Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/58"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 58 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 58 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023099.png ; $1 \times 7$ ; confidence 0.607
+
1. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f04194061.png ; $X _ { f }$ ; confidence 0.508
  
2. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d1301808.png ; $g \in A ( X )$ ; confidence 0.995
+
2. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001032.png ; $f \leq g$ ; confidence 0.508
  
3. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018019.png ; $f \in A ( X )$ ; confidence 0.991
+
3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100127.png ; $\sigma ( L _ { C } ^ { \infty } ( \hat { G } ) , L _ { C } ^ { 1 } ( \hat { G } ) )$ ; confidence 0.508
  
4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018097.png ; $A ( T ^ { 2 } )$ ; confidence 0.995
+
4. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005049.png ; $1 \in C$ ; confidence 0.508
  
5. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026043.png ; $f ( X _ { n } )$ ; confidence 0.729
+
5. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001031.png ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) Z ( y ( n ) )$ ; confidence 0.508
  
6. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010520.png ; $\xi _ { i r }$ ; confidence 0.255
+
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150159.png ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508
  
7. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026025.png ; $S _ { [ n t } ]$ ; confidence 0.670
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006045.png ; $27$ ; confidence 0.508
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016860/b0168607.png ; $f \equiv 0$ ; confidence 0.990
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $Z ^ { * }$ ; confidence 0.508
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020031.png ; $f \in A ( D )$ ; confidence 0.998
+
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005035.png ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k )$ ; confidence 0.508
  
10. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028018.png ; $A ( D ) ^ { * }$ ; confidence 0.997
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200903.png ; $\{ x \} ^ { G }$ ; confidence 0.508
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028019.png ; $A ( K ) ^ { * }$ ; confidence 0.981
+
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110125.png ; $v _ { i } \phi _ { , i } = ( v . \nabla ) \phi$ ; confidence 0.508
  
12. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030044.png ; $f = g ^ { T } g$ ; confidence 1.000
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210110.png ; $( Hom _ { a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 0.508
  
13. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030036.png ; $h \equiv 0$ ; confidence 0.169
+
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110138.png ; $( v . \nabla ) v = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } v ) \times v$ ; confidence 0.508
  
14. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030042.png ; $\psi ( T ) =$ ; confidence 0.999
+
14. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286044.png ; $B _ { 1 }$ ; confidence 0.508
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150086.png ; $X \times X$ ; confidence 0.635
+
15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.508
  
16. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110340/b11034011.png ; $e ^ { 2 } \pi$ ; confidence 0.234
+
16. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011010.png ; $B _ { N } f$ ; confidence 0.507
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610120.png ; $- \dot { k }$ ; confidence 0.691
+
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010028.png ; $x \subseteq y$ ; confidence 0.507
  
18. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007085.png ; $p \in P ( k )$ ; confidence 0.998
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \{ U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 0.507
  
19. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007074.png ; $v \equiv 1$ ; confidence 0.721
+
19. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008087.png ; $\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x$ ; confidence 0.507
  
20. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070108.png ; $\beta ( f )$ ; confidence 0.999
+
20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } | \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } | = 0$ ; confidence 0.507
  
21. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003015.png ; $Z ( R ) ^ { 0 }$ ; confidence 0.968
+
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202106.png ; $\alpha ^ { N } 0 \neq 0$ ; confidence 0.507
  
22. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021970/c0219702.png ; $( X , \rho )$ ; confidence 0.998
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110115.png ; $\partial \phi / \partial x _ { i } = \phi _ { i }$ ; confidence 0.507
  
23. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014037.png ; $f \in \Phi$ ; confidence 0.991
+
23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008037.png ; $h ( x ) \equiv 0$ ; confidence 0.507
  
24. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015024.png ; $x ^ { i } ( t )$ ; confidence 0.994
+
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004083.png ; $GL$ ; confidence 0.507
  
25. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016018.png ; $d \mu _ { A }$ ; confidence 0.218
+
25. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034080.png ; $0 \in R ^ { x }$ ; confidence 0.507
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740375.png ; $\eta _ { A }$ ; confidence 0.780
+
26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030142.png ; $\pi$ ; confidence 0.507
  
27. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190111.png ; $\rho \in R$ ; confidence 0.977
+
27. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012025.png ; $\theta > 0$ ; confidence 0.507
  
28. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201909.png ; $p + F _ { . v }$ ; confidence 0.510
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510159.png ; $d _ { i n } < 2$ ; confidence 0.507
  
29. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202102.png ; $m - 1 \geq 0$ ; confidence 0.999
+
29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090122.png ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ ; confidence 0.507
  
30. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021031.png ; $| z | \neq 1$ ; confidence 0.999
+
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004048.png ; $\rho ^ { \prime } = \operatorname { grad } \rho = ( \partial \rho / \partial \zeta _ { 1 } , \dots , \partial \rho / \partial \zeta _ { n } )$ ; confidence 0.507
  
31. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202104.png ; $p _ { m } ( x )$ ; confidence 0.650
+
31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n12007023.png ; $A _ { j n _ { k } } \subset B , \quad k \in N$ ; confidence 0.506
  
32. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240129.png ; $l \notin S$ ; confidence 0.484
+
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014030.png ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506
  
33. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240107.png ; $Y _ { 1 } ( N )$ ; confidence 0.926
+
33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024027.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) )$ ; confidence 0.506
  
34. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024073.png ; $p \equiv 3$ ; confidence 0.976
+
34. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390141.png ; $\Pi _ { r }$ ; confidence 0.506
  
35. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024046.png ; $L ( E / Q ; s )$ ; confidence 0.910
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506
  
36. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026058.png ; $\Omega = R$ ; confidence 0.998
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200606.png ; $n \in N , \epsilon = \pm 1$ ; confidence 0.506
  
37. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026055.png ; $F ( t , \nu )$ ; confidence 0.991
+
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020065.png ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }$ ; confidence 0.506
  
38. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006049.png ; $C ( Y , \Re )$ ; confidence 0.565
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016023.png ; $\alpha = B / \overline { u } T$ ; confidence 0.506
  
39. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007083.png ; $p > 89 / 570$ ; confidence 0.999
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030035.png ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506
  
40. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001010.png ; $z x \leq y z$ ; confidence 0.976
+
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016030.png ; $k$ ; confidence 0.506
  
41. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001011.png ; $x z \leq y z$ ; confidence 0.982
+
41. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003032.png ; $IF ( x ; T , G )$ ; confidence 0.506
  
42. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001024.png ; $( X ) \neq 0$ ; confidence 0.989
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008073.png ; $F \in \operatorname { Hol } ( B )$ ; confidence 0.506
  
43. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001019.png ; $F _ { q } [ x ]$ ; confidence 0.516
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015940/b01594030.png ; $i = 0 , \dots , m$ ; confidence 0.506
  
44. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001053.png ; $a ^ { \sim }$ ; confidence 0.399
+
44. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003075.png ; $T _ { \text { vert } } ^ { * } Y$ ; confidence 0.506
  
45. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001059.png ; $f \in Q [ x ]$ ; confidence 0.789
+
45. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002030.png ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506
  
46. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002033.png ; $R \in K ( X )$ ; confidence 0.999
+
46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302409.png ; $\langle a b | c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c | b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle$ ; confidence 0.506
  
47. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002052.png ; $R \in L ( X )$ ; confidence 0.997
+
47. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017019.png ; $\overline { X } = ( A , B )$ ; confidence 0.506
  
48. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004027.png ; $X \times W$ ; confidence 0.757
+
48. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013090.png ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505
  
49. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005039.png ; $F _ { q } [ T ]$ ; confidence 0.943
+
49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001010.png ; $U ( g ) \varphi ; ( f ) U ( g ^ { - 1 } )$ ; confidence 0.505
  
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005041.png ; $x y z \neq 0$ ; confidence 0.997
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240547.png ; $T ^ { 2 }$ ; confidence 0.505
  
51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009020.png ; $U _ { m } ( x )$ ; confidence 0.979
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040064.png ; $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$ ; confidence 0.505
  
52. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009014.png ; $U _ { N } ( x )$ ; confidence 0.719
+
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505
  
53. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010027.png ; $A _ { p } ( G )$ ; confidence 0.899
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
  
54. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010011.png ; $N _ { p } ( f )$ ; confidence 0.996
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
  
55. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010030.png ; $A _ { 2 } ( G )$ ; confidence 0.978
+
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
  
56. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301004.png ; $A _ { p } ( G )$ ; confidence 0.997
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005048.png ; $S \subset M ^ { x }$ ; confidence 0.505
  
57. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012032.png ; $C _ { G } ( A )$ ; confidence 0.925
+
57. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300602.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505
  
58. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016054.png ; $\mu ( M , P )$ ; confidence 1.000
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060159.png ; $S _ { Y }$ ; confidence 0.505
  
59. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021050.png ; $A ( G _ { 2 } )$ ; confidence 0.826
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012028.png ; $\beta j > 0$ ; confidence 0.505
  
60. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021013.png ; $C ^ { * } ( G )$ ; confidence 0.917
+
60. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150203.png ; $\{ B x _ { x } \}$ ; confidence 0.505
  
61. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021049.png ; $A ( G _ { 1 } )$ ; confidence 0.985
+
61. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009034.png ; $b _ { N } = 0$ ; confidence 0.505
  
62. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021047.png ; $B ( G _ { 1 } )$ ; confidence 0.989
+
62. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029038.png ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]$ ; confidence 0.505
  
63. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945
+
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004016.png ; $a _ { x } + 1$ ; confidence 0.505
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139013.png ; $L _ { 1 } ( G )$ ; confidence 0.994
+
64. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030780/d03078032.png ; $n + 2$ ; confidence 0.505
  
65. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008094.png ; $W ^ { * } ( G )$ ; confidence 0.999
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032015.png ; $Y , Y _ { 1 } , Y _ { 2 } , \dots$ ; confidence 0.505
  
66. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080111.png ; $L _ { 2 } ( X )$ ; confidence 0.923
+
66. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200304.png ; $\{ y _ { N } \}$ ; confidence 0.504
  
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080122.png ; $B _ { 2 } ( G )$ ; confidence 0.943
+
67. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052040/i052040102.png ; $d _ { 1 } , \dots , d _ { n }$ ; confidence 0.504
  
68. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080164.png ; $B _ { p } ( G )$ ; confidence 0.987
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040128.png ; $\phi ^ { \prime }$ ; confidence 0.504
  
69. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008064.png ; $C _ { 0 } ( G )$ ; confidence 0.696
+
69. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300409.png ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504
  
70. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d0315402.png ; $G \times G$ ; confidence 0.999
+
70. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700041.png ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057069.png ; $\phi _ { p }$ ; confidence 0.640
+
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203009.png ; $Y = [ 0,2 \pi [ ^ { N } ]$ ; confidence 0.504
  
72. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011068.png ; $Q ( D ^ { x } )$ ; confidence 0.467
+
72. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002080.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \dots , \alpha _ { q } \cup \gamma ^ { d } ) \in F ( S ^ { d } ) ^ { q }$ ; confidence 0.504
  
73. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011043.png ; $F _ { j } ( z )$ ; confidence 0.964
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043075.png ; $k ^ { \prime } ( x _ { i } )$ ; confidence 0.504
  
74. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110199.png ; $Q \approx$ ; confidence 0.555
+
74. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008051.png ; $E [ T _ { p } ] _ { p R } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { p } \lambda _ { k } b _ { k } ^ { ( 2 ) } + \frac { b _ { p } } { 1 - \sigma _ { p - 1 } }$ ; confidence 0.504
  
75. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110211.png ; $G ( \zeta )$ ; confidence 0.988
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200152.png ; $\Pi ^ { \text { re } }$ ; confidence 0.504
  
76. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340103.png ; $\gamma$ ; confidence 0.589
+
76. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009015.png ; $\omega _ { n } = \frac { 2 \pi ^ { n / 2 } } { \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.504
  
77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011035.png ; $e ^ { - i x s }$ ; confidence 0.733
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593052.png ; $\mu _ { k }$ ; confidence 0.504
  
78. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019032.png ; $d u / d t = L u$ ; confidence 0.998
+
78. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010035.png ; $\square ^ { t } a P a$ ; confidence 0.504
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182064.png ; $\phi _ { i }$ ; confidence 0.789
+
79. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520164.png ; $f = ( \lambda - a ) ^ { s }$ ; confidence 0.504
  
80. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014019.png ; $D ^ { * } ( h )$ ; confidence 0.997
+
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019071.png ; $a \geq$ ; confidence 0.504
  
81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014034.png ; $z ( \zeta )$ ; confidence 0.997
+
81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023010.png ; $[ \varphi \otimes x , \psi \otimes Y ] =$ ; confidence 0.504
  
82. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f1201403.png ; $z = ( x + i y )$ ; confidence 0.996
+
82. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230125.png ; $\frac { - 1 } { k ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.504
  
83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150169.png ; $\mu ( A ) > 0$ ; confidence 0.999
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504
  
84. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019023.png ; $C _ { S } ( t )$ ; confidence 0.793
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180209.png ; $\varepsilon$ ; confidence 0.504
  
85. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023054.png ; $X \in X ( M )$ ; confidence 0.935
+
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020010.png ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504
  
86. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290113.png ; $( X , \tau )$ ; confidence 0.998
+
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \otimes \Lambda - A \otimes M ] =$ ; confidence 0.504
  
87. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450273.png ; $( L , \leq )$ ; confidence 0.994
+
87. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040104.png ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504
  
88. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003025.png ; $p \equiv 1$ ; confidence 0.929
+
88. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002067.png ; $\mu ( A ) = | A |$ ; confidence 0.504
  
89. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300209.png ; $\beta = - i$ ; confidence 1.000
+
89. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520213.png ; $GL _ { S } ( K )$ ; confidence 0.504
  
90. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002010.png ; $e ^ { \pi z }$ ; confidence 0.502
+
90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013045.png ; $T$ ; confidence 0.504
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460175.png ; $f _ { j } ( x )$ ; confidence 0.688
+
91. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006039.png ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0$ ; confidence 0.504
  
92. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050114.png ; $0 \leq k < d$ ; confidence 0.981
+
92. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019036.png ; $R _ { x } ^ { 3 N } \times R _ { p } ^ { 3 N }$ ; confidence 0.504
  
93. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005023.png ; $r ( 1,2 ) = 6$ ; confidence 1.000
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150111.png ; $E _ { P _ { n } } ( d ) = E _ { P _ { n } } ( d ^ { * } )$ ; confidence 0.504
  
94. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005015.png ; $r = r ( k , d )$ ; confidence 0.957
+
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310100.png ; $\delta > ( 3 n - 2 ) / 6$ ; confidence 0.503
  
95. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060116.png ; $v _ { i } ( A )$ ; confidence 0.462
+
95. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024043.png ; $\left( \begin{array} { c c } { L ( \alpha , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , \alpha ) } \end{array} \right)$ ; confidence 0.503
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014120/a01412076.png ; $n ( n - 1 ) / 2$ ; confidence 0.999
+
96. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202009.png ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503
  
97. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006064.png ; $p _ { x } ( z )$ ; confidence 0.547
+
97. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390136.png ; $P _ { + } T P _ { - }$ ; confidence 0.503
  
98. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006051.png ; $G _ { i } ( A )$ ; confidence 0.976
+
98. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008092.png ; $= - J - k _ { B } \operatorname { Tn } \{ \operatorname { cosh } ( \frac { H } { k _ { B } T } ) + + [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 }$ ; confidence 0.503
  
99. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004079.png ; $p ( x , \xi )$ ; confidence 0.993
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022022.png ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503
  
100. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004028.png ; $s = \infty$ ; confidence 0.994
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010233.png ; $\lambda$ ; confidence 0.503
  
101. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004038.png ; $1 \leq s < 2$ ; confidence 0.998
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503
  
102. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005033.png ; $f _ { c } ( y )$ ; confidence 0.995
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031990/d03199091.png ; $R _ { 1 }$ ; confidence 0.503
  
103. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010104.png ; $m \geq 3$ ; confidence 0.668
+
103. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042010.png ; $a \in B$ ; confidence 0.503
  
104. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001048.png ; $V ^ { 2 x + 1 }$ ; confidence 0.681
+
104. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090218.png ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503
  
105. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009033.png ; $G ^ { * } \mu$ ; confidence 0.379
+
105. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003016.png ; $( \epsilon \otimes id _ { A } ) \circ L = id _ { A }$ ; confidence 0.503
  
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002042.png ; $F ( S ) ^ { q }$ ; confidence 0.773
+
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006042.png ; $u _ { N }$ ; confidence 0.503
  
107. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002016.png ; $t \notin A$ ; confidence 0.931
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090115.png ; $q _ { H _ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 0.503
  
108. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002038.png ; $N = N ( q , r )$ ; confidence 0.966
+
108. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001070.png ; $P P \subseteq P$ ; confidence 0.503
  
109. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e1100502.png ; $| f | \leq 1$ ; confidence 0.999
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022081.png ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.503
  
110. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003075.png ; $00 ^ { 2 } n )$ ; confidence 0.213
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150106.png ; $\xi : X \rightarrow B O _ { N }$ ; confidence 0.503
  
111. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002026.png ; $| l | = m ( l )$ ; confidence 0.821
+
111. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578014.png ; $\times \int _ { 0 } ^ { \alpha } [ K _ { i \tau } ( \alpha ) I _ { i \tau } ( x ) - I _ { i \tau } ( \alpha ) K _ { i \tau } ( x ) ] f ( x ) \frac { d x } { x }$ ; confidence 0.502
  
112. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002084.png ; $s _ { j } ( T )$ ; confidence 0.788
+
112. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051092.png ; $O ( | M + | E | )$ ; confidence 0.502
  
113. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200507.png ; $u _ { \Phi }$ ; confidence 0.941
+
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004046.png ; $h _ { \lambda _ { i } }$ ; confidence 0.502
  
114. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300606.png ; $\tau \in H$ ; confidence 0.700
+
114. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002063.png ; $\int _ { S O ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f$ ; confidence 0.502
  
115. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300604.png ; $f \in M ( k )$ ; confidence 0.994
+
115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170177.png ; $W h ^ { x }$ ; confidence 0.502
  
116. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006049.png ; $D \alpha D$ ; confidence 0.787
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049048.png ; $m _ { N } : A \rightarrow [ 0 , + \infty )$ ; confidence 0.502
  
117. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007018.png ; $B ( m , D , n )$ ; confidence 0.999
+
117. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090105.png ; $j = 1 , \dots , k$ ; confidence 0.502
  
118. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007056.png ; $0 < m \leq n$ ; confidence 0.500
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610113.png ; $n _ { + }$ ; confidence 0.502
  
119. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007020.png ; $a \circ k b$ ; confidence 0.146
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023062.png ; $X = C ( S \times T )$ ; confidence 0.502
  
120. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011021.png ; $B ( 0 , r / 2 )$ ; confidence 0.999
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013990/a0139904.png ; $= X$ ; confidence 0.502
  
121. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012089.png ; $E _ { 0 } ( A )$ ; confidence 0.997
+
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016081.png ; $C = \operatorname { coc }$ ; confidence 0.502
  
122. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120165.png ; $H ( \pi , n )$ ; confidence 0.989
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419091.png ; $x \in U$ ; confidence 0.502
  
123. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012026.png ; $0 \leq p < 1$ ; confidence 0.999
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012085.png ; $f \in \operatorname { Lip } 1$ ; confidence 0.502
  
124. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012025.png ; $\theta > 0$ ; confidence 0.507
+
124. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017067.png ; $\lambda _ { 1 } ( \Omega ) \geq \frac { a } { r _ { \Omega } ^ { 2 } }$ ; confidence 0.502
  
125. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001024.png ; $\Phi _ { 1 }$ ; confidence 0.961
+
125. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861058.png ; $Sp ( n )$ ; confidence 0.502
  
126. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001025.png ; $\Phi _ { 2 }$ ; confidence 0.659
+
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030072.png ; $K _ { 1 } ( O _ { N } ) = 0$ ; confidence 0.502
  
127. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001015.png ; $d \lambda$ ; confidence 0.953
+
127. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002010.png ; $e ^ { \pi z }$ ; confidence 0.502
  
128. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001049.png ; $X ( 1 ^ { n } )$ ; confidence 0.320
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501
  
129. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003049.png ; $T ( M ^ { g } )$ ; confidence 0.959
+
129. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h046280183.png ; $\{ f , \}$ ; confidence 0.501
  
130. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
+
130. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062098.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501
  
131. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003059.png ; $K ^ { 0 } ( B )$ ; confidence 0.977
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007049.png ; $\operatorname { GCD } ( \alpha , b ) = 1$ ; confidence 0.501
  
132. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030128.png ; $P _ { + } f = 0$ ; confidence 0.988
+
132. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014053.png ; $m$ ; confidence 0.501
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021720/c02172025.png ; $( - 1 ) ^ { x }$ ; confidence 0.874
+
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012016.png ; $\operatorname { size } ( x ) = n$ ; confidence 0.501
  
134. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004071.png ; $K ( s _ { r } )$ ; confidence 0.515
+
134. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752038.png ; $a _ { i + 1 }$ ; confidence 0.501
  
135. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004098.png ; $K _ { Y } ( s )$ ; confidence 0.719
+
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042083.png ; $q \in k$ ; confidence 0.501
  
136. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005069.png ; $m ( n ; T , V )$ ; confidence 0.995
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020252.png ; $Z \subset X$ ; confidence 0.501
  
137. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200608.png ; $x < Q _ { i } y$ ; confidence 0.765
+
137. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006062.png ; $\rho ^ { 2 / 3 } = \Phi$ ; confidence 0.501
  
138. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006063.png ; $( P ) \leq k$ ; confidence 0.974
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001041.png ; $\frac { \partial c } { \partial t } = \operatorname { div } \{ M \operatorname { grad } [ f _ { 0 } ^ { \prime } ( c ) - 2 \kappa \Delta c ] \} \text { in } V$ ; confidence 0.501
  
139. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060176.png ; $A ( x , y ) = 0$ ; confidence 0.999
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205304.png ; $K ( , s ) \in L ^ { 1 } ( \mu )$ ; confidence 0.501
  
140. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006074.png ; $A = A ( x , y )$ ; confidence 1.000
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201107.png ; $\varphi ( \alpha , b , 1 ) = \alpha b$ ; confidence 0.501
  
141. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300603.png ; $u ( 0 , k ) = 0$ ; confidence 0.999
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300105.png ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501
  
142. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060147.png ; $0 \leq b < 1$ ; confidence 0.975
+
142. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010012.png ; $p \in R$ ; confidence 0.501
  
143. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650269.png ; $M \times M$ ; confidence 0.947
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
  
144. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007090.png ; $q ( x ) \in Q$ ; confidence 0.962
+
144. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010069.png ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +$ ; confidence 0.501
  
145. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008016.png ; $S _ { i } = - 1$ ; confidence 0.927
+
145. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007014.png ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010411.png ; $N = \infty$ ; confidence 0.855
+
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021046.png ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501
  
147. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008062.png ; $S _ { i } = + 1$ ; confidence 0.881
+
147. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940807.png ; $\pi _ { N } ( X ; A , B , x _ { 0 } )$ ; confidence 0.501
  
148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080118.png ; $\gamma = 1$ ; confidence 0.998
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029013.png ; $1 _ { A } ( M / q M )$ ; confidence 0.501
  
149. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080132.png ; $J _ { i j } > 0$ ; confidence 0.449
+
149. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002017.png ; $\delta _ { BDST } ^ { 2 } = 0$ ; confidence 0.500
  
150. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008057.png ; $\pm m _ { S }$ ; confidence 0.769
+
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007056.png ; $0 < m \leq n$ ; confidence 0.500
  
151. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008039.png ; $J _ { i j } = J$ ; confidence 0.837
+
151. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442077.png ; $\overline { P }$ ; confidence 0.500
  
152. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008036.png ; $P ^ { 2 } ( R )$ ; confidence 0.839
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042039.png ; $V _ { 1 } \otimes \ldots \otimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \otimes \ldots \otimes V _ { \sigma ( n ) }$ ; confidence 0.500
  
153. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450441.png ; $A _ { x } ( k )$ ; confidence 0.771
+
153. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300405.png ; $W _ { loc } ^ { 1 , n } ( G )$ ; confidence 0.500
  
154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009095.png ; $f _ { i } ( T )$ ; confidence 0.957
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167078.png ; $x _ { 1 } , \dots , x _ { r }$ ; confidence 0.500
  
155. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009028.png ; $E _ { 1 } ( k )$ ; confidence 0.993
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042097.png ; $2 + 2 z$ ; confidence 0.500
  
156. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009046.png ; $E _ { 1 } ( k )$ ; confidence 0.996
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta )$ ; confidence 0.500
  
157. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090229.png ; $Y \lambda$ ; confidence 0.393
+
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021027.png ; $\wedge ^ { k } ( a )$ ; confidence 0.500
  
158. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009035.png ; $r _ { 1 } ( k )$ ; confidence 0.355
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020066.png ; $A \oplus B$ ; confidence 0.887
+
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
  
160. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001050.png ; $C ( n , d ) > 0$ ; confidence 0.991
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042085.png ; $\theta$ ; confidence 0.500
  
161. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001049.png ; $d , n \geq 1$ ; confidence 0.997
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240356.png ; $E ( Z _ { 1 } ) = 0$ ; confidence 0.500
  
162. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020209.png ; $L ^ { 1 } ( I )$ ; confidence 0.977
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / MS _ { e }$ ; confidence 0.500
  
163. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004058.png ; $s ( D _ { L } )$ ; confidence 0.994
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230117.png ; $\pi r$ ; confidence 0.500
  
164. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004071.png ; $P _ { i } ( v )$ ; confidence 0.938
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { ap\square regular partition of } n$ ; confidence 0.500
  
165. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004014.png ; $V _ { L } ( t )$ ; confidence 0.827
+
165. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211027.png ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k } - 1 , x _ { k } )$ ; confidence 0.500
  
166. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300709.png ; $( \Delta )$ ; confidence 0.760
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140151.png ; $\operatorname { prin } K l$ ; confidence 0.500
  
167. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110020/e11002048.png ; $S ^ { 2 n + 1 }$ ; confidence 0.424
+
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020025.png ; $\operatorname { sup } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { min } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { \phi } ( k ) }$ ; confidence 0.500
  
168. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001059.png ; $T ^ { 2 x + 1 }$ ; confidence 0.422
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008030.png ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499
  
169. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001070.png ; $R ^ { 2 x + 2 }$ ; confidence 0.569
+
169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011018.png ; $I ( w )$ ; confidence 0.499
  
170. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055020/k05502018.png ; $T ^ { t } \xi$ ; confidence 0.814
+
170. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090116.png ; $\Delta ( \lambda ) = K GL _ { n } ( K ) z _ { \lambda }$ ; confidence 0.499
  
171. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011020.png ; $u ( x , y , t )$ ; confidence 0.995
+
171. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005032.png ; $X , X D$ ; confidence 0.499
  
172. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001040.png ; $t = A ^ { - 4 }$ ; confidence 1.000
+
172. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012093.png ; $V _ { \operatorname { sin } p } ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.499
  
173. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006032.png ; $h ^ { i } ( L )$ ; confidence 0.986
+
173. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067170/n06717077.png ; $t \in R +$ ; confidence 0.499
  
174. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006030.png ; $h ^ { 1 } ( L )$ ; confidence 0.985
+
174. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051320/i05132021.png ; $\pi$ ; confidence 0.499
  
175. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006016.png ; $h ^ { i } ( E )$ ; confidence 0.994
+
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
  
176. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005063.png ; $q \leq 2 d r$ ; confidence 0.995
+
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036014.png ; $P ( E _ { l } ) = \frac { \operatorname { exp } ( - E _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - E _ { l } / k _ { B } T ) }$ ; confidence 0.499
  
177. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007011.png ; $C _ { 0 } ( t )$ ; confidence 0.381
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180190.png ; $C A$ ; confidence 0.499
  
178. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008042.png ; $K _ { p } ( f )$ ; confidence 0.937
+
178. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001023.png ; $x _ { i } \in X$ ; confidence 0.499
  
179. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008049.png ; $D _ { y } ( f )$ ; confidence 0.783
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016044.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499
  
180. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005010.png ; $f ( x , v , t )$ ; confidence 0.952
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230108.png ; $X : = U \wedge V$ ; confidence 0.499
  
181. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005030.png ; $p = \rho R T$ ; confidence 0.970
+
181. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017067.png ; $k ( 0 ) = 1$ ; confidence 0.499
  
182. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012049.png ; $X ^ { 2 x + 1 }$ ; confidence 0.629
+
182. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200102.png ; $G = SL ( 2 , C ) \times R ^ { 4 }$ ; confidence 0.499
  
183. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840172.png ; $\pi _ { f i }$ ; confidence 0.178
+
183. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001061.png ; $a \neq b \in C ^ { n }$ ; confidence 0.499
  
184. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584044.png ; $( K , ( . . ) )$ ; confidence 0.477
+
184. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011098.png ; $p ( n )$ ; confidence 0.498
  
185. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840144.png ; $x \in D ( T )$ ; confidence 0.835
+
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012029.png ; $F$ ; confidence 0.498
  
186. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840365.png ; $K = C ^ { 2 n }$ ; confidence 0.233
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta } K ) \text { as } x \rightarrow \infty$ ; confidence 0.498
  
187. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840175.png ; $E \lambda$ ; confidence 0.541
+
187. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008029.png ; $q _ { m } \in L _ { 1,1 }$ ; confidence 0.498
  
188. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013016.png ; $Q _ { 2 } n + 1$ ; confidence 0.352
+
188. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007051.png ; $GL _ { n } ( Z A )$ ; confidence 0.498
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c02285078.png ; $\rho _ { m }$ ; confidence 0.726
+
189. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000130.png ; $M : \sigma$ ; confidence 0.498
  
190. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007027.png ; $L = N , 2 \pi$ ; confidence 0.888
+
190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050159.png ; $A _ { i } : = M _ { z _ { i } }$ ; confidence 0.498
  
191. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007041.png ; $| u ( x , t ) |$ ; confidence 0.991
+
191. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001047.png ; $\overline { T G }$ ; confidence 0.498
  
192. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007013.png ; $q = 2 \pi / L$ ; confidence 0.978
+
192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007045.png ; $f \in L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.498
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417037.png ; $M / \Gamma$ ; confidence 0.903
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301008.png ; $K _ { Z } \in H$ ; confidence 0.498
  
194. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508012.png ; $2 \square$ ; confidence 0.982
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040234.png ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498
  
195. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702025.png ; $z / l ^ { x } z$ ; confidence 0.326
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200204.png ; $O _ { s } + 2,2 ( R )$ ; confidence 0.498
  
196. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001037.png ; $M _ { n } ( R )$ ; confidence 0.472
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000111.png ; $I _ { \epsilon } ( X )$ ; confidence 0.498
  
197. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003058.png ; $L ^ { 1 } ( Q )$ ; confidence 0.968
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497
  
198. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003038.png ; $L _ { 2 } ( E )$ ; confidence 0.951
+
198. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004098.png ; $P _ { K _ { + } } ( v , z ) - P _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 0.497
  
199. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003061.png ; $L ^ { 1 } ( m )$ ; confidence 0.982
+
199. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009094.png ; $[ P , ] _ { A }$ ; confidence 0.497
  
200. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003034.png ; $L _ { 1 } ( E )$ ; confidence 0.951
+
200. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010105.png ; $P = \cap _ { i \in I } P _ { i }$ ; confidence 0.497
  
201. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004049.png ; $F _ { X } ( T )$ ; confidence 0.986
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103302.png ; $| X | ^ { \prime }$ ; confidence 0.497
  
202. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004055.png ; $F _ { X } ( Y )$ ; confidence 0.961
+
202. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300902.png ; $\left. \begin{array} { l } { U _ { 0 } ( x ) = 0 } \\ { U _ { 1 } ( x ) = 1 } \\ { U _ { n } ( x ) = x U _ { n - 1 } ( x ) + U _ { n - 2 } ( x ) , \quad n = 2,3 } \end{array} \right.$ ; confidence 0.497
  
203. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004036.png ; $X ( G ) \in X$ ; confidence 0.965
+
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558403.png ; $[ , ] : K \times K \rightarrow C$ ; confidence 0.497
  
204. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000130.png ; $M : \sigma$ ; confidence 0.498
+
204. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497
  
205. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000101.png ; $f ( 0 , x ) = 0$ ; confidence 1.000
+
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012072.png ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { A } ^ { * } = 0$ ; confidence 0.497
  
206. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700059.png ; $( F A ) B = B A$ ; confidence 0.998
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030052.png ; $( E _ { n } : n \in Z ^ { + } )$ ; confidence 0.497
  
207. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001024.png ; $C ( T ^ { x } )$ ; confidence 0.479
+
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006086.png ; $T _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi$ ; confidence 0.497
  
208. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006068.png ; $e ^ { - i z t }$ ; confidence 0.984
+
208. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
  
209. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006018.png ; $e ^ { - i H t }$ ; confidence 0.962
+
209. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050430/i0504302.png ; $a _ { 1 } , \dots , a _ { r }$ ; confidence 0.497
  
210. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006022.png ; $d \lambda$ ; confidence 0.999
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032040.png ; $E ( Y ) = 2 \theta - 1$ ; confidence 0.497
  
211. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090109.png ; $A = T ^ { * } M$ ; confidence 0.985
+
211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120102.png ; $u \in Q _ { 1 } ( R )$ ; confidence 0.497
  
212. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009094.png ; $[ P , ] _ { A }$ ; confidence 0.497
+
212. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008075.png ; $P = ( P _ { s s ^ { \prime } } ) = ( \langle S | P | S ^ { \prime } \rangle )$ ; confidence 0.497
  
213. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009073.png ; $A \times R$ ; confidence 0.930
+
213. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005020.png ; $\psi _ { N } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.497
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970220.png ; $\gamma > 0$ ; confidence 0.999
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240445.png ; $y _ { 1 } , \dots , y _ { p }$ ; confidence 0.497
  
215. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100103.png ; $N _ { E } ( V )$ ; confidence 0.953
+
215. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { p | p } ( 1 - \chi \omega ^ { - n } ( p ) N p ^ { n - 1 } )$ ; confidence 0.497
  
216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100112.png ; $K _ { E } ( V )$ ; confidence 0.875
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200186.png ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010061.png ; $\gamma < 1$ ; confidence 0.999
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064074.png ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t s ( t ) s ( - t ) d t )$ ; confidence 0.496
  
218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100101.png ; $V = - V _ { - }$ ; confidence 0.705
+
218. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022032.png ; $\rho _ { d }$ ; confidence 0.496
  
219. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200107.png ; $\gamma = 0$ ; confidence 0.999
+
219. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015120/b01512014.png ; $S ^ { n - 1 }$ ; confidence 0.496
  
220. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010092.png ; $\gamma + n$ ; confidence 0.997
+
220. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011073.png ; $x \mu _ { x } ( x )$ ; confidence 0.496
  
221. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011010.png ; $\| A x - b \|$ ; confidence 0.832
+
221. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017046.png ; $\sum _ { i = 1 } ^ { k } \lambda _ { i } \geq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 1 + 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } k = 1,2 , \ldots$ ; confidence 0.496
  
222. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005039.png ; $L _ { k } ( a )$ ; confidence 0.440
+
222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202401.png ; $\psi _ { X y } + u ( x , y ) \psi = 0$ ; confidence 0.496
  
223. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006065.png ; $\lfloor x$ ; confidence 0.800
+
223. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003023.png ; $x , b , x , y , z \in E$ ; confidence 0.496
  
224. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006099.png ; $k \times r$ ; confidence 0.971
+
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019047.png ; $M _ { n } = \operatorname { det } M _ { n }$ ; confidence 0.496
  
225. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031810/d03181064.png ; $| \omega |$ ; confidence 0.986
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042013.png ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \varnothing )$ ; confidence 0.496
  
226. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033760/d03376042.png ; $k = \infty$ ; confidence 0.977
+
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $74$ ; confidence 0.496
  
227. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003069.png ; $P \hat { U }$ ; confidence 0.901
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031041.png ; $22$ ; confidence 0.496
  
228. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004011.png ; $f _ { k } ( z )$ ; confidence 0.878
+
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022020.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496
  
229. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120388.png ; $f ^ { * } ( z )$ ; confidence 0.995
+
229. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017084.png ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120112.png ; $V ( K _ { p } )$ ; confidence 0.451
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031042.png ; $k$ ; confidence 0.496
  
231. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120113.png ; $V ( O _ { M } )$ ; confidence 0.483
+
231. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010092.png ; $p \in R$ ; confidence 0.496
  
232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120139.png ; $G ( K ) ^ { 6 }$ ; confidence 0.278
+
232. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004051.png ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050020.png ; $\hat { Q } p$ ; confidence 0.161
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700064.png ; $( \lambda x y \cdot y x ) A B = B A$ ; confidence 0.496
  
234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013066.png ; $p \notin S$ ; confidence 0.761
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007027.png ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( C )$ ; confidence 0.496
  
235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013064.png ; $f ( x _ { p } )$ ; confidence 0.276
+
235. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020110.png ; $\| X \| _ { * } \leq 1$ ; confidence 0.496
  
236. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013034.png ; $f _ { j } ( x )$ ; confidence 0.959
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004042.png ; $\operatorname { Th } D$ ; confidence 0.496
  
237. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565024.png ; $f ( x _ { 0 } )$ ; confidence 0.981
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003049.png ; $\| t g ( t ) \| _ { 2 } \| \gamma g ( \gamma ) \| _ { 2 } = \infty$ ; confidence 0.496
  
238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015025.png ; $w \in T V$ ; confidence 0.524
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010036.png ; $U ^ { ( n ) } t = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s } + x - k )$ ; confidence 0.496
  
239. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110310/c11031039.png ; $K \times 1$ ; confidence 0.606
+
239. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011070.png ; $( F ^ { x } , h : F \rightarrow F ) \rightarrow T ( h )$ ; confidence 0.496
  
240. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170129.png ; $L ^ { 2 } = pt$ ; confidence 0.902
+
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014042.png ; $s _ { i } ( z )$ ; confidence 0.496
  
241. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105060.png ; $f ( [ a , b ] )$ ; confidence 0.816
+
241. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020067.png ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496
  
242. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202009.png ; $m \geq n + 1$ ; confidence 0.646
+
242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010025.png ; $\{ t = t ; \} \cup K$ ; confidence 0.495
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169703.png ; $\sigma = 1$ ; confidence 0.999
+
243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023042.png ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111060/b11106060.png ; $\| \phi \|$ ; confidence 0.950
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031082.png ; $R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 0.495
  
245. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002038.png ; $T _ { i } ( S )$ ; confidence 0.477
+
245. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001024.png ; $X _ { t } \sim X - t$ ; confidence 0.495
  
246. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003034.png ; $J ( q ^ { N } )$ ; confidence 0.608
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060109.png ; $a \geq$ ; confidence 0.495
  
247. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009053.png ; $1 / P ( \xi )$ ; confidence 0.988
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470223.png ; $\pi$ ; confidence 0.495
  
248. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009038.png ; $P ( \xi ) = 0$ ; confidence 1.000
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221105.png ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k }$ ; confidence 0.495
  
249. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222056.png ; $p \leq n - 2$ ; confidence 0.999
+
249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001018.png ; $\varphi ; ( f )$ ; confidence 0.495
  
250. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012026.png ; $0 \neq A < R$ ; confidence 0.725
+
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200706.png ; $a _ { 1 } , \dots , a _ { t }$ ; confidence 0.495
  
251. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012058.png ; $\theta R C$ ; confidence 0.260
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027035.png ; $f \in A _ { s } ^ { + }$ ; confidence 0.495
  
252. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012098.png ; $Q _ { s } ( R )$ ; confidence 0.455
+
252. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001017.png ; $( D )$ ; confidence 0.495
  
253. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120139.png ; $Q _ { F } ( R )$ ; confidence 0.996
+
253. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060128.png ; $- ( \text { const } ) \int _ { R ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 0.495
  
254. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012096.png ; $Q _ { r } ( R )$ ; confidence 0.904
+
254. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520275.png ; $h \in H$ ; confidence 0.495
  
255. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012061.png ; $R = F ( x , y )$ ; confidence 0.562
+
255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010124.png ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495
  
256. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012029.png ; $0 \neq I < R$ ; confidence 0.335
+
256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011095.png ; $K \subset D ^ { \gamma }$ ; confidence 0.495
  
257. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120128.png ; $C = Z ( Q )$ ; confidence 0.941
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027018.png ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y v , m )$ ; confidence 0.495
  
258. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007031.png ; $F ( f _ { l } )$ ; confidence 0.868
+
258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010050.png ; $\hat { \Delta }$ ; confidence 0.495
  
259. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009012.png ; $( \phi , A )$ ; confidence 0.966
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028027.png ; $x ^ { 3 } ( x )$ ; confidence 0.061
+
260. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003098.png ; $M = \int ( \partial / \partial e ) \eta ( \vec { x } , e ) \vec { x X } ^ { t } d H _ { \vec { \theta } } ( \vec { x } , y )$ ; confidence 0.495
  
261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110120.png ; $D \phi / D t$ ; confidence 0.995
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495
  
262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013016.png ; $0 < K \leq C$ ; confidence 0.949
+
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044027.png ; $H ^ { N - 1 - k } ( S ^ { x } \backslash X )$ ; confidence 0.495
  
263. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013020.png ; $0 < b \leq 1$ ; confidence 0.985
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495
  
264. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158019.png ; $m \times m$ ; confidence 0.983
+
264. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020119.png ; $\int _ { \partial D } \operatorname { exp } ( \varepsilon | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | ) d \vartheta$ ; confidence 0.495
  
265. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013096.png ; $K = M ^ { T } M$ ; confidence 0.998
+
265. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003030.png ; $S _ { A } : A \times L A \rightarrow L A$ ; confidence 0.495
  
266. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013050.png ; $L = \nu I - J$ ; confidence 0.987
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202806.png ; $( X _ { n } ) _ { n } > 0$ ; confidence 0.494
  
267. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013017.png ; $m _ { i j } = 2$ ; confidence 0.667
+
267. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d1202902.png ; $\varphi ( q )$ ; confidence 0.494
  
268. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013086.png ; $\vec { i j }$ ; confidence 0.477
+
268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005058.png ; $X = P ^ { d }$ ; confidence 0.494
  
269. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013020.png ; $m _ { i j } = 0$ ; confidence 0.755
+
269. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300604.png ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty$ ; confidence 0.494
  
270. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110110/i11011024.png ; $m _ { i j } = 1$ ; confidence 0.667
+
270. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520451.png ; $\lambda _ { i } < 0$ ; confidence 0.494
  
271. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015042.png ; $f _ { X } ( X )$ ; confidence 0.939
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023081.png ; $\Omega \subset C ^ { x }$ ; confidence 0.494
  
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015037.png ; $f _ { Y } ( Y )$ ; confidence 0.513
+
272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032055.png ; $F _ { k }$ ; confidence 0.494
  
273. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014038.png ; $| x | + r j < R$ ; confidence 0.807
+
273. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702080.png ; $i \neq p$ ; confidence 0.494
  
274. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011013.png ; $- i \infty$ ; confidence 0.527
+
274. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200106.png ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494
  
275. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011014.png ; $+ i \infty$ ; confidence 0.934
+
275. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004016.png ; $T ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 0.494
  
276. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019044.png ; $M _ { - 1 } = 0$ ; confidence 0.989
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003032.png ; $V ^ { 1 } , V ^ { 2 } , \dots$ ; confidence 0.494
  
277. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302009.png ; $L _ { Y } P = 0$ ; confidence 0.870
+
277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014071.png ; $V _ { f } = \{ f ( a ) : a \in F _ { q } \}$ ; confidence 0.494
  
278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022055.png ; $C _ { M } ( g )$ ; confidence 0.465
+
278. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013098.png ; $x$ ; confidence 0.494
  
279. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022032.png ; $\rho _ { d }$ ; confidence 0.496
+
279. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011060.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \stackrel { P } { \rightarrow } \alpha ( x ) = - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } e ^ { - \lambda } } { x ! } R ( d \lambda )$ ; confidence 0.493
  
280. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023039.png ; $R _ { t } ( x )$ ; confidence 0.876
+
280. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011039.png ; $x = 1 , \dots , f ( 1 , n )$ ; confidence 0.493
  
281. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003043.png ; $( X , \| \| )$ ; confidence 0.881
+
281. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013010.png ; $r j > 0$ ; confidence 0.493
  
282. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043800/g043800137.png ; $H \times H$ ; confidence 0.956
+
282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005041.png ; $\sigma _ { T } ( A , X ) : = \{ \lambda \in C ^ { n } : A - \lambda \text { is singular } \}$ ; confidence 0.493
  
283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023055.png ; $d f _ { t , s }$ ; confidence 0.401
+
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260135.png ; $\pi _ { v , p } ( d \theta ) P ( \theta , \mu ) ( d x )$ ; confidence 0.493
  
284. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023013.png ; $f ( C _ { j } )$ ; confidence 0.781
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020052.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } }$ ; confidence 0.493
  
285. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662011.png ; $Q _ { j } ( z )$ ; confidence 0.892
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026078.png ; $R ^ { n } \backslash K _ { 2 }$ ; confidence 0.493
  
286. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260169.png ; $B = \pi ( X )$ ; confidence 0.939
+
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023025.png ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493
  
287. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018027.png ; $\mu ( m , n )$ ; confidence 0.999
+
287. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006050.png ; $\Sigma n _ { j } = n$ ; confidence 0.493
  
288. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180111.png ; $\mu ( x , 1 )$ ; confidence 0.996
+
288. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493
  
289. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018051.png ; $x \geq y > 0$ ; confidence 0.999
+
289. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015280/b01528024.png ; $A _ { 0 } , \ldots , A _ { N }$ ; confidence 0.493
  
290. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018061.png ; $y \vee x = 1$ ; confidence 0.996
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180223.png ; $\in A ^ { 2 } \varepsilon \otimes A ^ { 2 } \varepsilon$ ; confidence 0.493
  
291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018012.png ; $\mu ( x , y )$ ; confidence 0.992
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032011.png ; $x \otimes y \rightarrow x . y$ ; confidence 0.493
  
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018055.png ; $u \vee y = x$ ; confidence 0.986
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700019.png ; $\lambda x x \equiv \lambda x x \not \equiv \lambda x y$ ; confidence 0.493
  
293. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018032.png ; $( - 1 ) ^ { t }$ ; confidence 0.552
+
293. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d03215060.png ; $i = 0 , \ldots , N$ ; confidence 0.492
  
294. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012065.png ; $M ( x ) \in B$ ; confidence 0.830
+
294. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230172.png ; $l _ { i } = \delta _ { i } ^ { * } G _ { i } \Theta _ { i } \left( \begin{array} { c } { 1 } \\ { 0 } \end{array} \right) , d _ { i } = | \delta _ { i } | ^ { 2 }$ ; confidence 0.492
  
295. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012080.png ; $\Sigma = R$ ; confidence 0.976
+
295. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006026.png ; $\alpha _ { 2 } = 1 , \dots , \alpha _ { k - 1 } = k - 2$ ; confidence 0.492
  
296. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810138.png ; $x \notin S$ ; confidence 0.921
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059018.png ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.492
  
297. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n12001011.png ; $\pi ( \nu )$ ; confidence 0.984
+
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400101.png ; $G \times ^ { R } V$ ; confidence 0.492
  
298. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002035.png ; $x = \alpha$ ; confidence 0.808
+
298. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492
  
299. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n1300209.png ; $A \times Y$ ; confidence 0.997
+
299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006081.png ; $( g f ( z ) )$ ; confidence 0.492
  
300. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002075.png ; $V _ { F } ( m )$ ; confidence 0.990
+
300. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014029.png ; $f t _ { 1 } \ldots t _ { \rho } ( f ) \in T$ ; confidence 0.492

Revision as of 00:10, 13 February 2020

List

1. f04194061.png ; $X _ { f }$ ; confidence 0.508

2. l11001032.png ; $f \leq g$ ; confidence 0.508

3. f130100127.png ; $\sigma ( L _ { C } ^ { \infty } ( \hat { G } ) , L _ { C } ^ { 1 } ( \hat { G } ) )$ ; confidence 0.508

4. g12005049.png ; $1 \in C$ ; confidence 0.508

5. z13001031.png ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) Z ( y ( n ) )$ ; confidence 0.508

6. b120150159.png ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508

7. c13006045.png ; $27$ ; confidence 0.508

8. d12023076.png ; $Z ^ { * }$ ; confidence 0.508

9. i13005035.png ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k )$ ; confidence 0.508

10. c1200903.png ; $\{ x \} ^ { G }$ ; confidence 0.508

11. m130110125.png ; $v _ { i } \phi _ { , i } = ( v . \nabla ) \phi$ ; confidence 0.508

12. b120210110.png ; $( Hom _ { a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 0.508

13. m130110138.png ; $( v . \nabla ) v = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } v ) \times v$ ; confidence 0.508

14. c02286044.png ; $B _ { 1 }$ ; confidence 0.508

15. l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.508

16. b13011010.png ; $B _ { N } f$ ; confidence 0.507

17. z13010028.png ; $x \subseteq y$ ; confidence 0.507

18. a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \{ U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 0.507

19. q12008087.png ; $\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x$ ; confidence 0.507

20. w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } | \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } | = 0$ ; confidence 0.507

21. f1202106.png ; $\alpha ^ { N } 0 \neq 0$ ; confidence 0.507

22. m130110115.png ; $\partial \phi / \partial x _ { i } = \phi _ { i }$ ; confidence 0.507

23. o13008037.png ; $h ( x ) \equiv 0$ ; confidence 0.507

24. s12004083.png ; $GL$ ; confidence 0.507

25. f04034080.png ; $0 \in R ^ { x }$ ; confidence 0.507

26. i130030142.png ; $\pi$ ; confidence 0.507

27. h13012025.png ; $\theta > 0$ ; confidence 0.507

28. s130510159.png ; $d _ { i n } < 2$ ; confidence 0.507

29. w120090122.png ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ ; confidence 0.507

30. c12004048.png ; $\rho ^ { \prime } = \operatorname { grad } \rho = ( \partial \rho / \partial \zeta _ { 1 } , \dots , \partial \rho / \partial \zeta _ { n } )$ ; confidence 0.507

31. n12007023.png ; $A _ { j n _ { k } } \subset B , \quad k \in N$ ; confidence 0.506

32. s13014030.png ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506

33. f12024027.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) )$ ; confidence 0.506

34. h047390141.png ; $\Pi _ { r }$ ; confidence 0.506

35. a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506

36. b1200606.png ; $n \in N , \epsilon = \pm 1$ ; confidence 0.506

37. t12020065.png ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }$ ; confidence 0.506

