Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/63"
(AUTOMATIC EDIT of page 63 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 63 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900192.png ; $A = \int \oplus _ { A ( \zeta ) d \mu ( \zeta ) }$ ; confidence 0.421 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004023.png ; $K _ { 7 } , 9$ ; confidence 0.421 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028018.png ; $R ( n )$ ; confidence 0.421 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019028.png ; $m _ { i } + j = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.421 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { i \nu } f ( x _ { \nu } ) + \sum _ { \rho = 1 } ^ { i } \sum _ { \nu = 1 } ^ { 2 ^ { \rho - 1 } ( n + 1 ) } \beta _ { \imath \rho \nu } f ( \xi _ { \nu } ^ { \rho } )$ ; confidence 0.421 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752023.png ; $C \in M _ { m \times m } ( K )$ ; confidence 0.421 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e1201808.png ; $\eta ( s ) = \sum _ { a _ { n } \neq 0 } \frac { a _ { n } } { | a _ { n } | } | a _ { n } | ^ { - s }$ ; confidence 0.420 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700063.png ; $( \ldots ( F A _ { 1 } ) A _ { 2 } ) \ldots A _ { N } )$ ; confidence 0.420 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200204.png ; $M = \frac { 1 } { 3 ( n + k ) } ( \frac { \delta _ { 1 } - \delta _ { 2 } } { 16 } ) ^ { 2 n + 2 k } \delta _ { 2 } ^ { m + ( n + k ) / 1 + \pi / k ) }$ ; confidence 0.420 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013088.png ; $\operatorname { Ext } _ { \mathscr { H } } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070116.png ; $\Delta \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \otimes \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.420 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007055.png ; $= ( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i ( p D + q X ) } \hat { \sigma } ( p , q ) d p d q$ ; confidence 0.420 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001010.png ; $\langle L ^ { ( 1 ) } \rangle = - A ^ { 3 } \langle L \rangle$ ; confidence 0.420 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301304.png ; $\operatorname { Ext } _ { \Delta } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024018.png ; $f : T \rightarrow GL ( n , C )$ ; confidence 0.420 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017019.png ; $E _ { \varepsilon _ { t } } = 0$ ; confidence 0.420 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021050.png ; $\overline { \delta } k : \overline { D } _ { k } \rightarrow \overline { D } _ { k - 1 }$ ; confidence 0.420 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018062.png ; $L _ { \omega _ { 1 } \omega }$ ; confidence 0.420 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006043.png ; $\tilde { \Phi } ( s ) = \operatorname { sup } \{ | s | t - \Phi ( t ) : t \geq 0 \}$ ; confidence 0.419 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020036.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 2 } ( k ) } { M _ { d } ( k ) }$ ; confidence 0.419 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c1104002.png ; $p _ { 0 }$ ; confidence 0.419 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g1300407.png ; $f _ { i } : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.419 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007021.png ; $s ^ { d }$ ; confidence 0.419 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007046.png ; $a b ^ { k } a ^ { - 1 }$ ; confidence 0.419 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005055.png ; $u ^ { p }$ ; confidence 0.419 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008046.png ; $S _ { r } = \{ ( v _ { 0 } , \dots , v _ { r } ) \in R ^ { r + 1 } : v _ { j } \geq 0 , \sum _ { j = 0 } ^ { r } v _ { j } = 1 \}$ ; confidence 0.419 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003044.png ; $J \times G$ ; confidence 0.418 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005028.png ; $C _ { f } \subset Dbx _ { f }$ ; confidence 0.418 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020160/c02016017.png ; $P _ { 3 }$ ; confidence 0.418 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038070/f0380707.png ; $I I$ ; confidence 0.418 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008023.png ; $R _ { x } ^ { m } ( r )$ ; confidence 0.418 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160136.png ; $r _ { i } ( X _ { i } )$ ; confidence 0.418 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001032.png ; $= \operatorname { lim } _ { t \rightarrow \infty } \int \prod _ { k = 1 } ^ { n } A _ { k } ( q ( t _ { k } ) ) d \mu _ { t } ( q ( . ) )$ ; confidence 0.418 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090109.png ; $H _ { \lambda } ^ { ( k ) } ( x )$ ; confidence 0.418 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042031.png ; $\Psi _ { V , W } \otimes _ { Z } = \Psi _ { V , Z } \circ \Psi _ { V , W }$ ; confidence 0.418 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020139.png ; $B _ { y } ^ { S }$ ; confidence 0.418 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630107.png ; $f - q \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } ^ { * } , \ldots , M _ { n } ^ { * } ; R ^ { n } )$ ; confidence 0.418 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006083.png ; $m ^ { T X } ( A ) = 0$ ; confidence 0.417 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027099.png ; $K [ G$ ; confidence 0.417 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024490/c02449022.png ; $m$ ; confidence 0.417 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420105.png ; $T _ { A }$ ; confidence 0.417 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007079.png ; $\operatorname { tar } K \neq 2$ ; confidence 0.417 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024084.png ; $[ \overline { t } 0 , t _ { 0 } ]$ ; confidence 0.417 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/b/b130/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006087.png ; $1 \leq \| ( \mu I - A ) ^ { - 1 } \cdot E \| \leq \| ( \mu I - A ) ^ { - 1 } \| \| E \|$ ; confidence 0.417 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012018.png ; $v ^ { \perp } \subset T _ { p } M$ ; confidence 0.417 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008055.png ; $J _ { i j }$ ; confidence 0.417 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019043.png ; $\phi _ { n } ( z ) = M _ { n } ( z ) / \sqrt { M _ { n } - 1 } M _ { n }$ ; confidence 0.417 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008059.png ; $( l _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$ ; confidence 0.417 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006086.png ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040434.png ; $F _ { 0 }$ ; confidence 0.417 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010042.png ; $C \backslash K$ ; confidence 0.416 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009015.png ; $| \mu ( f ) | \leq C _ { U } \operatorname { sup } _ { U } | f ( z ) |$ ; confidence 0.416 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007065.png ; $15$ ; confidence 0.416 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013014.png ; $[ K : Q ]$ ; confidence 0.416 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170122.png ; $20 , \dots , z _ { r } - 1$ ; confidence 0.416 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005018.png ; $\beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }$ ; confidence 0.416 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601050.png ; $Wh \pi I$ ; confidence 0.416 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007068.png ; $y _ { 0 } \in P$ ; confidence 0.416 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840107.png ; $( K _ { - } , I , J )$ ; confidence 0.416 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170103.png ; $e ^ { i t B }$ ; confidence 0.416 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004031.png ; $K _ { 5 } , n$ ; confidence 0.416 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232021.png ; $h ^ { * }$ ; confidence 0.416 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021016.png ; $R ( x ; a _ { 0 } , \dots , a _ { N } ) \equiv L [ u _ { N } ( x ) ] - f$ ; confidence 0.416 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084016.png ; $A ^ { x }$ ; confidence 0.416 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048038.png ; $H _ { S } ^ { j } ( D ) = 0$ ; confidence 0.416 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120020/k1200203.png ; $C P ^ { A }$ ; confidence 0.416 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004054.png ; $F \subset A$ ; confidence 0.416 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027059.png ; $Q$ ; confidence 0.415 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012270/a01227050.png ; $x , y$ ; confidence 0.415 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002036.png ; $m = k ^ { \prime \mu } ( \theta ) = \int _ { \overline { F } } x P ( \theta , \mu ) ( d x )$ ; confidence 0.415 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003090.png ; $C _ { n d } ^ { \infty } ( \Omega )$ ; confidence 0.415 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028045.png ; $\gamma : \omega \square Gpd \rightarrow C rs$ ; confidence 0.415 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049053.png ; $\{ \not p : p \in P \}$ ; confidence 0.415 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120130.png ; $\hat { \tau } \circ = 0$ ; confidence 0.415 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001037.png ; $C = Z ( Q ) = C _ { Q } ( R )$ ; confidence 0.415 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180266.png ; $\Lambda ^ { * } E$ ; confidence 0.415 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340112.png ; $s \in T$ ; confidence 0.415 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b12028013.png ; $\alpha \in \Omega$ ; confidence 0.415 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610150.png ; $\mu ]$ ; confidence 0.415 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004020.png ; $\{ u _ { i } ^ { n } \}$ ; confidence 0.415 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008089.png ; $= \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j }$ ; confidence 0.415 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030089.png ; $\operatorname { tr } ( K _ { i } ) = 1$ ; confidence 0.415 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026058.png ; $( a _ { n } ) _ { n \in N }$ ; confidence 0.415 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200407.png ; $\Lambda _ { T _ { R } } ( a , x ) = ( \frac { a + a ^ { - 1 } - x } { x } ) ^ { n - 1 }$ ; confidence 0.415 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013025.png ; $H _ { n } ( r , 0 ) = r ^ { n }$ ; confidence 0.415 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030038.png ; $y \in F$ ; confidence 0.415 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007040.png ; $_ { A } ^ { C }$ ; confidence 0.415 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010041.png ; $z \vec { \Delta }$ ; confidence 0.414 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050029.png ; $1 ( t , 0 )$ ; confidence 0.414 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007094.png ; $98$ ; confidence 0.414 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338016.png ; $\sigma ( a )$ ; confidence 0.414 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007047.png ; $v _ { t } / \sum _ { i = 1 } ^ { k } v _ { i , t }$ ; confidence 0.414 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013060.png ; $\delta ( 1 ) > K _ { ( 1 ) } / K _ { ( 2 ) }$ ; confidence 0.414 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005058.png ; $\tilde { \delta _ { z } } : f \in H _ { \phi } ( E ) \rightarrow \tilde { f } ( z ) \in C$ ; confidence 0.414 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020119.png ; $x ^ { ( 1 ) }$ ; confidence 0.414 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300504.png ; $P : = \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.414 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024030.png ; $f ( [ . ] )$ ; confidence 0.413 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040527.png ; $\{ A , C \}$ ; confidence 0.413 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004071.png ; $\sigma _ { 0 } = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \overline { \zeta } ; d \overline { \zeta } [ j ] \wedge d \zeta$ ; confidence 0.413 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009016.png ; $\nabla \mu \nu$ ; confidence 0.413 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220214.png ; $M H _ { R } ^ { + }$ ; confidence 0.413 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004013.png ; $y ( z )$ ; confidence 0.413 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012094.png ; $p \in S$ ; confidence 0.413 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020137.png ; $t _ { n }$ ; confidence 0.413 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002035.png ; $| n | = \operatorname { min } _ { 1 \leq i \leq d } | n _ { i } |$ ; confidence 0.413 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009061.png ; $n = k , k + 1 , \dots .$ ; confidence 0.413 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230125.png ; $X = ( X _ { 1 } , \dots , X _ { N } )$ ; confidence 0.413 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001064.png ; $k ! z / ( z - 1 ) ^ { k + 1 }$ ; confidence 0.413 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170106.png ; $C [ z , z ]$ ; confidence 0.413 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $v \in G$ ; confidence 0.413 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004020.png ; $\zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }$ ; confidence 0.413 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000117.png ; $( \lambda x , M ) N$ ; confidence 0.413 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180492.png ; $\mathfrak { g } = t ^ { 2 } \sum _ { i , j } \mathfrak { g } _ { i j } ( x , t ) d x ^ { i } \bigotimes d x ^ { j } +$ ; confidence 0.413 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006040.png ; $40$ ; confidence 0.413 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020016.png ; $p _ { N } ( s )$ ; confidence 0.413 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010032.png ; $f ( t ) = \left\{ \begin{array} { l l } { o ( \frac { t } { \operatorname { log } t } ) , } & { d = 2 } \\ { o ( t ) , } & { d \geq 3 } \end{array} \right.