0.989
  
283. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008091.png ; $F = - k _ { B } T \operatorname { ln } \lambda _ { + } =$ ; confidence 0.581
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050293.png ; $n \rightarrow \infty$ ; confidence 0.989
  
284. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008020.png ; $L ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }$ ; confidence 0.681
+
284. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520497.png ; $U \in H$ ; confidence 0.989
  
285. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009070.png ; $P ( T ) = T ^ { x } + a _ { x } - 1 T ^ { x - 1 } + \ldots + a _ { 0 }$ ; confidence 0.340
+
285. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024026.png ; $K ( L )$ ; confidence 0.989
  
286. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002011.png ; $f \in L ^ { p } ( \partial D , d \vartheta / ( 2 \pi ) )$ ; confidence 0.404
+
286. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025035.png ; $( \varphi u ) ( \varphi v )$ ; confidence 0.989
  
287. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002063.png ; $( A ^ { * } X ) _ { t } = \int _ { 0 } ^ { t } A H _ { s } . d B _ { s }$ ; confidence 0.449
+
287. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010024.png ; $( z _ { j } ^ { \prime } , t _ { j } )$ ; confidence 0.989
  
288. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002092.png ; $X ^ { * } = \operatorname { sup } _ { s \geq 0 } X _ { s }$ ; confidence 0.675
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020065.png ; $\alpha : A \rightarrow B$ ; confidence 0.989
  
289. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004072.png ; $P _ { L } ( v , z ) = \sum _ { i = e } ^ { E } a _ { i } ( z ) v ^ { i }$ ; confidence 0.865
+
289. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004070.png ; $X = \Gamma \backslash D$ ; confidence 0.989
  
290. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004049.png ; $P _ { L } ( v , z ) = \sum _ { i = m } ^ { N } P _ { i } ( v ) z ^ { i }$ ; confidence 0.697
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022027.png ; $\rho ( t , x )$ ; confidence 0.989
  
291. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008030.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$ ; confidence 0.971
+
291. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030115.png ; $[ c , \infty )$ ; confidence 0.989
  
292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840168.png ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020080.png ; $\lambda \in \mathbf{F} \backslash \{ 0 \}$ ; confidence 0.989
  
293. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584070.png ; $\int _ { - \infty } ^ { \infty } | f | | r | d x < \infty$ ; confidence 0.441
+
293. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002022.png ; $M _ { \mu }$ ; confidence 0.989
  
294. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702053.png ; $\operatorname { Gal } ( \overline { k } _ { S } / k )$ ; confidence 0.400
+
294. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015024.png ; $[ w , v ] = w \otimes v$ ; confidence 0.989
  
295. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702010.png ; $F _ { R } + 1 \rightarrow F _ { N } + 1 / l ^ { n } F _ { N } + 1$ ; confidence 0.050
+
295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009053.png ; $\Lambda ( n , r )$ ; confidence 0.989
  
296. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002067.png ; $| x \vee y | \preceq | x | \vee | y | \preceq | x | | y |$ ; confidence 0.579
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016031.png ; $1 \leq i \leq 3$ ; confidence 0.989
  
297. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700073.png ; $X \equiv ( \lambda x . F ( x x ) ) W = F ( W W ) \equiv F X$ ; confidence 0.479
+
297. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008091.png ; $F _ { z _ { 0 } } ( x , R )$ ; confidence 0.989
  
298. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700087.png ; $F c _ { k _ { 1 } } c _ { k _ { 2 } } = c _ { f } ( k _ { 1 } , k _ { 2 } )$ ; confidence 0.698
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019011.png ; $H _ { 0 } ^ { 1 } ( \Omega ) = W _ { 0 } ^ { 1,2 } ( \Omega )$ ; confidence 0.989
  
299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003048.png ; $( ( - ) \otimes _ { F } , H ^ { * } B V ) : U \rightarrow U$ ; confidence 0.195
+
299. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584028.png ; $\kappa = \operatorname { dim } \mathcal{K} _ { + }$ ; confidence 0.989
  
300. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004042.png ; $b _ { 0 } = 1 - c ^ { 2 } , b _ { 1 } = - \frac { 1 } { 2 } c ( 1 - c )$ ; confidence 0.991
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066070.png ; $T ^ { * } ( 1 )$ ; confidence 0.989

Latest revision as of 14:29, 31 March 2020

List

1. b130290191.png ; $\mathfrak { M } = R _ { + }$ ; confidence 0.991

2. m13002014.png ; $\| \phi \| = 1 - \frac { m } { r } + O ( r ^ { - 2 } ) , \| D _ { A } \phi \| = O ( r ^ { - 2 } ).$ ; confidence 0.991