38. a12016023.png ; $\alpha = B / \overline { u } T$ ; confidence 0.506

39. b13030035.png ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506

40. f12016030.png ; $k$ ; confidence 0.506

41. m12003032.png ; $IF ( x ; T , G )$ ; confidence 0.506

42. d13008073.png ; $F \in \operatorname { Hol } ( B )$ ; confidence 0.506

43. b01594030.png ; $i = 0 , \dots , m$ ; confidence 0.506

44. i13003075.png ; $T _ { \text { vert } } ^ { * } Y$ ; confidence 0.506

45. g13002030.png ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506

46. f1302409.png ; $\langle a b | c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c | b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle$ ; confidence 0.506

47. p12017019.png ; $\overline { X } = ( A , B )$ ; confidence 0.506

48. m13013090.png ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505

49. q12001010.png ; $U ( g ) \varphi ; ( f ) U ( g ^ { - 1 } )$ ; confidence 0.505

50. a130240547.png ; $T ^ { 2 }$ ; confidence 0.505

51. b12040064.png ; $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$ ; confidence 0.505

52. t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505

53. a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505

54. a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505

55. t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505

56. f13005048.png ; $S \subset M ^ { x }$ ; confidence 0.505

57. k1300602.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505

58. a130060159.png ; $S _ { Y }$ ; confidence 0.505

59. a12012028.png ; $\beta j > 0$ ; confidence 0.505

60. f120150203.png ; $\{ B x _ { x } \}$ ; confidence 0.505

61. c13009034.png ; $b _ { N } = 0$ ; confidence 0.505

62. b13029038.png ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]$ ; confidence 0.505

63. t13004016.png ; $a _ { x } + 1$ ; confidence 0.505

64. d03078032.png ; $n + 2$ ; confidence 0.505

65. a13032015.png ; $Y , Y _ { 1 } , Y _ { 2 } , \dots$ ; confidence 0.505

66. d1200304.png ; $\{ y _ { N } \}$ ; confidence 0.504

67. i052040102.png ; $d _ { 1 } , \dots , d _ { n }$ ; confidence 0.504

68. a130040128.png ; $\phi ^ { \prime }$ ; confidence 0.504

69. k1300409.png ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504

70. l05700041.png ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504

71. b1203009.png ; $Y = [ 0,2 \pi [ ^ { N } ]$ ; confidence 0.504

72. h13002080.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \dots , \alpha _ { q } \cup \gamma ^ { d } ) \in F ( S ^ { d } ) ^ { q }$ ; confidence 0.504

73. b12043075.png ; $k ^ { \prime } ( x _ { i } )$ ; confidence 0.504

74. q12008051.png ; $E [ T _ { p } ] _ { p R } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { p } \lambda _ { k } b _ { k } ^ { ( 2 ) } + \frac { b _ { p } } { 1 - \sigma _ { p - 1 } }$ ; confidence 0.504

75. b130200152.png ; $\Pi ^ { \text { re } }$ ; confidence 0.504

76. p13009015.png ; $\omega _ { n } = \frac { 2 \pi ^ { n / 2 } } { \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.504

77. b01593052.png ; $\mu _ { k }$ ; confidence 0.504

78. f12010035.png ; $\square ^ { t } a P a$ ; confidence 0.504

79. n067520164.png ; $f = ( \lambda - a ) ^ { s }$ ; confidence 0.504

80. e12019071.png ; $a \geq$ ; confidence 0.504

81. f12023010.png ; $[ \varphi \otimes x , \psi \otimes Y ] =$ ; confidence 0.504

82. f120230125.png ; $\frac { - 1 } { k ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.504

83. a13013049.png ; $k$ ; confidence 0.504

84. c120180209.png ; $\varepsilon$ ; confidence 0.504

85. t12020010.png ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504

86. c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \otimes \Lambda - A \otimes M ] =$ ; confidence 0.504

87. g130040104.png ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504

88. i13002067.png ; $\mu ( A ) = | A |$ ; confidence 0.504

89. n067520213.png ; $GL _ { S } ( K )$ ; confidence 0.504

90. p12013045.png ; $T$ ; confidence 0.504

91. l12006039.png ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0$ ; confidence 0.504

92. w12019036.png ; $R _ { x } ^ { 3 N } \times R _ { p } ^ { 3 N }$ ; confidence 0.504

93. b120150111.png ; $E _ { P _ { n } } ( d ) = E _ { P _ { n } } ( d ^ { * } )$ ; confidence 0.504

94. b120310100.png ; $\delta > ( 3 n - 2 ) / 6$ ; confidence 0.503

95. f13024043.png ; $\left( \begin{array} { c c } { L ( \alpha , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , \alpha ) } \end{array} \right)$ ; confidence 0.503

96. t1202009.png ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503

97. h047390136.png ; $P _ { + } T P _ { - }$ ; confidence 0.503

98. i12008092.png ; $= - J - k _ { B } \operatorname { Tn } \{ \operatorname { cosh } ( \frac { H } { k _ { B } T } ) + + [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 }$ ; confidence 0.503

99. a13022022.png ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503

100. a110010233.png ; $\lambda$ ; confidence 0.503

101. a110420122.png ; $y \in H$ ; confidence 0.503

102. d03199091.png ; $R _ { 1 }$ ; confidence 0.503

103. c11042010.png ; $a \in B$ ; confidence 0.503

104. i130090218.png ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503

105. q12003016.png ; $( \epsilon \otimes id _ { A } ) \circ L = id _ { A }$ ; confidence 0.503

106. h13006042.png ; $u _ { N }$ ; confidence 0.503

107. l120090115.png ; $q _ { H _ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 0.503

108. l11001070.png ; $P P \subseteq P$ ; confidence 0.503

109. b12022081.png ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.503

110. b0150106.png ; $\xi : X \rightarrow B O _ { N }$ ; confidence 0.503

111. k05578014.png ; $\times \int _ { 0 } ^ { \alpha } [ K _ { i \tau } ( \alpha ) I _ { i \tau } ( x ) - I _ { i \tau } ( \alpha ) K _ { i \tau } ( x ) ] f ( x ) \frac { d x } { x }$ ; confidence 0.502

112. s13051092.png ; $O ( | M + | E | )$ ; confidence 0.502

113. s12004046.png ; $h _ { \lambda _ { i } }$ ; confidence 0.502

114. c12002063.png ; $\int _ { S O ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f$ ; confidence 0.502

115. l120170177.png ; $W h ^ { x }$ ; confidence 0.502

116. b12049048.png ; $m _ { N } : A \rightarrow [ 0 , + \infty )$ ; confidence 0.502

117. f130090105.png ; $j = 1 , \dots , k$ ; confidence 0.502

118. a110610113.png ; $n _ { + }$ ; confidence 0.502

119. a13023062.png ; $X = C ( S \times T )$ ; confidence 0.502

120. a0139904.png ; $= X$ ; confidence 0.502

121. c13016081.png ; $C = \operatorname { coc }$ ; confidence 0.502

122. a01419091.png ; $x \in U$ ; confidence 0.502

123. b13012085.png ; $f \in \operatorname { Lip } 1$ ; confidence 0.502

124. d13017067.png ; $\lambda _ { 1 } ( \Omega ) \geq \frac { a } { r _ { \Omega } ^ { 2 } }$ ; confidence 0.502

125. l05861058.png ; $Sp ( n )$ ; confidence 0.502

126. c12030072.png ; $K _ { 1 } ( O _ { N } ) = 0$ ; confidence 0.502

127. g13002010.png ; $e ^ { \pi z }$ ; confidence 0.502

128. a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501

129. h046280183.png ; $\{ f , \}$ ; confidence 0.501

130. s13062098.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501

131. a13007049.png ; $\operatorname { GCD } ( \alpha , b ) = 1$ ; confidence 0.501

132. p12014053.png ; $m$ ; confidence 0.501

133. n12012016.png ; $\operatorname { size } ( x ) = n$ ; confidence 0.501

134. n06752038.png ; $a _ { i + 1 }$ ; confidence 0.501

135. b12042083.png ; $q \in k$ ; confidence 0.501

136. d030020252.png ; $Z \subset X$ ; confidence 0.501

137. t12006062.png ; $\rho ^ { 2 / 3 } = \Phi$ ; confidence 0.501

138. c13001041.png ; $\frac { \partial c } { \partial t } = \operatorname { div } \{ M \operatorname { grad } [ f _ { 0 } ^ { \prime } ( c ) - 2 \kappa \Delta c ] \} \text { in } V$ ; confidence 0.501