$ ; confidence 0.412 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004039.png ; $T _ { n } ^ { * } ( x ) : = \sigma ^ { n } + c _ { 1 } ^ { n } x + \ldots + c _ { n } ^ { n } x ^ { n }$ ; confidence 0.412 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101603.png ; $\{ c _ { 1 } , \dots , c _ { n } , \dots \}$ ; confidence 0.412 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022019.png ; $H _ { l } ^ { i } ( X )$ ; confidence 0.412 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021042.png ; $( b _ { m } ) _ { m \geq 0 }$ ; confidence 0.412 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016070.png ; $S _ { t } = \omega ( 1 - \lambda ) + \lambda S _ { t - 1 } + c _ { 1 } u _ { t } + \mu _ { t } - \lambda \mu _ { t - 1 }$ ; confidence 0.412 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430108.png ; $B SL _ { q } ( 2 )$ ; confidence 0.412 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027033.png ; $K _ { R , p } ( t ) = \frac { \operatorname { sin } ( ( 2 n + 1 - p ) t / 2 ) \operatorname { sin } ( ( p + 1 ) t / 2 ) } { 2 ( p + 1 ) \operatorname { sin } ^ { 2 } t / 2 }$ ; confidence 0.412 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054093.png ; $\alpha = 1 , \dots , m$ ; confidence 0.412 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220077.png ; $f _ { i x }$ ; confidence 0.412 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180325.png ; $A ( g ) \in S ^ { 2 } E$ ; confidence 0.412 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583020.png ; $T ^ { n } = P B ^ { n }$ ; confidence 0.412 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961013.png ; $\frac { \partial \rho } { \partial t } = \{ H , \rho \} _ { qu } . \equiv \frac { 1 } { i \hbar } [ H \rho - \rho H ]$ ; confidence 0.412 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320119.png ; $\operatorname { ev } _ { X } ( \alpha )$ ; confidence 0.412 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010046.png ; $c _ { 1 } | \xi | ^ { m _ { 1 } } \leq | b | \leq c _ { 2 } | \xi | ^ { m _ { 2 } }$ ; confidence 0.412 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090231.png ; $d \frac { G } { B } ( \lambda )$ ; confidence 0.412 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220232.png ; $CH ^ { i } ( X , j ) \otimes Q \simeq H _ { M } ^ { 2 j - i } ( X , Q ( i ) )$ ; confidence 0.412 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062056.png ; $\left\{ \begin{array} { l l } { \phi ( 0 , \lambda ) = 1 , } & { \theta ( 0 , \lambda ) = 0 } \\ { \phi ^ { \prime } ( 0 , \lambda ) = 0 , } & { \theta ^ { \prime } ( 0 , \lambda ) = 1 } \end{array} \right.$ ; confidence 0.412 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015063.png ; $\nu _ { 1 } , \dots , \nu _ { 1 }$ ; confidence 0.411 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180105.png ; $I$ ; confidence 0.411 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140145.png ; $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { N } )$ ; confidence 0.411 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001027.png ; $= \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta$ ; confidence 0.411 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052088.png ; $w _ { x } - 1$ ; confidence 0.411 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011081.png ; $\Omega \subset D ^ { \gamma }$ ; confidence 0.411 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/a/a011/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380105.png ; $w$ ; confidence 0.411 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006053.png ; $A = \operatorname { diag } \{ b _ { 11 } , \dots , b _ { n n } \}$ ; confidence 0.411 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090134.png ; $k = Q ( \mu _ { p } )$ ; confidence 0.411 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005081.png ; $h \in QS ( T )$ ; confidence 0.411 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021041.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots , \ldots , u ( z , \lambda _ { N } ) = z ^ { \lambda _ { N } } +$ ; confidence 0.410 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104012.png ; $x ^ { p } - x - p \dot { k }$ ; confidence 0.410 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040164.png ; $= D _ { t } ^ { m } u + \sum _ { j = 1 } ^ { m } \sum _ { | \alpha | \leq m - j } p _ { j , \alpha } ( t , x ) D _ { t } ^ { j } D _ { x } ^ { \alpha } u = f ( t , x ) , D _ { t } ^ { j } u ( 0 , x ) = u _ { j } ^ { 0 } ( x ) , \quad j = 0 , \ldots , m - 1$ ; confidence 0.410 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180219.png ; $h \otimes \dot { k } = ( \theta \otimes \theta ) \otimes ( \varphi \otimes \varphi ) \in S ^ { 2 } E \otimes S ^ { 2 } E$ ; confidence 0.410 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130117.png ; $K ^ { \hat { b } } ( P _ { \Lambda } )$ ; confidence 0.410 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837010.png ; $\{ \hat { U } _ { t } \}$ ; confidence 0.410 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012046.png ; $d \alpha = d a _ { N } \circ \ldots \circ d \alpha _ { 1 }$ ; confidence 0.410 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002011.png ; $A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.410 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010044.png ; $\alpha , x \in G$ ; confidence 0.410 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201202.png ; $M = \operatorname { inf } _ { p \in N } \operatorname { sup } \{ r : \operatorname { exp } _ { p } \text { injective on } B _ { r } ( 0 ) \subset T _ { p } M \}$ ; confidence 0.410 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080111.png ; $a _ { j } = \alpha _ { i }$ ; confidence 0.410 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100208.png ; $\{ G ; , e , - 1 \}$ ; confidence 0.409 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020064.png ; $H ^ { \infty }$ ; confidence 0.409 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180152.png ; $\sum _ { H : H \leq G } \mu ( H , G ) | H | ^ { S }$ ; confidence 0.409 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070135.png ; $( f ( . ) , K ( , y ) ) _ { H } = ( L F , K ( , y ) ) _ { H } =$ ; confidence 0.409 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014037.png ; $\overline { A }$ ; confidence 0.409 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200205.png ; $\alpha _ { N } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { N } ( t ) - t ) , \quad 0 \leq t \leq 1$ ; confidence 0.409 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302108.png ; $a _ { x } * a _ { x } + 1 = a _ { x }$ ; confidence 0.409 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019059.png ; $B ^ { i }$ ; confidence 0.409 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020191.png ; $g ( \overline { u } 1 )$ ; confidence 0.409 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012031.png ; $Q ( \theta | \theta ^ { ( t ) } ) = E [ \operatorname { log } L ( \theta | Y _ { aug } ) | Y _ { 0 b s } , \theta ^ { ( t ) } ]$ ; confidence 0.409 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013023.png ; $T = Fac T$ ; confidence 0.409 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png ; $C _ { \psi }$ ; confidence 0.409 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520349.png ; $\mu z ( f ( x _ { 1 } , \ldots , x _ { x } , z ) = 0 )$ ; confidence 0.409 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006099.png ; $\rho _ { \text { atom } } ^ { TF } ( x ; N = \lambda Z , Z ) =$ ; confidence 0.409 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016076.png ; $\operatorname { co } C = \{ S : S \in C \}$ ; confidence 0.409 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001094.png ; $= 2 \operatorname { Re } ( \sum _ { j , k } \rho _ { j k } ( \alpha ) w _ { j } w _ { k } ) + 2 \sum _ { j , k } \rho _ { j \overline { k } } ( \alpha ) w _ { j } \overline { w } _ { k }$ ; confidence 0.409 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027032.png ; $Q _ { x }$ ; confidence 0.409 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120202.png ; $\prod _ { p ^ { \prime } \in S ^ { \prime } } G ( K _ { p ^ { \prime } } )$ ; confidence 0.409 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050035.png ; $l ( u ) = ( 2 u \| n \| n u \| ) ^ { 1 / 2 }$ ; confidence 0.409 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023017.png ; $E ^ { 1 } = J ^ { 1 } ( E ) = M \times F \times R ^ { n m }$ ; confidence 0.409 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840341.png ; $x , y \in H ^ { n }$ ; confidence 0.408 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160150.png ; $q i$ ; confidence 0.408 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025041.png ; $C ^ { \prime } B C$ ; confidence 0.408 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040108.png ; $P _ { L } ( v , z ) - P _ { T } _ { com ( L ) } ( v , z )$ ; confidence 0.408 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027028.png ; $h \nmid E X _ { 1 }$ ; confidence 0.408 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300705.png ; $a _ { 1 } = \alpha _ { 2 } = 1$ ; confidence 0.408 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004095.png ; $c _ { 2 } > 0$ ; confidence 0.408 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014011.png ; $\hat { \phi } ( j )$ ; confidence 0.408 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/c/c120/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180121.png ; $\varepsilon \times x$ ; confidence 0.408 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016033.png ; $\| h _ { y } \| \rightarrow 0$ ; confidence 0.408 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016049.png ; $N ( X ( t ) , A ( t ) , t ) = A ( t ) \quad \int _ { \alpha ( X ( t ) ) F + b } ^ { \infty } g ( W ) d W$ ; confidence 0.407 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302106.png ; $d _ { w } > 0$ ; confidence 0.407 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202304.png ; $[ . , ] : \Omega ^ { k } ( M ; T M ) \times \Omega ^ { l } ( M ; T M ) \rightarrow \Omega ^ { k + l } ( M ; T M )$ ; confidence 0.407 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b1302609.png ; $\chi [ f _ { 0 } , \dots , f _ { n } ]$ ; confidence 0.407 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025860/c02586026.png ; $O D$ ; confidence 0.407 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201706.png ; $[ a _ { 1 } , a _ { 2 } ]$ ; confidence 0.407 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052089.png ; $S _ { y }$ ; confidence 0.407 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520323.png ; $( y _ { 1 } , \dots , y _ { m } ) \in M ^ { m }$ ; confidence 0.407 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001046.png ; $\operatorname { span } \langle D \rangle < 4 c ( D )$ ; confidence 0.407 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110050/b11005040.png ; $F _ { 1 }$ ; confidence 0.407 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302029.png ; $V = R ^ { x }$ ; confidence 0.407 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009031.png ; $( \alpha ^ { k } C _ { j } / d x ^ { k } ) ( x _ { i } ) = [ ( d C _ { j } / d x ) ( x _ { i } ) ] ^ { k }$ ; confidence 0.407 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014026.png ; $A _ { i } A _ { j } = \sum _ { k = 1 } ^ { r } p _ { i , j } ^ { k } A _ { k }$ ; confidence 0.407 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026052.png ; $\operatorname { log } _ { 5 }$ ; confidence 0.406 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005036.png ; $a ^ { g } \neq a$ ; confidence 0.406 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008058.png ; $\Delta ( \lambda , \mu ) = \operatorname { det } [ E \lambda - A \mu ] = \sum _ { i = 0 } ^ { n } a _ { i , n - i } \lambda ^ { i } \mu ^ { n - i }$ ; confidence 0.406 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110222.png ; $S _ { \rho , \delta } ^ { \mu } = S ( \langle \xi \rangle ^ { \mu } , \langle \xi \rangle ^ { 2 \delta } | d x | ^ { 2 } + \langle \xi \rangle ^ { - 2 \rho } | d \xi | ^ { 2 } )$ ; confidence 0.406 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006095.png ; $E _ { atom } ^ { TF } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { atom } ^ { TF } ( \lambda , 1 )$ ; confidence 0.406 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009050.png ; $\varphi \in G _ { X }$ ; confidence 0.406 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200605.png ; $x _ { 0 } \in R ^ { m }$ ; confidence 0.406 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070101.png ; $P _ { 1 } , \ldots , P _ { n }$ ; confidence 0.406 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300107.png ; $\langle L _ { + } \rangle = A \langle L _ { 0 } \rangle + A ^ { - 1 } \langle L _ { \infty } \rangle$ ; confidence 0.405 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040186.png ; $\| u \| _ { T } ^ { 2 } = \sum _ { \xi \in Z ^ { n } } ( 1 + | \xi | ) ^ { 2 r } e ^ { 2 T | \xi | ^ { 1 / s } } | \hat { u } ( \xi ) | ^ { 2 }$ ; confidence 0.405 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220171.png ; $B ^ { m } ( X )$ ; confidence 0.405 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028089.png ; $y _ { x }$ ; confidence 0.405 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044066.png ; $B ^ { H } = \{ \alpha \in B : h ^ { - 1 } a h = \text { afor all } h \in H \}$ ; confidence 0.405 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140109.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D _ { 1 } ) } \int _ { \partial D _ { 1 } } f ( \zeta ) \nu ( \zeta - \alpha ) = f ( \alpha )$ ; confidence 0.405 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032028.png ; $\| x \| ^ { p } + \| y \| ^ { p } = \| x + y \| ^ { p }$ ; confidence 0.405 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180438.png ; $S ^ { 2 } E$ ; confidence 0.405 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/d/d120/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d1201208.png ; $G : A G \stackrel { d o m } { \rightarrow } O G$ ; confidence 0.405 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036032.png ; $w ( i , j , k , l ) = w \left( \begin{array} { c c c } { \square } & { l } & { \square } \\ { i } & { + } & { k } \\ { \square } & { j } & { \square } \end{array} \right) = \operatorname { exp } ( - \frac { \epsilon ( i , j , k , l ) } { k _ { B } T } )$ ; confidence 0.405 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024770/c02477031.png ; $x _ { i } ^ { x _ { i } }$ ; confidence 0.405 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005021.png ; $a 0 , \dots , a _ { k - 1 }$ ; confidence 0.405 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013021.png ; $E _ { 2 } ^ { 2 } i - 1 _ { ( n + 1 ) } = T _ { 2 } i - 1 _ { ( n + 1 ) }$ ; confidence 0.405 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020058.png ; $s _ { k } = z _ { 1 } ^ { k } + \ldots + z _ { \gamma } ^ { k }$ ; confidence 0.405 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306501.png ; $\langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta } \overline { g ( e ^ { i \theta } ) } d \mu ( \theta )$ ; confidence 0.405 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003019.png ; $S q ^ { 1 } = \beta$ ; confidence 0.405 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c1301409.png ; $A = ( a _ { i } , j ) \in W$ ; confidence 0.404 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300105.png ; $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ ; confidence 0.404 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040649.png ; $57$ ; confidence 0.404 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043046.png ; $\left.\begin{array} { l } { n } \\ { m } \end{array} \right] _ { q } = \frac { [ n ] q ! } { [ m ] q ! [ n - m ] q ! } , [ m ] q = \frac { 1 - q ^ { m } } { 1 - q }$ ; confidence 0.404 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005031.png ; $f , g \in L _ { 1 } ( R _ { + } ; e ^ { - \beta x } / \sqrt { x } )$ ; confidence 0.404 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009058.