3. q1200502.png ; $x ^ { k + 1 } = x ^ { k } - [ D F ( x ^ { k } ) ] ^ { - 1 } F ( x ^ { k } ),$ ; confidence 0.991

4. b13006049.png ; $E \rightarrow 0$ ; confidence 0.991

5. e1201407.png ; $\rho ( f )$ ; confidence 0.991

6. v096900155.png ; $f = \sum _ { p } f _ { p }$ ; confidence 0.991

7. s13044017.png ; $D D X \simeq X$ ; confidence 0.991

8. j12001050.png ; $C ( n , d ) > 0$ ; confidence 0.991

9. n13006019.png ; $u \in H ^ { 1 } ( \Omega )$ ; confidence 0.991

10. g13003036.png ; $( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.991

11. b13025064.png ; $\operatorname { cot } \omega = \operatorname { cot } \alpha + \operatorname { cot } \beta + \operatorname { cot } \gamma,$ ; confidence 0.991

12. k11001010.png ; $\alpha ( Z ) = 1$ ; confidence 0.991

13. e13006031.png ; $\mathcal{C} ( Y , X )$ ; confidence 0.991

14. a01110052.png ; $A ^ { \prime }$ ; confidence 0.991

15. h120120159.png ; $T ( \nabla ) _ { \infty } : ( T ( H ( Y ) ) , \partial _ { \infty } ) \rightarrow \overline { B } ( Y )$ ; confidence 0.991

16. h12011026.png ; $\sigma ( \Gamma ) \subseteq B ( 0 , r )$ ; confidence 0.991

17. a120070113.png ; $L ^ { p } ( \Omega )$ ; confidence 0.991

18. t12006017.png ; $\rho ( x ) \geq 0$ ; confidence 0.991

19. b12046048.png ; $V _ { H } f$ ; confidence 0.991

20. y12003032.png ; $\Lambda _ { + } ^ { 2 }$ ; confidence 0.991

21. m12016013.png ; $\psi : [ 0 , \infty ) \rightarrow \mathbf{R}$ ; confidence 0.991

22. f11016090.png ; $q ( \phi )$ ; confidence 0.991

23. v12004016.png ; $\Delta ( G ) \leq \chi ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.991

24. a13029026.png ; $\operatorname { lim } _ { t \rightarrow \pm \infty } u ( s , t ) = x ^ { \pm }$ ; confidence 0.991

25. b130290132.png ; $d = \operatorname { dim } A \geq 1$ ; confidence 0.991

26. e03500065.png ; $\operatorname{log} M ( C , \epsilon )$ ; confidence 0.991

27. i130090185.png ; $G _ { \chi } ( T ) \in \mathbf{Z} _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.991

28. s13059021.png ; $L ( z ) \geq 0$ ; confidence 0.991

29. b13017040.png ; $\phi _ { t } = \phi ( t , S _ { t } )$ ; confidence 0.991

30. a12028085.png ; $\phi _ { t } ( A ) = U _ { t } A V _ { - t }$ ; confidence 0.991

31. a13008080.png ; $n = 3$ ; confidence 0.991

32. p12013017.png ; $0 < \lambda \in \mathbf{Z} ( \theta )$ ; confidence 0.991

33. w12019015.png ; $\rho = \sum \lambda _ { i } P _ { i } , \quad 0 \leq \lambda _ { i } \leq 1 , \sum \lambda _ { i } = 1$ ; confidence 0.991

34. m13003027.png ; $1 \mapsto 10$ ; confidence 0.991

35. m120130123.png ; $( L _ { 0 } \approx 0 )$ ; confidence 0.991

36. t120070121.png ; $\eta ( q ) = q ^ { 1 / 24 } \prod _ { i = 1 } ^ { \infty } ( 1 - q ^ { i } )$ ; confidence 0.991

37. g120040124.png ; $1 \leq s \leq m / ( m - 1 )$ ; confidence 0.991

38. c12028062.png ; $H ^ { n + 1 } ( G , A )$ ; confidence 0.991

39. f12023095.png ; $[ \mathcal{L} ( K ) , \mathcal{L} ( L ) ] = \mathcal{L} ( [ K , L ] )$ ; confidence 0.991

40. f12023068.png ; $P + A$ ; confidence 0.991

41. b13006071.png ; $\| V \| _ { 2 } = \| V ^ { - 1 } \| _ { 2 } = 1$ ; confidence 0.991

42. z13008017.png ; $z = x + i y = r e ^ { i \theta }$ ; confidence 0.991

43. l06002019.png ; $L ( \pi + x ) = \pi \operatorname { ln } 2 + L ( x ).$ ; confidence 0.991

