Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/77"
(AUTOMATIC EDIT of page 77 out of 77 with 33 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 77 out of 77 with 33 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011012.png ; $f ^ { \circ } ( x ; v ) : = \operatorname { liminf } _ { y \rightarrow x , t } \operatorname { lo } \frac { f ( y + t v ) - f ( y ) } { t }$ ; confidence 0.055 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160110.png ; $y _ { i } = e ^ { i z } \prod _ { j = 1 } ^ { p _ { t } } x _ { i j } ^ { b j } \prod _ { j ^ { \prime } = p _ { t + 1 } } ^ { p } ( 1 + x _ { i j ^ { \prime } } ) ^ { b j ^ { \prime } } e ^ { \mu i }$ ; confidence 0.054 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021090.png ; $\sigma _ { Q _ { l } }$ ; confidence 0.054 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030095.png ; $\omega \{ K _ { i } \} ( S _ { 1 } \ldots S _ { i } S _ { j S } ^ { * } \ldots S _ { j 1 } ^ { * } ) = \prod _ { k = 1 } ^ { r } \{ S _ { j _ { k } } , K _ { k } S _ { k } \} \delta _ { r , s }$ ; confidence 0.054 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028042.png ; $| x g _ { 1 } | = [ x ]$ ; confidence 0.053 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005061.png ; $M ( H _ { b } ( \mathfrak { c } _ { 0 } ) ) = \{ \tilde { \delta _ { z } } : z \in l _ { \infty } \}$ ; confidence 0.053 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004080.png ; $S _ { 1,0 } ^ { \langle x _ { 0 } }$ ; confidence 0.053 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006010.png ; $100 = 1121$ ; confidence 0.053 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004058.png ; $\phi _ { k } = \frac { 1 } { \{ \rho ^ { \prime } , \zeta \} ^ { N } } \{ \frac { \rho ^ { \prime } ( \zeta ) } { \{ \rho ^ { \prime } ( \zeta ) , \zeta \} } , z \} ^ { k } \sigma$ ; confidence 0.053 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300702.png ; $h _ { t } + h _ { X \times X x } + h _ { X X } + \frac { 1 } { 2 } h _ { X } ^ { 2 } = 0$ ; confidence 0.053 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007051.png ; $R _ { N } - 1 : = k [ X _ { 1 } , \dots , X _ { N } - 1 ]$ ; confidence 0.053 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007040.png ; $\left\{ \begin{array} { c } { M ( u ) = \phi \quad \text { on } D , } \\ { u | \partial D = f } \end{array} \right.$ ; confidence 0.053 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013061.png ; $I _ { v i } ^ { q }$ ; confidence 0.052 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180493.png ; $+ 2 r d t \otimes d t + t d t \otimes d r + t d r \otimes d t$ ; confidence 0.052 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050148.png ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ { x _ { 2 } } | ^ { - r _ { m } z } =$ ; confidence 0.052 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690036.png ; $P ^ { \prime } I F$ ; confidence 0.052 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010110.png ; $\operatorname { sin } C _ { C } D ( A )$ ; confidence 0.052 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016031.png ; $e ( A ( q , d ) , f ) \leq C _ { d } n ^ { - k } ( \operatorname { log } n ) ^ { ( \alpha - 1 ) / ( k + 1 ) } \| f \| _ { k }$ ; confidence 0.052 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293016.png ; $i _ { 2 i }$ ; confidence 0.051 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202502.png ; $\int _ { a } ^ { b } P _ { n } ( x ) E _ { n + 1 } ( x ) x ^ { k } h ( x ) d x = 0 , \quad k = 1 , \dots , n$ ; confidence 0.051 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020069.png ; $S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t _ { a } \lambda \square \text { tableau } \}$ ; confidence 0.051 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s120200104.png ; $G L _ { x }$ ; confidence 0.051 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026072.png ; $\tilde { A } _ { s i d }$ ; confidence 0.051 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003033.png ; $C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) \not A ^ { 2 } ( \Gamma \backslash G ( R ) \otimes M _ { C } )$ ; confidence 0.051 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220106.png ; $Q m l$ ; confidence 0.051 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004036.png ; $11$ ; confidence 0.051 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240278.png ; $P ( \hat { \psi } - S \hat { \sigma } _ { \hat { \psi } } \leq \psi \leq \hat { \psi } + S \hat { \sigma } _ { \hat { \psi } } , \forall \psi \in L ) = 1 - \alpha$ ; confidence 0.051 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201607.png ; $\hat { I } _ { B }$ ; confidence 0.051 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032091.png ; $\frac { k } { k + 1 } \frac { \operatorname { log } a _ { \mathfrak { W } } } { \operatorname { log } m } \leq \frac { \operatorname { log } a _ { \mathfrak { N } } } { \operatorname { log } n } \leq \frac { k + 1 } { k } \frac { \operatorname { log } a _ { \mathfrak { N } } } { \operatorname { log } m }$ ; confidence 0.050 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200801.png ; $\left. \begin{array}{l}{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \{ \alpha _ { j } , ( x ) \frac { \partial u } { \partial x _ { j } } \} + c ( x ) u + f ( x , t ) }\\{ ( x , t ) \in \Omega \times [ 0 , T ] }\\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega }\end{array} \right.