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | f _ { n } | _ { H } ^ { 2 } \otimes$ ; confidence 0.404 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010059.png ; $l _ { \partial , n } = L _ { 0 , n } ^ { 1 }$ ; confidence 0.404 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001017.png ; $+ \psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) . C$ ; confidence 0.404 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002011.png ; $f \in L ^ { p } ( \partial D , d \vartheta / ( 2 \pi ) )$ ; confidence 0.404 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008077.png ; $x _ { i j } ^ { v } \in R ^ { x _ { 2 } }$ ; confidence 0.404 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180327.png ; $S ^ { 2 } E \subset \otimes ^ { 2 } E$ ; confidence 0.404 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032082.png ; $a _ { 2 } > 1$ ; confidence 0.404 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160176.png ; $\{ \psi _ { \mathfrak { A } } ^ { l } e : \phi \text { is true on } \mathfrak { A } \}$ ; confidence 0.404 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103209.png ; $i = 2 , \ldots , s$ ; confidence 0.404 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007029.png ; $c M : C \rightarrow A$ ; confidence 0.404 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005069.png ; $0 , T$ ; confidence 0.403 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150144.png ; $\frac { 1 } { m } \sum _ { j = 1 } ^ { m } k _ { j }$ ; confidence 0.403 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110040/c1100403.png ; $>$ ; confidence 0.403 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021056.png ; $( 1,1,1,1,1,1,1,1 , I _ { m } ) = ( 1,8 , I _ { m } )$ ; confidence 0.403 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037083.png ; $\operatorname { exp } ( \Omega ( n ^ { 1 / d - 1 } ) )$ ; confidence 0.403 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020065.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { x }$ ; confidence 0.403 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004030.png ; $f ^ { \Delta ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \operatorname { min } \{ \varphi ( x , w ) , - f ( x ) \} ( w \in W )$ ; confidence 0.403 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025012.png ; $\{ ( 1 , t , t ^ { 2 } ) : t \in G F ( q ) \} \cup \{ ( 0,0,1 ) \}$ ; confidence 0.403 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004067.png ; $w _ { 1 } = ( 1 + c ) \nmid 2$ ; confidence 0.403 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002036.png ; $B ( D )$ ; confidence 0.403 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202404.png ; $( Z )$ ; confidence 0.403 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007064.png ; $2 m , j g - \frac { 1 } { q ^ { m } } \in q Z [ [ q ] ]$ ; confidence 0.403 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202909.png ; $R _ { S } ^ { A } : = \operatorname { inf } \{ t : \quad t \geq \operatorname { son } A$ ; confidence 0.403 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014120/a01412045.png ; $2 ^ { m }$ ; confidence 0.403 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006027.png ; $h ^ { 0 } ( K X \otimes L ^ { * } ) = 0$ ; confidence 0.403 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520398.png ; $z _ { j } = z _ { i } f ( z _ { 1 } , \dots , z _ { k } ) , \quad i = 1 , \dots , n$ ; confidence 0.402 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012049.png ; $f \in R [ x _ { 1 } , \dots , x _ { x } ]$ ; confidence 0.402 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008036.png ; $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$ ; confidence 0.402 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043032.png ; $\Psi _ { B , B }$ ; confidence 0.402 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060113.png ; $\cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i } , j ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.402 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006065.png ; $a$ ; confidence 0.402 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300606.png ; $\operatorname { Bel } ( \emptyset ) = 0$ ; confidence 0.402 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752087.png ; $\vec { K } = \vec { F } [ \lambda ]$ ; confidence 0.402 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006011.png ; $Q = ( X _ { P } , < Q )$ ; confidence 0.402 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010039.png ; $r ( I _ { 8 } , m ) = 240 \sigma _ { 3 } ( m )$ ; confidence 0.402 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016057.png ; $S _ { i }$ ; confidence 0.402 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702021.png ; $x = ( ( Z / l ^ { n } Z ) _ { X } )$ ; confidence 0.402 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090279.png ; $| \sum |$ ; confidence 0.402 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026011.png ; $\omega = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \| x \| ^ { - n } x _ { j } d x _ { 1 } \wedge \ldots \wedge d x _ { j - 1 } \wedge d x _ { j + 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.401 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g11010015.png ; $k \in R ^ { x }$ ; confidence 0.401 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002044.png ; $1 , \dots , \alpha _ { q } \in F ( S )$ ; confidence 0.401 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005025.png ; $\mu | _ { Y \backslash E } : Y \backslash E \rightarrow X \backslash \mu ( E )$ ; confidence 0.401 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001037.png ; $a _ { j } \neq e$ ; confidence 0.401 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020132.png ; $( M ^ { \perp } \cup N ^ { \perp } ) ^ { \perp } = M ^ { \perp \perp } \cap ^ { N ^ { \perp } \perp }$ ; confidence 0.401 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png ; $21$ ; confidence 0.401 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150185.png ; $\| T \| < \nu ( A )$ ; confidence 0.401 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008023.png ; $d \omega _ { 1 } ( \lambda ) = \frac { \prod _ { i = 1 } ^ { g } ( \lambda - \alpha _ { i } ) } { \sqrt { R _ { g } ( \lambda ) } } d \lambda \sim$ ; confidence 0.401 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040116.png ; $2$ ; confidence 0.401 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016047.png ; $X ( t _ { 0 } ) = X _ { 0 }$ ; confidence 0.401 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g1300707.png ; $a \in A ^ { - 1 }$ ; confidence 0.401 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023055.png ; $d f _ { t , s }$ ; confidence 0.401 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663059.png ; $f \in H _ { p } ^ { p } ( \Omega )$ ; confidence 0.400 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021084.png ; $M ( \mu ) = U ( \mathfrak { g } ) \otimes U ( \mathfrak { h } ) C ( \mu )$ ; confidence 0.400 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/f/f120/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110116.png ; $D ^ { \prime } ( R ^ { x } )$ ; confidence 0.400 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008010.png ; $f ( q , p ) \in L ^ { 2 } ( R ^ { 2 x } )$ ; confidence 0.400 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520344.png ; $\phi ( x _ { 1 } , \dots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \dots , x _ { n } , z ) = 0 ) )$ ; confidence 0.400 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027036.png ; $s _ { j } = \sum _ { i = 1 } ^ { M } ( z _ { 1 } ^ { ( 1 ) } ) ^ { j } , \quad j = 1 , \ldots , M$ ; confidence 0.400 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002020.png ; $\tau _ { n } = \frac { c - d } { c + d } = \frac { S } { \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) } = \frac { 2 S } { n ( n - 1 ) }$ ; confidence 0.400 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200506.png ; $R \in R$ ; confidence 0.400 |