44. b13001087.png ; $z \mapsto ( z - \sqrt { - 1 } ) / ( z + \sqrt { - 1 } )$ ; confidence 0.991

45. b017400141.png ; $( x , t )$ ; confidence 0.991

46. d130080138.png ; $\sigma ( F ^ { \prime } ( c ) ) \subset \Delta \cup \{ 1 \}$ ; confidence 0.991

47. a110610124.png ; $K ( Y )$ ; confidence 0.991

48. g04354031.png ; $1 / p$ ; confidence 0.991

49. b017470110.png ; $\{ x _ { i } \}$ ; confidence 0.991

50. o12001035.png ; $O ( \varepsilon ^ { 2 } ).$ ; confidence 0.991

51. b120400102.png ; $0 \rightarrow G \times ^ { R } H _ { R } \rightarrow G \times ^ { R } V \rightarrow \xi \rightarrow 0.$ ; confidence 0.991

52. d13018019.png ; $f \in \mathcal{A} ( X )$ ; confidence 0.991

53. r12002017.png ; $M _ { 11 } ( q ) \ddot { q } _ { 1 } + M _ { 12 } ( q ) \ddot { q } _ { 2 } + F _ { 1 } ( q , \dot { q } ) = \tau _ { 1 },$ ; confidence 0.991

54. c13025041.png ; $N _ { k } ( t ) - \int _ { 0 } ^ { t } \lambda _ { k } ( s ) d s$ ; confidence 0.991

55. f12014018.png ; $D ( h )$ ; confidence 0.991

56. k12010027.png ; $P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \}$ ; confidence 0.991

57. k13007041.png ; $| u ( x , t ) |$ ; confidence 0.991

58. v12004019.png ; $\Delta ( G ) + \mu ( G )$ ; confidence 0.991

59. l0595705.png ; $\xi ( s )$ ; confidence 0.991

60. b13020098.png ; $\alpha \neq 0$ ; confidence 0.991

61. c1300909.png ; $T _ { N } ( x )$ ; confidence 0.991

62. d03027036.png ; $= \frac { 1 } { 2 } + \sum _ { k = 1 } ^ { n - p } \operatorname { cos } k t + \sum _ { k = 1 } ^ { p } ( 1 - \frac { k } { p + 1 } ) \operatorname { cos } ( n - p + k ) t.$ ; confidence 0.991

63. d12018044.png ; $H ^ { p } ( d m )$ ; confidence 0.991

64. c12021088.png ; $\mathcal{L} ( \Lambda _ { n } | P _ { n } ) \Rightarrow N ( - \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.991

65. c13026039.png ; $d V _ { A }$ ; confidence 0.991

66. b11022030.png ; $\Lambda ( M , s ) = \Lambda ( h ^ { i } ( X ) , s ) = L _ { \infty } ( M , s ) L ( M , s )$ ; confidence 0.991

67. c0270007.png ; $x > 1$ ; confidence 0.991

68. z13003045.png ; $( Z \overline { f } ) ( t , w ) = \overline { ( Z f ) } ( t , - w ).$ ; confidence 0.991

69. p12011031.png ; $E ( G )$ ; confidence 0.991

70. a13007095.png ; $\alpha \geq 3$ ; confidence 0.991

71. b120210131.png ; $w _ { 1 } \leq w _ { 2 }$ ; confidence 0.991

72. c130070200.png ; $r T = M ( T ) ^ { \lambda }$ ; confidence 0.991

73. n067520421.png ; $\phi _ { i } = \lambda _ { i } y _ { i } a$ ; confidence 0.991

74. f12011060.png ; $F _ { j } ( z ) \chi _ { k } ( z )$ ; confidence 0.990

75. b130200138.png ; $( G _ { i } | G _ { j } ) = 0$ ; confidence 0.990

76. w12009054.png ; $\Lambda ^ { + } ( n , r )$ ; confidence 0.990

77. t12015062.png ; $\xi \in \mathcal{A} _ { 0 }$ ; confidence 0.990

78. c02727071.png ; $> 4$ ; confidence 0.990

79. v12002095.png ; $G = f \circ g ^ { - 1 } : Y \rightarrow Y$ ; confidence 0.990

80. m13013036.png ; $\tau ( G ) = ( - 1 ) ^ { s + t } \operatorname { det } ( L ^ { * } )$ ; confidence 0.990