$ ; confidence 0.050 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702010.png ; $F _ { R } + 1 \rightarrow F _ { N } + 1 / l ^ { n } F _ { N } + 1$ ; confidence 0.050 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006011.png ; $\| A \| = \operatorname { max } _ { x \neq 0 } \| A x \| / \| x \| = \operatorname { max } _ { | x | } \| = 1 \| A x \|$ ; confidence 0.050 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009061.png ; $\Gamma / \Gamma ^ { p m } \rightarrow \Gamma / \Gamma ^ { p , R }$ ; confidence 0.050 |
Revision as of 00:10, 13 February 2020
List
1. ; $f ^ { \circ } ( x ; v ) : = \operatorname { liminf } _ { y \rightarrow x , t } \operatorname { lo } \frac { f ( y + t v ) - f ( y ) } { t }$ ; confidence 0.055
2. ; $y _ { i } = e ^ { i z } \prod _ { j = 1 } ^ { p _ { t } } x _ { i j } ^ { b j } \prod _ { j ^ { \prime } = p _ { t + 1 } } ^ { p } ( 1 + x _ { i j ^ { \prime } } ) ^ { b j ^ { \prime } } e ^ { \mu i }$ ; confidence 0.054
3. ; $\sigma _ { Q _ { l } }$ ; confidence 0.054
4. ; $\omega \{ K _ { i } \} ( S _ { 1 } \ldots S _ { i } S _ { j S } ^ { * } \ldots S _ { j 1 } ^ { * } ) = \prod _ { k = 1 } ^ { r } \{ S _ { j _ { k } } , K _ { k } S _ { k } \} \delta _ { r , s }$ ; confidence 0.054
5. ; $| x g _ { 1 } | = [ x ]$ ; confidence 0.053
6. ; $M ( H _ { b } ( \mathfrak { c } _ { 0 } ) ) = \{ \tilde { \delta _ { z } } : z \in l _ { \infty } \}$ ; confidence 0.053
7. ; $S _ { 1,0 } ^ { \langle x _ { 0 } }$ ; confidence 0.053
8. ; $100 = 1121$ ; confidence 0.053
9. ; $\phi _ { k } = \frac { 1 } { \{ \rho ^ { \prime } , \zeta \} ^ { N } } \{ \frac { \rho ^ { \prime } ( \zeta ) } { \{ \rho ^ { \prime } ( \zeta ) , \zeta \} } , z \} ^ { k } \sigma$ ; confidence 0.053
10. ; $h _ { t } + h _ { X \times X x } + h _ { X X } + \frac { 1 } { 2 } h _ { X } ^ { 2 } = 0$ ; confidence 0.053
11. ; $R _ { N } - 1 : = k [ X _ { 1 } , \dots , X _ { N } - 1 ]$ ; confidence 0.053
12. ; $\left\{ \begin{array} { c } { M ( u ) = \phi \quad \text { on } D , } \\ { u | \partial D = f } \end{array} \right.$ ; confidence 0.053
13. ; $I _ { v i } ^ { q }$ ; confidence 0.052
14. ; $+ 2 r d t \otimes d t + t d t \otimes d r + t d r \otimes d t$ ; confidence 0.052
15. ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ { x _ { 2 } } | ^ { - r _ { m } z } =$ ; confidence 0.052
16. ; $P ^ { \prime } I F$ ; confidence 0.052
17. ; $\operatorname { sin } C _ { C } D ( A )$ ; confidence 0.052
18. ; $e ( A ( q , d ) , f ) \leq C _ { d } n ^ { - k } ( \operatorname { log } n ) ^ { ( \alpha - 1 ) / ( k + 1 ) } \| f \| _ { k }$ ; confidence 0.052
19. ; $i _ { 2 i }$ ; confidence 0.051
20. ; $\int _ { a } ^ { b } P _ { n } ( x ) E _ { n + 1 } ( x ) x ^ { k } h ( x ) d x = 0 , \quad k = 1 , \dots , n$ ; confidence 0.051
21. ; $S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t _ { a } \lambda \square \text { tableau } \}$ ; confidence 0.051
22. ; $G L _ { x }$ ; confidence 0.051
23. ; $\tilde { A } _ { s i d }$ ; confidence 0.051
24. ; $C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) \not A ^ { 2 } ( \Gamma \backslash G ( R ) \otimes M _ { C } )$ ; confidence 0.051
25. ; $Q m l$ ; confidence 0.051
26. ; $11$ ; confidence 0.051
27. ; $P ( \hat { \psi } - S \hat { \sigma } _ { \hat { \psi } } \leq \psi \leq \hat { \psi } + S \hat { \sigma } _ { \hat { \psi } } , \forall \psi \in L ) = 1 - \alpha$ ; confidence 0.051
28. ; $\hat { I } _ { B }$ ; confidence 0.051
29. ; $\frac { k } { k + 1 } \frac { \operatorname { log } a _ { \mathfrak { W } } } { \operatorname { log } m } \leq \frac { \operatorname { log } a _ { \mathfrak { N } } } { \operatorname { log } n } \leq \frac { k + 1 } { k } \frac { \operatorname { log } a _ { \mathfrak { N } } } { \operatorname { log } m }$ ; confidence 0.050
30. ; $\left. \begin{array}{l}{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \{ \alpha _ { j } , ( x ) \frac { \partial u } { \partial x _ { j } } \} + c ( x ) u + f ( x , t ) }\\{ ( x , t ) \in \Omega \times [ 0 , T ] }\\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega }\end{array} \right.$ ; confidence 0.050
31. ; $F _ { R } + 1 \rightarrow F _ { N } + 1 / l ^ { n } F _ { N } + 1$ ; confidence 0.050
32. ; $\| A \| = \operatorname { max } _ { x \neq 0 } \| A x \| / \| x \| = \operatorname { max } _ { | x | } \| = 1 \| A x \|$ ; confidence 0.050
33. ; $\Gamma / \Gamma ^ { p m } \rightarrow \Gamma / \Gamma ^ { p , R }$ ; confidence 0.050
Maximilian Janisch/latexlist/latex/NoNroff/77. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/77&oldid=44487