Revision as of 00:10, 13 February 2020
List
1. ; $A = \int \oplus _ { A ( \zeta ) d \mu ( \zeta ) }$ ; confidence 0.421
2. ; $K _ { 7 } , 9$ ; confidence 0.421
3. ; $R ( n )$ ; confidence 0.421
4. ; $m _ { i } + j = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.421
5. ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { i \nu } f ( x _ { \nu } ) + \sum _ { \rho = 1 } ^ { i } \sum _ { \nu = 1 } ^ { 2 ^ { \rho - 1 } ( n + 1 ) } \beta _ { \imath \rho \nu } f ( \xi _ { \nu } ^ { \rho } )$ ; confidence 0.421
6. ; $C \in M _ { m \times m } ( K )$ ; confidence 0.421
7. ; $\eta ( s ) = \sum _ { a _ { n } \neq 0 } \frac { a _ { n } } { | a _ { n } | } | a _ { n } | ^ { - s }$ ; confidence 0.420
8. ; $( \ldots ( F A _ { 1 } ) A _ { 2 } ) \ldots A _ { N } )$ ; confidence 0.420
9. ; $M = \frac { 1 } { 3 ( n + k ) } ( \frac { \delta _ { 1 } - \delta _ { 2 } } { 16 } ) ^ { 2 n + 2 k } \delta _ { 2 } ^ { m + ( n + k ) / 1 + \pi / k ) }$ ; confidence 0.420
10. ; $\operatorname { Ext } _ { \mathscr { H } } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420
11. ; $\Delta \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \otimes \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.420
12. ; $= ( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i ( p D + q X ) } \hat { \sigma } ( p , q ) d p d q$ ; confidence 0.420
13. ; $\langle L ^ { ( 1 ) } \rangle = - A ^ { 3 } \langle L \rangle$ ; confidence 0.420
14. ; $\operatorname { Ext } _ { \Delta } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420
15. ; $f : T \rightarrow GL ( n , C )$ ; confidence 0.420
16. ; $E _ { \varepsilon _ { t } } = 0$ ; confidence 0.420
17. ; $\overline { \delta } k : \overline { D } _ { k } \rightarrow \overline { D } _ { k - 1 }$ ; confidence 0.420
18. ; $L _ { \omega _ { 1 } \omega }$ ; confidence 0.420
19. ; $\tilde { \Phi } ( s ) = \operatorname { sup } \{ | s | t - \Phi ( t ) : t \geq 0 \}$ ; confidence 0.419
20. ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 2 } ( k ) } { M _ { d } ( k ) }$ ; confidence 0.419
21. ; $p _ { 0 }$ ; confidence 0.419
22. ; $f _ { i } : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.419
23. ; $s ^ { d }$ ; confidence 0.419
24. ; $a b ^ { k } a ^ { - 1 }$ ; confidence 0.419
25. ; $u ^ { p }$ ; confidence 0.419
26. ; $S _ { r } = \{ ( v _ { 0 } , \dots , v _ { r } ) \in R ^ { r + 1 } : v _ { j } \geq 0 , \sum _ { j = 0 } ^ { r } v _ { j } = 1 \}$ ; confidence 0.419
27. ; $J \times G$ ; confidence 0.418
28. ; $C _ { f } \subset Dbx _ { f }$ ; confidence 0.418
29. ; $P _ { 3 }$ ; confidence 0.418
30. ; $I I$ ; confidence 0.418
31. ; $R _ { x } ^ { m } ( r )$ ; confidence 0.418
32. ; $r _ { i } ( X _ { i } )$ ; confidence 0.418
33. ; $= \operatorname { lim } _ { t \rightarrow \infty } \int \prod _ { k = 1 } ^ { n } A _ { k } ( q ( t _ { k } ) ) d \mu _ { t } ( q ( . ) )$ ; confidence 0.418
34. ; $H _ { \lambda } ^ { ( k ) } ( x )$ ; confidence 0.418
35. ; $\Psi _ { V , W } \otimes _ { Z } = \Psi _ { V , Z } \circ \Psi _ { V , W }$ ; confidence 0.418
36. ; $B _ { y } ^ { S }$ ; confidence 0.418
37. ; $f - q \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } ^ { * } , \ldots , M _ { n } ^ { * } ; R ^ { n } )$ ; confidence 0.418
38. ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
39. ; $m ^ { T X } ( A ) = 0$ ; confidence 0.417
40. ; $K [ G$ ; confidence 0.417
41. ; $m$ ; confidence 0.417
42. ; $T _ { A }$ ; confidence 0.417
43. ; $LOC$ ; confidence 0.417
44. ; $\operatorname { tar } K \neq 2$ ; confidence 0.417
45. ; $[ \overline { t } 0 , t _ { 0 } ]$ ; confidence 0.417
46. ; $1 \leq \| ( \mu I - A ) ^ { - 1 } \cdot E \| \leq \| ( \mu I - A ) ^ { - 1 } \| \| E \|$ ; confidence 0.417
47. ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417
48. ; $v ^ { \perp } \subset T _ { p } M$ ; confidence 0.417
49. ; $J _ { i j }$ ; confidence 0.417
50. ; $\phi _ { n } ( z ) = M _ { n } ( z ) / \sqrt { M _ { n } - 1 } M _ { n }$ ; confidence 0.417
51. ; $( l _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$ ; confidence 0.417
52. ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417
53. ; $F _ { 0 }$ ; confidence 0.417
54. ; $C \backslash K$ ; confidence 0.416
55. ; $| \mu ( f ) | \leq C _ { U } \operatorname { sup } _ { U } | f ( z ) |$ ; confidence 0.416
56. ; $15$ ; confidence 0.416
57. ; $[ K : Q ]$ ; confidence 0.416
58. ; $20 , \dots , z _ { r } - 1$ ; confidence 0.416
59. ; $\beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }$ ; confidence 0.416
60. ; $Wh \pi I$ ; confidence 0.416
61. ; $y _ { 0 } \in P$ ; confidence 0.416
62. ; $( K _ { - } , I , J )$ ; confidence 0.416
63. ; $e ^ { i t B }$ ; confidence 0.416
64. ; $K _ { 5 } , n$ ; confidence 0.416
65. ; $h ^ { * }$ ; confidence 0.416
66. ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
67. ; $R ( x ; a _ { 0 } , \dots , a _ { N } ) \equiv L [ u _ { N } ( x ) ] - f$ ; confidence 0.416
68. ; $A ^ { x }$ ; confidence 0.416
69. ; $H _ { S } ^ { j } ( D ) = 0$ ; confidence 0.416
70. ; $C P ^ { A }$ ; confidence 0.416
71. ; $F \subset A$ ; confidence 0.416
72. ; $Q$ ; confidence 0.415
73. ; $x , y$ ; confidence 0.415
74. ; $m = k ^ { \prime \mu } ( \theta ) = \int _ { \overline { F } } x P ( \theta , \mu ) ( d x )$ ; confidence 0.415
75. ; $C _ { n d } ^ { \infty } ( \Omega )$ ; confidence 0.415
76. ; $\gamma : \omega \square Gpd \rightarrow C rs$ ; confidence 0.415
77. ; $\{ \not p : p \in P \}$ ; confidence 0.415
78. ; $\hat { \tau } \circ = 0$ ; confidence 0.415
79. ; $C = Z ( Q ) = C _ { Q } ( R )$ ; confidence 0.415
80. ; $\Lambda ^ { * } E$ ; confidence 0.415
81. ; $s \in T$ ; confidence 0.415
82. ; $\alpha \in \Omega$ ; confidence 0.415
83. ; $\operatorname { ad } X$ ; confidence 0.415
84. ; $\mu ]$ ; confidence 0.415
85. ; $\{ u _ { i } ^ { n } \}$ ; confidence 0.415
86. ; $= \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j }$ ; confidence 0.415
87. ; $\operatorname { tr } ( K _ { i } ) = 1$ ; confidence 0.415
88. ; $( a _ { n } ) _ { n \in N }$ ; confidence 0.415
89. ; $\Lambda _ { T _ { R } } ( a , x ) = ( \frac { a + a ^ { - 1 } - x } { x } ) ^ { n - 1 }$ ; confidence 0.415
90. ; $H _ { n } ( r , 0 ) = r ^ { n }$ ; confidence 0.415
91. ; $y \in F$ ; confidence 0.415
92. ; $_ { A } ^ { C }$ ; confidence 0.415
93. ; $z \vec { \Delta }$ ; confidence 0.414
94. ; $1 ( t , 0 )$ ; confidence 0.414
95. ; $98$ ; confidence 0.414
96. ; $\sigma ( a )$ ; confidence 0.414
97. ; $v _ { t } / \sum _ { i = 1 } ^ { k } v _ { i , t }$ ; confidence 0.414
98. ; $\delta ( 1 ) > K _ { ( 1 ) } / K _ { ( 2 ) }$ ; confidence 0.414
99. ; $X \beta$ ; confidence 0.414
100. ; $\tilde { \delta _ { z } } : f \in H _ { \phi } ( E ) \rightarrow \tilde { f } ( z ) \in C$ ; confidence 0.414
101. ; $x ^ { ( 1 ) }$ ; confidence 0.414
102. ; $P : = \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.414
103. ; $f ( [ . ] )$ ; confidence 0.413
104. ; $\{ A , C \}$ ; confidence 0.413
105. ; $\sigma _ { 0 } = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \overline { \zeta } ; d \overline { \zeta } [ j ] \wedge d \zeta$ ; confidence 0.413
106. ; $\nabla \mu \nu$ ; confidence 0.413
107. ; $M H _ { R } ^ { + }$ ; confidence 0.413
108. ; $y ( z )$ ; confidence 0.413
109. ; $p \in S$ ; confidence 0.413
110. ; $t _ { n }$ ; confidence 0.413