81. q12001045.png ; $\mathcal{X} _ { t } ( q ) = q ( t )$ ; confidence 0.990

82. d12029028.png ; $f ( q ) = c / q ^ { 2 }$ ; confidence 0.990

83. c02547049.png ; $( M , \alpha )$ ; confidence 0.990

84. b12021086.png ; $\Pi \subset \Delta ^ { + }$ ; confidence 0.990

85. s12021018.png ; $\Delta ^ { p }$ ; confidence 0.990

86. b12034079.png ; $f \in H ( M )$ ; confidence 0.990

87. e13001010.png ; $\operatorname { deg } f _ { i } \leq d$ ; confidence 0.990

88. r08232048.png ; $H ^ { \delta }$ ; confidence 0.990

89. e035000133.png ; $\mathcal{H} _ { \epsilon } ^ { \prime } ( \xi ) = \frac { 1 } { 2 } \sum _ { i = 1 } ^ { \infty } \operatorname { log } \operatorname { max } \left\{ \frac { \lambda _ { i } } { f ( \epsilon ) } , 1 \right\}$ ; confidence 0.990

90. a130240494.png ; $k = 1$ ; confidence 0.990

91. f130100108.png ; $\operatorname{supp} \psi \subset V$ ; confidence 0.990

92. d12014048.png ; $f : \mathbf{F} _ { p } \rightarrow \mathbf{F} _ { p }$ ; confidence 0.990

93. p13007080.png ; $C ( K , \Omega ) =$ ; confidence 0.990

94. m065560229.png ; $| z | < \rho$ ; confidence 0.990

95. b13007075.png ; $n \neq 1$ ; confidence 0.990

96. p120170104.png ; $t$ ; confidence 0.990

97. c13007026.png ; $\left( \begin{array} { c } { m + 2 } \\ { 2 } \end{array} \right) = \frac { ( m + 2 ) ( m + 1 ) } { 2 }$ ; confidence 0.990

98. f13024036.png ; $L ( \varepsilon )$ ; confidence 0.990

99. a01152030.png ; $G ( x )$ ; confidence 0.990

100. a130240340.png ; $\mathcal{H} : \mathbf{X} _ { 3 } \Gamma = 0$ ; confidence 0.990

101. l11003075.png ; $\int _ { \Omega } \varphi d \mu$ ; confidence 0.990

102. f13010012.png ; $N _ { p } ( f ) = ( \int _ { G } | f ( x ) | ^ { p } d m ( x ) ) ^ { 1 / p }$ ; confidence 0.990

103. c1200302.png ; $x ^ { \prime } = f ( t , x )$ ; confidence 0.990

104. f13024040.png ; $L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$ ; confidence 0.990

105. d12018095.png ; $x + t$ ; confidence 0.990

106. f12023059.png ; $K \in \Omega ^ { k + 1 } ( M , T M )$ ; confidence 0.990

107. n12002075.png ; $V _ { F } ( m )$ ; confidence 0.990

108. f12009037.png ; $| f ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( H _ { K } ( \zeta ) + \epsilon | \zeta | ).$ ; confidence 0.990

109. h12012084.png ; $\phi _ { \infty } = \phi \Sigma _ { \infty } \phi$ ; confidence 0.990

110. d12018042.png ; $L ^ { p } ( X , m )$ ; confidence 0.990

111. f120080134.png ; $M _ { 0 } A ( G )$ ; confidence 0.990

112. d12003040.png ; $f \in \Delta$ ; confidence 0.990

113. b1301507.png ; $z ( \Gamma ) = x + i y$ ; confidence 0.990

114. e12011032.png ; $c ^ { - 1 } \partial \mathbf{D} / \partial t$ ; confidence 0.990

115. f04221039.png ; $U _ { \lambda }$ ; confidence 0.990

116. a12010023.png ; $A : D ( A ) \subset X \rightarrow 2 ^ { X }$ ; confidence 0.990

117. s09067051.png ; $M _ { k } \times W$ ; confidence 0.990

118. w12008014.png ; $W ( f )$ ; confidence 0.990

119. t13005095.png ; $\mathcal{B} \subseteq \mathcal{L} ( \mathcal{H} )$ ; confidence 0.990

120. b12044031.png ; $R G \rightarrow k G$ ; confidence 0.990

121. s12026029.png ; $\Gamma ^ { \pm }$ ; confidence 0.990

122. t1301008.png ; $0 \rightarrow H \rightarrow T _ { 1 } \rightarrow T _ { 2 } \rightarrow 0$ ; confidence 0.990

123. e120260113.png ; $q \delta _ { 0 } + p \delta _ { 1 }$ ; confidence 0.990

124. b13019085.png ; $7 / 17 = 0.4118 \dots$ ; confidence 0.990

125. f12010063.png ; $j ( z )$ ; confidence 0.990

126. c12016017.png ; $i = 1 : j - 1$ ; confidence 0.990

127. r13007077.png ; $| f ( y ) | \leq \| f \| \| K ( x , y ) \| = 0$ ; confidence 0.990

128. s12025041.png ; $h ( x ) = x ^ { \alpha } \operatorname { exp } ( - x )$ ; confidence 0.990

129. a12012080.png ; $t \geq 0$ ; confidence 0.990

130. b12022039.png ; $f ( t , x , \xi ) \in \mathbf{R} ^ { p }$ ; confidence 0.990

131. l13006066.png ; $p _ { 0 } = 0 , p _ { 1 } = 1,$ ; confidence 0.990

132. j120020132.png ; $u ( e ^ { i \vartheta } ) = \operatorname { lim } _ { r \uparrow 1 } \operatorname { Re } f ( r e ^ { i \vartheta } )$ ; confidence 0.990

133. a120280101.png ; $\{ \phi _ { t } \} _ { t \in G }$ ; confidence 0.990

134. w12003028.png ; $\omega _ { 0 } \leq \alpha \leq \mu$ ; confidence 0.990

135. g1300307.png ; $\mathcal{V} = \mathcal{C} ^ { \infty } ( \Omega )$ ; confidence 0.990

136. d13013061.png ; $\theta > \pi / 2 - \epsilon$ ; confidence 0.990

137. s13066010.png ; $\tau \in \mathbf{T}$ ; confidence 0.990

138. c120180508.png ; $C ^ { \infty } ( N )$ ; confidence 0.990

139. l11004099.png ; $( x \wedge y ^ { - 1 } x y ) \vee e = e$ ; confidence 0.990

140. l1300502.png ; $L ( \mathbf{a} )$ ; confidence 0.990

141. b12013014.png ; $f ( z ) = \int _ { G } f ( w ) \overline { k _ { z } ( w ) } d A ( w )$ ; confidence 0.990

142. e13004010.png ; $\Omega ( t ) \psi ( 0 )$ ; confidence 0.990

143. k05584015.png ; $[ \mathcal{K} _ { + } , \mathcal{K} _ { - } ] = \{ 0 \}$ ; confidence 0.990

144. s085580161.png ; $t = t ( s )$ ; confidence 0.990

145. s12033065.png ; $n \leq 2,000,000$ ; confidence 0.990

146. l06005053.png ; $x ^ { t }$ ; confidence 0.990

147. t12015039.png ; $\eta \in \mathcal{A} ^ { \prime }$ ; confidence 0.990

148. i130030127.png ; $W_-$ ; confidence 0.990

149. w120090357.png ; $G _ { K } ( V )$ ; confidence 0.990

150. c13019024.png ; $\varphi ( t , x ) \in L$ ; confidence 0.990

151. m130260158.png ; $b _ { 1 } b _ { 2 } = b _ { 2 } b _ { 1 }$ ; confidence 0.990

152. a13024097.png ; $y = \alpha + \beta t +\text{error}$ ; confidence 0.990

153. b1300902.png ; $u ( x , t ) : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.990

154. m13002069.png ; $P ^ { 1 } \times P ^ { 1 }$ ; confidence 0.990

155. f120150122.png ; $F ( x ) = y$ ; confidence 0.990

156. b12030012.png ; $\eta + q$ ; confidence 0.990

157. o13001055.png ; $\Gamma u = u$ ; confidence 0.990

158. i130030167.png ; $\phi = 1 \in H ^ { 0 } ( \Gamma )$ ; confidence 0.990

159. l120090117.png ; $\Gamma ( A _ { 2 } )$ ; confidence 0.990

160. f12023056.png ; $i ( [ K , L ] ^ { \wedge } ) = [ i _ { K } , i _ { L } ]$ ; confidence 0.990

161. j05409033.png ; $\Delta _ { 0 } = 1$ ; confidence 0.990

162. s13044021.png ; $X \mapsto D X$ ; confidence 0.990

163. w13014024.png ; $r ( x ) = H ( x + 1 ) - H ( x - 1 ).$ ; confidence 0.990

164. v13011081.png ; $\approx \rho \frac { V ^ { 2 } } { l } \left[ 1.587 \frac { U } { V } - 0.628 ( \frac { U } { V } ) ^ { 2 } \right],$ ; confidence 0.990

165. z12001037.png ; $U = O _ { 1 } ( m )$ ; confidence 0.990

166. w120110187.png ; $G ^ { \sigma }$ ; confidence 0.990

167. b12005013.png ; $U \subset E$ ; confidence 0.990

168. b12020016.png ; $\theta ( z )$ ; confidence 0.990

169. y1200106.png ; $R _ { 23 } = 1 \otimes _ { k } R$ ; confidence 0.990

170. t12006091.png ; $R _ { j } ^ { 0 } \in \mathbf{R} ^ { 3 }$ ; confidence 0.990

171. z1300801.png ; $D = \{ ( x , y ) \in \mathbf{R} ^ { 2 } : x ^ { 2 } + y ^ { 2 } \leq 1 \}$ ; confidence 0.990