111. ; $| n | = \operatorname { min } _ { 1 \leq i \leq d } | n _ { i } |$ ; confidence 0.413
112. ; $n = k , k + 1 , \dots .$ ; confidence 0.413
113. ; $X = ( X _ { 1 } , \dots , X _ { N } )$ ; confidence 0.413
114. ; $k ! z / ( z - 1 ) ^ { k + 1 }$ ; confidence 0.413
115. ; $C [ z , z ]$ ; confidence 0.413
116. ; $v \in G$ ; confidence 0.413
117. ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
118. ; $\zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }$ ; confidence 0.413
119. ; $( \lambda x , M ) N$ ; confidence 0.413
120. ; $\mathfrak { g } = t ^ { 2 } \sum _ { i , j } \mathfrak { g } _ { i j } ( x , t ) d x ^ { i } \bigotimes d x ^ { j } +$ ; confidence 0.413
121. ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413
122. ; $40$ ; confidence 0.413
123. ; $p _ { N } ( s )$ ; confidence 0.413
124. ; $f ( t ) = \left\{ \begin{array} { l l } { o ( \frac { t } { \operatorname { log } t } ) , } & { d = 2 } \\ { o ( t ) , } & { d \geq 3 } \end{array} \right.$ ; confidence 0.412
125. ; $T _ { n } ^ { * } ( x ) : = \sigma ^ { n } + c _ { 1 } ^ { n } x + \ldots + c _ { n } ^ { n } x ^ { n }$ ; confidence 0.412
126. ; $\{ c _ { 1 } , \dots , c _ { n } , \dots \}$ ; confidence 0.412
127. ; $H _ { l } ^ { i } ( X )$ ; confidence 0.412
128. ; $( b _ { m } ) _ { m \geq 0 }$ ; confidence 0.412
129. ; $S _ { t } = \omega ( 1 - \lambda ) + \lambda S _ { t - 1 } + c _ { 1 } u _ { t } + \mu _ { t } - \lambda \mu _ { t - 1 }$ ; confidence 0.412
130. ; $B SL _ { q } ( 2 )$ ; confidence 0.412
131. ; $K _ { R , p } ( t ) = \frac { \operatorname { sin } ( ( 2 n + 1 - p ) t / 2 ) \operatorname { sin } ( ( p + 1 ) t / 2 ) } { 2 ( p + 1 ) \operatorname { sin } ^ { 2 } t / 2 }$ ; confidence 0.412
132. ; $\alpha = 1 , \dots , m$ ; confidence 0.412
133. ; $v \in A _ { p } ( G )$ ; confidence 0.412
134. ; $f _ { i x }$ ; confidence 0.412
135. ; $A ( g ) \in S ^ { 2 } E$ ; confidence 0.412
136. ; $T ^ { n } = P B ^ { n }$ ; confidence 0.412
137. ; $\frac { \partial \rho } { \partial t } = \{ H , \rho \} _ { qu } . \equiv \frac { 1 } { i \hbar } [ H \rho - \rho H ]$ ; confidence 0.412
138. ; $\operatorname { ev } _ { X } ( \alpha )$ ; confidence 0.412
139. ; $c _ { 1 } | \xi | ^ { m _ { 1 } } \leq | b | \leq c _ { 2 } | \xi | ^ { m _ { 2 } }$ ; confidence 0.412
140. ; $d \frac { G } { B } ( \lambda )$ ; confidence 0.412
141. ; $CH ^ { i } ( X , j ) \otimes Q \simeq H _ { M } ^ { 2 j - i } ( X , Q ( i ) )$ ; confidence 0.412
142. ; $\left\{ \begin{array} { l l } { \phi ( 0 , \lambda ) = 1 , } & { \theta ( 0 , \lambda ) = 0 } \\ { \phi ^ { \prime } ( 0 , \lambda ) = 0 , } & { \theta ^ { \prime } ( 0 , \lambda ) = 1 } \end{array} \right.$ ; confidence 0.412
143. ; $\nu _ { 1 } , \dots , \nu _ { 1 }$ ; confidence 0.411
144. ; $I$ ; confidence 0.411
145. ; $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { N } )$ ; confidence 0.411
146. ; $= \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta$ ; confidence 0.411
147. ; $w _ { x } - 1$ ; confidence 0.411
148. ; $\Omega \subset D ^ { \gamma }$ ; confidence 0.411
149. ; $w$ ; confidence 0.411
150. ; $A = \operatorname { diag } \{ b _ { 11 } , \dots , b _ { n n } \}$ ; confidence 0.411
151. ; $k = Q ( \mu _ { p } )$ ; confidence 0.411
152. ; $h \in QS ( T )$ ; confidence 0.411
153. ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots , \ldots , u ( z , \lambda _ { N } ) = z ^ { \lambda _ { N } } +$ ; confidence 0.410
154. ; $x ^ { p } - x - p \dot { k }$ ; confidence 0.410
155. ; $= D _ { t } ^ { m } u + \sum _ { j = 1 } ^ { m } \sum _ { | \alpha | \leq m - j } p _ { j , \alpha } ( t , x ) D _ { t } ^ { j } D _ { x } ^ { \alpha } u = f ( t , x ) , D _ { t } ^ { j } u ( 0 , x ) = u _ { j } ^ { 0 } ( x ) , \quad j = 0 , \ldots , m - 1$ ; confidence 0.410
156. ; $h \otimes \dot { k } = ( \theta \otimes \theta ) \otimes ( \varphi \otimes \varphi ) \in S ^ { 2 } E \otimes S ^ { 2 } E$ ; confidence 0.410
157. ; $K ^ { \hat { b } } ( P _ { \Lambda } )$ ; confidence 0.410
158. ; $\{ \hat { U } _ { t } \}$ ; confidence 0.410
159. ; $d \alpha = d a _ { N } \circ \ldots \circ d \alpha _ { 1 }$ ; confidence 0.410
160. ; $A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.410
161. ; $\alpha , x \in G$ ; confidence 0.410
162. ; $M = \operatorname { inf } _ { p \in N } \operatorname { sup } \{ r : \operatorname { exp } _ { p } \text { injective on } B _ { r } ( 0 ) \subset T _ { p } M \}$ ; confidence 0.410
163. ; $a _ { j } = \alpha _ { i }$ ; confidence 0.410
164. ; $\{ G ; , e , - 1 \}$ ; confidence 0.409
165. ; $H ^ { \infty }$ ; confidence 0.409
166. ; $\sum _ { H : H \leq G } \mu ( H , G ) | H | ^ { S }$ ; confidence 0.409
167. ; $( f ( . ) , K ( , y ) ) _ { H } = ( L F , K ( , y ) ) _ { H } =$ ; confidence 0.409
168. ; $\overline { A }$ ; confidence 0.409
169. ; $\alpha _ { N } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { N } ( t ) - t ) , \quad 0 \leq t \leq 1$ ; confidence 0.409
170. ; $a _ { x } * a _ { x } + 1 = a _ { x }$ ; confidence 0.409
171. ; $B ^ { i }$ ; confidence 0.409
172. ; $g ( \overline { u } 1 )$ ; confidence 0.409
173. ; $^ { * } L _ { D }$ ; confidence 0.409
174. ; $Q ( \theta | \theta ^ { ( t ) } ) = E [ \operatorname { log } L ( \theta | Y _ { aug } ) | Y _ { 0 b s } , \theta ^ { ( t ) } ]$ ; confidence 0.409
175. ; $T = Fac T$ ; confidence 0.409
176. ; $C _ { \psi }$ ; confidence 0.409
177. ; $\mu z ( f ( x _ { 1 } , \ldots , x _ { x } , z ) = 0 )$ ; confidence 0.409
178. ; $\rho _ { \text { atom } } ^ { TF } ( x ; N = \lambda Z , Z ) =$ ; confidence 0.409
179. ; $\operatorname { co } C = \{ S : S \in C \}$ ; confidence 0.409
180. ; $= 2 \operatorname { Re } ( \sum _ { j , k } \rho _ { j k } ( \alpha ) w _ { j } w _ { k } ) + 2 \sum _ { j , k } \rho _ { j \overline { k } } ( \alpha ) w _ { j } \overline { w } _ { k }$ ; confidence 0.409
181. ; $Q _ { x }$ ; confidence 0.409
182. ; $\prod _ { p ^ { \prime } \in S ^ { \prime } } G ( K _ { p ^ { \prime } } )$ ; confidence 0.409
183. ; $l ( u ) = ( 2 u \| n \| n u \| ) ^ { 1 / 2 }$ ; confidence 0.409
184. ; $E ^ { 1 } = J ^ { 1 } ( E ) = M \times F \times R ^ { n m }$ ; confidence 0.409
185. ; $x , y \in H ^ { n }$ ; confidence 0.408
186. ; $q i$ ; confidence 0.408
187. ; $C ^ { \prime } B C$ ; confidence 0.408
188. ; $P _ { L } ( v , z ) - P _ { T } _ { com ( L ) } ( v , z )$ ; confidence 0.408
189. ; $h \nmid E X _ { 1 }$ ; confidence 0.408
190. ; $a _ { 1 } = \alpha _ { 2 } = 1$ ; confidence 0.408
191. ; $c _ { 2 } > 0$ ; confidence 0.408
192. ; $\tau ^ { n }$ ; confidence 0.408
193. ; $\hat { \phi } ( j )$ ; confidence 0.408
194. ; $\varepsilon \times x$ ; confidence 0.408
195. ; $\| h _ { y } \| \rightarrow 0$ ; confidence 0.408
196. ; $N ( X ( t ) , A ( t ) , t ) = A ( t ) \quad \int _ { \alpha ( X ( t ) ) F + b } ^ { \infty } g ( W ) d W$ ; confidence 0.407
197. ; $d _ { w } > 0$ ; confidence 0.407
198. ; $[ . , ] : \Omega ^ { k } ( M ; T M ) \times \Omega ^ { l } ( M ; T M ) \rightarrow \Omega ^ { k + l } ( M ; T M )$ ; confidence 0.407
199. ; $\chi [ f _ { 0 } , \dots , f _ { n } ]$ ; confidence 0.407
200. ; $O D$ ; confidence 0.407
201. ; $[ a _ { 1 } , a _ { 2 } ]$ ; confidence 0.407
202. ; $S _ { y }$ ; confidence 0.407
203. ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
204. ; $( y _ { 1 } , \dots , y _ { m } ) \in M ^ { m }$ ; confidence 0.407
205. ; $\operatorname { span } \langle D \rangle < 4 c ( D )$ ; confidence 0.407
206. ; $F _ { 1 }$ ; confidence 0.407
207. ; $V = R ^ { x }$ ; confidence 0.407
208. ; $( \alpha ^ { k } C _ { j } / d x ^ { k } ) ( x _ { i } ) = [ ( d C _ { j } / d x ) ( x _ { i } ) ] ^ { k }$ ; confidence 0.407
209. ; $A _ { i } A _ { j } = \sum _ { k = 1 } ^ { r } p _ { i , j } ^ { k } A _ { k }$ ; confidence 0.407
210. ; $\operatorname { log } _ { 5 }$ ; confidence 0.406
211. ; $a ^ { g } \neq a$ ; confidence 0.406
212. ; $\Delta ( \lambda , \mu ) = \operatorname { det } [ E \lambda - A \mu ] = \sum _ { i = 0 } ^ { n } a _ { i , n - i } \lambda ^ { i } \mu ^ { n - i }$ ; confidence 0.406
213. ; $S _ { \rho , \delta } ^ { \mu } = S ( \langle \xi \rangle ^ { \mu } , \langle \xi \rangle ^ { 2 \delta } | d x | ^ { 2 } + \langle \xi \rangle ^ { - 2 \rho } | d \xi | ^ { 2 } )$ ; confidence 0.406
214. ; $E _ { atom } ^ { TF } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { atom } ^ { TF } ( \lambda , 1 )$ ; confidence 0.406
215. ; $\varphi \in G _ { X }$ ; confidence 0.406
216. ; $x _ { 0 } \in R ^ { m }$ ; confidence 0.406
217. ; $P _ { 1 } , \ldots , P _ { n }$ ; confidence 0.406
218. ; $\langle L _ { + } \rangle = A \langle L _ { 0 } \rangle + A ^ { - 1 } \langle L _ { \infty } \rangle$ ; confidence 0.405
219. ; $\| u \| _ { T } ^ { 2 } = \sum _ { \xi \in Z ^ { n } } ( 1 + | \xi | ) ^ { 2 r } e ^ { 2 T | \xi | ^ { 1 / s } } | \hat { u } ( \xi ) | ^ { 2 }$ ; confidence 0.405
220. ; $B ^ { m } ( X )$ ; confidence 0.405
221. ; $y _ { x }$ ; confidence 0.405
222. ; $B ^ { H } = \{ \alpha \in B : h ^ { - 1 } a h = \text { afor all } h \in H \}$ ; confidence 0.405
223. ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D _ { 1 } ) } \int _ { \partial D _ { 1 } } f ( \zeta ) \nu ( \zeta - \alpha ) = f ( \alpha )$ ; confidence 0.405
224. ; $\| x \| ^ { p } + \| y \| ^ { p } = \| x + y \| ^ { p }$ ; confidence 0.405
225. ; $S ^ { 2 } E$ ; confidence 0.405
226. ; $G : A G \stackrel { d o m } { \rightarrow } O G$ ; confidence 0.405
227. ; $w ( i , j , k , l ) = w \left( \begin{array} { c c c } { \square } & { l } & { \square } \\ { i } & { + } & { k } \\ { \square } & { j } & { \square } \end{array} \right) = \operatorname { exp } ( - \frac { \epsilon ( i , j , k , l ) } { k _ { B } T } )$ ; confidence 0.405
228. ; $x _ { i } ^ { x _ { i } }$ ; confidence 0.405
229. ; $a 0 , \dots , a _ { k - 1 }$ ; confidence 0.405
230. ; $E _ { 2 } ^ { 2 } i - 1 _ { ( n + 1 ) } = T _ { 2 } i - 1 _ { ( n + 1 ) }$ ; confidence 0.405
231. ; $s _ { k } = z _ { 1 } ^ { k } + \ldots + z _ { \gamma } ^ { k }$ ; confidence 0.405
232. ; $\langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta } \overline { g ( e ^ { i \theta } ) } d \mu ( \theta )$ ; confidence 0.405
233. ; $S q ^ { 1 } = \beta$ ; confidence 0.405
234. ; $A = ( a _ { i } , j ) \in W$ ; confidence 0.404
235. ; $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ ; confidence 0.404
236. ; $57$ ; confidence 0.404
237. ; $\left.\begin{array} { l } { n } \\ { m } \end{array} \right] _ { q } = \frac { [ n ] q ! } { [ m ] q ! [ n - m ] q ! } , [ m ] q = \frac { 1 - q ^ { m } } { 1 - q }$ ; confidence 0.404
238. ; $f , g \in L _ { 1 } ( R _ { + } ; e ^ { - \beta x } / \sqrt { x } )$ ; confidence 0.404
239. ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | f _ { n } | _ { H } ^ { 2 } \otimes$ ; confidence 0.404
240. ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
241. ; $l _ { \partial , n } = L _ { 0 , n } ^ { 1 }$ ; confidence 0.404
242. ; $+ \psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) . C$ ; confidence 0.404
243. ; $f \in L ^ { p } ( \partial D , d \vartheta / ( 2 \pi ) )$ ; confidence 0.404
244. ; $x _ { i j } ^ { v } \in R ^ { x _ { 2 } }$ ; confidence 0.404
245. ; $S ^ { 2 } E \subset \otimes ^ { 2 } E$ ; confidence 0.404
246. ; $a _ { 2 } > 1$ ; confidence 0.404
247. ; $\{ \psi _ { \mathfrak { A } } ^ { l } e : \phi \text { is true on } \mathfrak { A } \}$ ; confidence 0.404
248. ; $i = 2 , \ldots , s$ ; confidence 0.404
249. ; $c M : C \rightarrow A$ ; confidence 0.404
250. ; $0 , T$ ; confidence 0.403
251. ; $\frac { 1 } { m } \sum _ { j = 1 } ^ { m } k _ { j }$ ; confidence 0.403
252. ; $>$ ; confidence 0.403
253. ; $( 1,1,1,1,1,1,1,1 , I _ { m } ) = ( 1,8 , I _ { m } )$ ; confidence 0.403
254. ; $\operatorname { exp } ( \Omega ( n ^ { 1 / d - 1 } ) )$ ; confidence 0.403
255. ; $X = X _ { 1 } \oplus \ldots \oplus X _ { x }$ ; confidence 0.403
256. ; $f ^ { \Delta ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \operatorname { min } \{ \varphi ( x , w ) , - f ( x ) \} ( w \in W )$ ; confidence 0.403
257. ; $P$ ; confidence 0.403
258. ; $\{ ( 1 , t , t ^ { 2 } ) : t \in G F ( q ) \} \cup \{ ( 0,0,1 ) \}$ ; confidence 0.403
259. ; $w _ { 1 } = ( 1 + c ) \nmid 2$ ; confidence 0.403
260. ; $B ( D )$ ; confidence 0.403
261. ; $( Z )$ ; confidence 0.403
262. ; $2 m , j g - \frac { 1 } { q ^ { m } } \in q Z [ [ q ] ]$ ; confidence 0.403
263. ; $R _ { S } ^ { A } : = \operatorname { inf } \{ t : \quad t \geq \operatorname { son } A$ ; confidence 0.403
264. ; $2 ^ { m }$ ; confidence 0.403
265. ; $h ^ { 0 } ( K X \otimes L ^ { * } ) = 0$ ; confidence 0.403
266. ; $z _ { j } = z _ { i } f ( z _ { 1 } , \dots , z _ { k } ) , \quad i = 1 , \dots , n$ ; confidence 0.402
267. ; $f \in R [ x _ { 1 } , \dots , x _ { x } ]$ ; confidence 0.402
268. ; $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$ ; confidence 0.402
269. ; $\Psi _ { B , B }$ ; confidence 0.402
270. ; $\cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i } , j ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.402
271. ; $a$ ; confidence 0.402
272. ; $\operatorname { Bel } ( \emptyset ) = 0$ ; confidence 0.402
273. ; $\vec { K } = \vec { F } [ \lambda ]$ ; confidence 0.402
274. ; $Q = ( X _ { P } , < Q )$ ; confidence 0.402
275. ; $r ( I _ { 8 } , m ) = 240 \sigma _ { 3 } ( m )$ ; confidence 0.402
276. ; $S _ { i }$ ; confidence 0.402
277. ; $x = ( ( Z / l ^ { n } Z ) _ { X } )$ ; confidence 0.402
278. ; $| \sum |$ ; confidence 0.402
279. ; $\omega = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \| x \| ^ { - n } x _ { j } d x _ { 1 } \wedge \ldots \wedge d x _ { j - 1 } \wedge d x _ { j + 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.401
280. ; $k \in R ^ { x }$ ; confidence 0.401
281. ; $1 , \dots , \alpha _ { q } \in F ( S )$ ; confidence 0.401
282. ; $\mu | _ { Y \backslash E } : Y \backslash E \rightarrow X \backslash \mu ( E )$ ; confidence 0.401
283. ; $a _ { j } \neq e$ ; confidence 0.401
284. ; $( M ^ { \perp } \cup N ^ { \perp } ) ^ { \perp } = M ^ { \perp \perp } \cap ^ { N ^ { \perp } \perp }$ ; confidence 0.401
285. ; $21$ ; confidence 0.401
286. ; $\| T \| < \nu ( A )$ ; confidence 0.401
287. ; $d \omega _ { 1 } ( \lambda ) = \frac { \prod _ { i = 1 } ^ { g } ( \lambda - \alpha _ { i } ) } { \sqrt { R _ { g } ( \lambda ) } } d \lambda \sim$ ; confidence 0.401
288. ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
289. ; $2$ ; confidence 0.401
290. ; $X ( t _ { 0 } ) = X _ { 0 }$ ; confidence 0.401
291. ; $a \in A ^ { - 1 }$ ; confidence 0.401
292. ; $d f _ { t , s }$ ; confidence 0.401
293. ; $f \in H _ { p } ^ { p } ( \Omega )$ ; confidence 0.400
294. ; $M ( \mu ) = U ( \mathfrak { g } ) \otimes U ( \mathfrak { h } ) C ( \mu )$ ; confidence 0.400
295. ; $D ^ { \prime } ( R ^ { x } )$ ; confidence 0.400
296. ; $f ( q , p ) \in L ^ { 2 } ( R ^ { 2 x } )$ ; confidence 0.400
297. ; $\phi ( x _ { 1 } , \dots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \dots , x _ { n } , z ) = 0 ) )$ ; confidence 0.400
298. ; $s _ { j } = \sum _ { i = 1 } ^ { M } ( z _ { 1 } ^ { ( 1 ) } ) ^ { j } , \quad j = 1 , \ldots , M$ ; confidence 0.400
299. ; $\tau _ { n } = \frac { c - d } { c + d } = \frac { S } { \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) } = \frac { 2 S } { n ( n - 1 ) }$ ; confidence 0.400
300. ; $R \in R$ ; confidence 0.400
Maximilian Janisch/latexlist/latex/NoNroff/63. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/63&oldid=44473