172. t120010148.png ; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990

173. a1200203.png ; $A \subset Y$ ; confidence 0.990

174. d11022035.png ; $L y = g$ ; confidence 0.990

175. i13003026.png ; $[ T ^ { * } M ]$ ; confidence 0.990

176. k055840354.png ; $C = C ^ { * }$ ; confidence 0.990

177. t13021052.png ; $2 / ( 3 N / 2 )$ ; confidence 0.990

178. p13014059.png ; $f \in C ^ { k - 1 } ( U _ { \rho } )$ ; confidence 0.990

179. s12025037.png ; $h ( x ) = ( 1 - x ^ { 2 } ) ^ { \lambda - 1 / 2 }$ ; confidence 0.990

180. b13027021.png ; $\operatorname{ind}( T - \lambda ) = 0$ ; confidence 0.990

181. b12032059.png ; $F ( r s , r t ) = r F ( s , t )$ ; confidence 0.990

182. g13003085.png ; $V \subset \Omega \backslash \Gamma$ ; confidence 0.990

183. x12001076.png ; $\tau ( A ) \subseteq R$ ; confidence 0.990

184. f0404909.png ; $\nu _ { 1 } > 2$ ; confidence 0.990

185. s0864307.png ; $\alpha ^ { \prime } \subset \alpha$ ; confidence 0.990

186. b1102209.png ; $H _ { DR } ( X )$ ; confidence 0.990

187. w12018028.png ; $N - 1 / 2$ ; confidence 0.990

188. b12021068.png ; $\theta _ { \lambda }$ ; confidence 0.990

189. s13041062.png ; $z > 1$ ; confidence 0.990

190. v12006036.png ; $k B _ { 1 } ( h / k ) = G _ { 1 } + 1 / 2$ ; confidence 0.990

191. t12014036.png ; $T _ { \phi \psi } = T _ { \phi } T _ { \psi }$ ; confidence 0.990

192. i13005060.png ; $A _ { + } ( x , y ) + F _ { + } ( x + y ) + \int _ { x } ^ { \infty } A ( x , t ) F _ { + } ( t , y ) d t = 0,$ ; confidence 0.990

193. b1204303.png ; $\eta : \underline { 1 } \rightarrow B$ ; confidence 0.990

194. v1200308.png ; $\mu \ll \lambda$ ; confidence 0.990

195. f13002024.png ; $( - q )$ ; confidence 0.990

196. j120020180.png ; $V _ { t } ^ { j }$ ; confidence 0.990

197. a130040147.png ; $\square \varphi \rightarrow \psi \in T$ ; confidence 0.990

198. l12009037.png ; $\{ f , g \} _ { P } = P ( d f , d g )$ ; confidence 0.990

199. h1200404.png ; $A \subseteq_{*} B$ ; confidence 0.990

200. l12012088.png ; $M = K_{totS }$ ; confidence 0.990

201. b0168607.png ; $f \equiv 0$ ; confidence 0.990

202. c12019042.png ; $f : M \rightarrow B \Gamma$ ; confidence 0.990

203. b12020022.png ; $e ^ { i t }$ ; confidence 0.990

204. g13001078.png ; $0 \leq c \leq q - 2$ ; confidence 0.990

205. l12010077.png ; $L ^ { 2 } ( \mathbf{R} ^ { n N } )$ ; confidence 0.990

206. d13017078.png ; $\Delta u + k ^ { 2 } u = 0$ ; confidence 0.990

207. f130100124.png ; $[ \epsilon ( x ) ]$ ; confidence 0.990

208. i13005038.png ; $t ( k ) = \frac { 1 } { \alpha ( k ) }.$ ; confidence 0.990

209. l110020144.png ; $( x \wedge y ^ { - 1 } x ^ { - 1 } y ) \vee e = e$ ; confidence 0.990

210. d11022032.png ; $b \leq \infty$ ; confidence 0.990

211. f12009029.png ; $| \mathcal{F} \mu ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( H _ { K } ( \zeta ) + \epsilon | \zeta | ),$ ; confidence 0.990

212. i12010029.png ; $C ( t ) = ( 4 K B - A ^ { 2 } ) / 4 f ( t ) ^ { 2 }$ ; confidence 0.990

213. a130240172.png ; $\gamma _ { j } = 0$ ; confidence 0.990

214. i13006027.png ; $\mathbf{R} _ { + } : = [ 0 , \infty )$ ; confidence 0.990

215. e12006031.png ; $V Y$ ; confidence 0.990

216. a12013051.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , Y _ { n } )$ ; confidence 0.990

217. s12004043.png ; $s _ { \lambda } = \sum _ { \mu } K _ { \lambda \mu } m _ { \mu }.$ ; confidence 0.990

218. l12009064.png ; $( P \times P ) / G$ ; confidence 0.990

219. p130100131.png ; $\Omega \subset \mathbf{C} \times \mathbf{R}$ ; confidence 0.990

220. b11052022.png ; $\omega \in \Omega$ ; confidence 0.990

221. b12001026.png ; $= \frac { \partial u } { \partial \xi } - 2 \lambda \operatorname { sin } ( \frac { u ( \xi , \eta ) + u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { 2 } ),$ ; confidence 0.990

222. g12005040.png ; $A ( \xi , \tau ) : \mathbf{R} ^ { n } \times \mathbf{R} ^ { + } \rightarrow \mathbf{C}$ ; confidence 0.990

223. t12003011.png ; $\mu ( z ) ( d \overline{z} / d z )$ ; confidence 0.990

224. f13010079.png ; $A _ { p } ( G ) ^ { \prime }$ ; confidence 0.990

225. w120030104.png ; $\{ ( x _ { i } , x _ { i } ^ { * } ) : i \in I \} \subset X \times X ^ { * }$ ; confidence 0.990

226. f12011062.png ; $\sigma _ { j } = \pm 1$ ; confidence 0.990

227. w130080204.png ; $t _ { S } ^ { H }$ ; confidence 0.990

228. e1201002.png ; $\mathbf{F} = q \mathbf{E} ^ { \prime },$ ; confidence 0.990

229. i13008016.png ; $( \alpha : \beta : \gamma )$ ; confidence 0.990

230. j13007051.png ; $\phi _ { \eta } ( F ( z ) ) \leq d ( \omega ) \phi _ { \omega } ( z )$ ; confidence 0.990

231. p13010062.png ; $H _ { k } ( X , G )$ ; confidence 0.990

232. a13027034.png ; $\{ \psi _ { n } \} \subset Y$ ; confidence 0.990

233. c12030077.png ; $n = m$ ; confidence 0.990

234. s12018015.png ; $\alpha \mapsto \alpha ^ { * }$ ; confidence 0.990

235. g0430204.png ; $\pi _ { k } : M _ { k } \rightarrow M$ ; confidence 0.990

236. j13002037.png ; $1 \leq i < j < k \leq n$ ; confidence 0.990

237. e120190197.png ; $\Phi _ { 2 } = ( h _ { 3 } , h _ { 2 } , p , W _ { 2 } ^ { + } )$ ; confidence 0.990

238. k05584057.png ; $x , y \in \mathcal{H}$ ; confidence 0.990

239. f1202308.png ; $\Omega ^ { 0 } ( M ; T M ) = \Gamma ( T M ) = \mathcal{X} ( M )$ ; confidence 0.990

240. b12001024.png ; $\xi ^ { \prime } ( \xi , \eta ) = \xi , \quad \eta ^ { \prime } ( \xi , \eta ) = \eta,$ ; confidence 0.990

241. b12020046.png ; $\mathcal{H} ( \theta )$ ; confidence 0.990

242. s13045071.png ; $\Pi ( u , v ) = u v$ ; confidence 0.990

243. b13016070.png ; $x \neq y$ ; confidence 0.990

244. n067520225.png ; $A \rightarrow C ^ { T } A C$ ; confidence 0.990

245. b13027051.png ; $X \mapsto \operatorname { Ext } ( X )$ ; confidence 0.990

246. a130040329.png ; $E ( x , y )$ ; confidence 0.990

247. s13051093.png ; $O ( \operatorname { log } ( | V | + | E | ) )$ ; confidence 0.990

248. b12027097.png ; $\eta _ { 0 } = \{ Z ( u ) : 0 \leq u < T _ { 0 } \}$ ; confidence 0.990

249. a012950134.png ; $2 r - 1$ ; confidence 0.990

250. m130230131.png ; $K _ { X ^ { \prime } } + B ^ { \prime }$ ; confidence 0.990

251. n067520285.png ; $K _ { \rho } F = \xi F ( \xi )$ ; confidence 0.990

252. f13013022.png ; $F \in \mathcal{F}$ ; confidence 0.990

253. r13008098.png ; $\delta _ { j m }$ ; confidence 0.990

254. f11001035.png ; $\operatorname{Orth} ( A )$ ; confidence 0.990

255. b120430145.png ; $H _ { 1 } = B \rtimes H$ ; confidence 0.990

256. a13032044.png ; $r = ( 1 - \theta ) / \theta$ ; confidence 0.990

257. i130060177.png ; $y \geq x \geq a$ ; confidence 0.990

258. c12021024.png ; $P _ { n } ( A ) = 0$ ; confidence 0.990

259. e12023029.png ; $\sigma ^ { 1 } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) ),$ ; confidence 0.990

260. f12023037.png ; $[ D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - ( - 1 ) ^ { k _ { 1 } k _ { 2 } } D _ { 2 } D _ { 1 }$ ; confidence 0.990

261. a01318024.png ; $( u , v )$ ; confidence 0.990

262. m12001032.png ; $T _ { \lambda } = T ( I + \lambda T ) ^ { - 1 }.$ ; confidence 0.990

263. g13003045.png ; $\mathcal{A} ( \Omega ) = \mathcal{B} / \mathcal{I} _ { 0 }$ ; confidence 0.990

264. b1202406.png ; $\delta = \operatorname { diag } ( z ^ { k _ { i } } )$ ; confidence 0.989

265. o13008013.png ; $\int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0.$ ; confidence 0.989

266. e12026088.png ; $\Lambda ( \mu )$ ; confidence 0.989

267. w130080176.png ; $F B$ ; confidence 0.989

268. l05700080.png ; $f : \mathbf{N} \rightarrow \mathbf{N} $ ; confidence 0.989

269. b12034043.png ; $K \subset D$ ; confidence 0.989

270. e03550044.png ; $( x _ { 0 } , \xi _ { 0 } )$ ; confidence 0.989

271. i13005095.png ; $q ( x ) = 0$ ; confidence 0.989

272. c12028030.png ; $B \rightarrow C$ ; confidence 0.989

273. f12011089.png ; $f ( x ) = \sum _ { \sigma } F _ { \sigma } ( x + i \Gamma _ { \sigma } 0 ),$ ; confidence 0.989

274. b12016014.png ; $p = x _ { 1 } + \frac { 1 } { 2 } x _ { 3 } , \quad q = x _ { 2 } + \frac { 1 } { 2 } x _ { 3 }$ ; confidence 0.989

275. b12004084.png ; $f \in L _ { 1 } + L _ { \infty }$ ; confidence 0.989

276. m1301308.png ; $M = [ m _ { i j } ]$ ; confidence 0.989

277. a12006033.png ; $\frac { d u } { d t } + A u = f ( t ) , t \in [ 0 , T ],$ ; confidence 0.989

278. g1200501.png ; $\frac { \partial \psi } { \partial t } = \mathcal{L} _ { R } \psi + \mathcal{N} ( \psi ),$ ; confidence 0.989

279. b11066086.png ; $m > 1$ ; confidence 0.989

280. r13007028.png ; $A \varphi _ { j } = \lambda _ { j } \varphi _ { j }$ ; confidence 0.989

281. p1201204.png ; $( + + + - )$ ; confidence 0.989

282. h04807040.png ; $T ^ { 2 } = n ( \overline{X} - \mu ) ^ { \prime } S ^ { - 1 } ( \overline{X} - \mu ),$ ; confidence 0.989

283. a130050293.png ; $n \rightarrow \infty$ ; confidence 0.989

284. n067520497.png ; $U \in H$ ; confidence 0.989

285. e12024026.png ; $K ( L )$ ; confidence 0.989

286. m13025035.png ; $( \varphi u ) ( \varphi v )$ ; confidence 0.989

287. k12010024.png ; $( z _ { j } ^ { \prime } , t _ { j } )$ ; confidence 0.989

288. a01020065.png ; $\alpha : A \rightarrow B$ ; confidence 0.989

289. s13004070.png ; $X = \Gamma \backslash D$ ; confidence 0.989

290. b12022027.png ; $\rho ( t , x )$ ; confidence 0.989

291. m120030115.png ; $[ c , \infty )$ ; confidence 0.989

292. a12020080.png ; $\lambda \in \mathbf{F} \backslash \{ 0 \}$ ; confidence 0.989

293. n12002022.png ; $M _ { \mu }$ ; confidence 0.989

294. l12015024.png ; $[ w , v ] = w \otimes v$ ; confidence 0.989

295. w12009053.png ; $\Lambda ( n , r )$ ; confidence 0.989

296. b12016031.png ; $1 \leq i \leq 3$ ; confidence 0.989

297. d13008091.png ; $F _ { z _ { 0 } } ( x , R )$ ; confidence 0.989

298. d12019011.png ; $H _ { 0 } ^ { 1 } ( \Omega ) = W _ { 0 } ^ { 1,2 } ( \Omega )$ ; confidence 0.989

299. k05584028.png ; $\kappa = \operatorname { dim } \mathcal{K} _ { + }$ ; confidence 0.989

300. b11066070.png ; $T ^ { * } ( 1 )$ ; confidence 0.989

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/16. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/16&oldid=44426