139. b1205304.png ; $K ( , s ) \in L ^ { 1 } ( \mu )$ ; confidence 0.501

140. a1201107.png ; $\varphi ( \alpha , b , 1 ) = \alpha b$ ; confidence 0.501

141. c120300105.png ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501

142. l13010012.png ; $p \in R$ ; confidence 0.501

143. a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501

144. k12010069.png ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +$ ; confidence 0.501

145. f13007014.png ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501

146. f12021046.png ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501

147. t0940807.png ; $\pi _ { N } ( X ; A , B , x _ { 0 } )$ ; confidence 0.501

148. b13029013.png ; $1 _ { A } ( M / q M )$ ; confidence 0.501

149. f13002017.png ; $\delta _ { BDST } ^ { 2 } = 0$ ; confidence 0.500

150. h12007056.png ; $0 < m \leq n$ ; confidence 0.500

151. j05442077.png ; $\overline { P }$ ; confidence 0.500

152. b12042039.png ; $V _ { 1 } \otimes \ldots \otimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \otimes \ldots \otimes V _ { \sigma ( n ) }$ ; confidence 0.500

153. q1300405.png ; $W _ { loc } ^ { 1 , n } ( G )$ ; confidence 0.500

154. a01167078.png ; $x _ { 1 } , \dots , x _ { r }$ ; confidence 0.500

155. b12042097.png ; $2 + 2 z$ ; confidence 0.500

156. s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta )$ ; confidence 0.500

157. b12021027.png ; $\wedge ^ { k } ( a )$ ; confidence 0.500

158. a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500

159. i130060185.png ; $< 2 a$ ; confidence 0.500

160. b12042085.png ; $\theta$ ; confidence 0.500

161. a130240356.png ; $E ( Z _ { 1 } ) = 0$ ; confidence 0.500

162. a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / MS _ { e }$ ; confidence 0.500

163. s120230117.png ; $\pi r$ ; confidence 0.500

164. s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { ap\square regular partition of } n$ ; confidence 0.500

165. c02211027.png ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k } - 1 , x _ { k } )$ ; confidence 0.500

166. t130140151.png ; $\operatorname { prin } K l$ ; confidence 0.500

167. t12020025.png ; $\operatorname { sup } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { min } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { \phi } ( k ) }$ ; confidence 0.500

168. l13008030.png ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499

169. s13011018.png ; $I ( w )$ ; confidence 0.499

170. w120090116.png ; $\Delta ( \lambda ) = K GL _ { n } ( K ) z _ { \lambda }$ ; confidence 0.499

171. v13005032.png ; $X , X D$ ; confidence 0.499

172. l12012093.png ; $V _ { \operatorname { sin } p } ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.499

173. n06717077.png ; $t \in R +$ ; confidence 0.499

174. i05132021.png ; $\pi$ ; confidence 0.499

175. t1200104.png ; $m$ ; confidence 0.499

176. b12036014.png ; $P ( E _ { l } ) = \frac { \operatorname { exp } ( - E _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - E _ { l } / k _ { B } T ) }$ ; confidence 0.499

177. a130180190.png ; $C A$ ; confidence 0.499

178. m13001023.png ; $x _ { i } \in X$ ; confidence 0.499

179. b12016044.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499

180. s120230108.png ; $X : = U \wedge V$ ; confidence 0.499

181. w13017067.png ; $k ( 0 ) = 1$ ; confidence 0.499

182. q1200102.png ; $G = SL ( 2 , C ) \times R ^ { 4 }$ ; confidence 0.499

183. j12001061.png ; $a \neq b \in C ^ { n }$ ; confidence 0.499

184. w12011098.png ; $p ( n )$ ; confidence 0.498

185. w12012029.png ; $F$ ; confidence 0.498

186. a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta } K ) \text { as } x \rightarrow \infty$ ; confidence 0.498

187. o13008029.png ; $q _ { m } \in L _ { 1,1 }$ ; confidence 0.498

188. z13007051.png ; $GL _ { n } ( Z A )$ ; confidence 0.498

189. l057000130.png ; $M : \sigma$ ; confidence 0.498

190. t130050159.png ; $A _ { i } : = M _ { z _ { i } }$ ; confidence 0.498

191. m12001047.png ; $\overline { T G }$ ; confidence 0.498

192. w12007045.png ; $f \in L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.498

193. b1301008.png ; $K _ { Z } \in H$ ; confidence 0.498

194. a130040234.png ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498

195. b130200204.png ; $O _ { s } + 2,2 ( R )$ ; confidence 0.498

196. e035000111.png ; $I _ { \epsilon } ( X )$ ; confidence 0.498

197. t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497

198. j13004098.png ; $P _ { K _ { + } } ( v , z ) - P _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 0.497

199. l12009094.png ; $[ P , ] _ { A }$ ; confidence 0.497

200. l110010105.png ; $P = \cap _ { i \in I } P _ { i }$ ; confidence 0.497

201. a0103302.png ; $| X | ^ { \prime }$ ; confidence 0.497

202. f1300902.png ; $\left. \begin{array} { l } { U _ { 0 } ( x ) = 0 } \\ { U _ { 1 } ( x ) = 1 } \\ { U _ { n } ( x ) = x U _ { n - 1 } ( x ) + U _ { n - 2 } ( x ) , \quad n = 2,3 } \end{array} \right.$ ; confidence 0.497

203. k0558403.png ; $[ , ] : K \times K \rightarrow C$ ; confidence 0.497

204. h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497

205. b13012072.png ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { A } ^ { * } = 0$ ; confidence 0.497

206. a13030052.png ; $( E _ { n } : n \in Z ^ { + } )$ ; confidence 0.497

207. w12006086.png ; $T _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi$ ; confidence 0.497

208. k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497

209. i0504302.png ; $a _ { 1 } , \dots , a _ { r }$ ; confidence 0.497

210. a13032040.png ; $E ( Y ) = 2 \theta - 1$ ; confidence 0.497

211. m120120102.png ; $u \in Q _ { 1 } ( R )$ ; confidence 0.497

212. i12008075.png ; $P = ( P _ { s s ^ { \prime } } ) = ( \langle S | P | S ^ { \prime } \rangle )$ ; confidence 0.497

213. h13005020.png ; $\psi _ { N } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.497

214. a130240445.png ; $y _ { 1 } , \dots , y _ { p }$ ; confidence 0.497

215. i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { p | p } ( 1 - \chi \omega ^ { - n } ( p ) N p ^ { n - 1 } )$ ; confidence 0.497

216. b130200186.png ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496

217. s13064074.png ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t s ( t ) s ( - t ) d t )$ ; confidence 0.496

218. m13022032.png ; $\rho _ { d }$ ; confidence 0.496

219. b01512014.png ; $S ^ { n - 1 }$ ; confidence 0.496

220. z13011073.png ; $x \mu _ { x } ( x )$ ; confidence 0.496

221. d13017046.png ; $\sum _ { i = 1 } ^ { k } \lambda _ { i } \geq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 1 + 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } k = 1,2 , \ldots$ ; confidence 0.496

222. m1202401.png ; $\psi _ { X y } + u ( x , y ) \psi = 0$ ; confidence 0.496

223. j13003023.png ; $x , b , x , y , z \in E$ ; confidence 0.496

224. m13019047.png ; $M _ { n } = \operatorname { det } M _ { n }$ ; confidence 0.496

225. b12042013.png ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \varnothing )$ ; confidence 0.496

226. e12002023.png ; $74$ ; confidence 0.496

227. a13031041.png ; $22$ ; confidence 0.496

228. b13022020.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496

229. c12017084.png ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496

230. a12031042.png ; $k$ ; confidence 0.496

231. p13010092.png ; $p \in R$ ; confidence 0.496

232. j13004051.png ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496

233. l05700064.png ; $( \lambda x y \cdot y x ) A B = B A$ ; confidence 0.496

234. f13007027.png ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( C )$ ; confidence 0.496

235. j120020110.png ; $\| X \| _ { * } \leq 1$ ; confidence 0.496

236. a13004042.png ; $\operatorname { Th } D$ ; confidence 0.496

237. b12003049.png ; $\| t g ( t ) \| _ { 2 } \| \gamma g ( \gamma ) \| _ { 2 } = \infty$ ; confidence 0.496

238. b12010036.png ; $U ^ { ( n ) } t = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s } + x - k )$ ; confidence 0.496

239. m12011070.png ; $( F ^ { x } , h : F \rightarrow F ) \rightarrow T ( h )$ ; confidence 0.496

240. b12014042.png ; $s _ { i } ( z )$ ; confidence 0.496

241. c12020067.png ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496

242. k12010025.png ; $\{ t = t ; \} \cup K$ ; confidence 0.495

243. s12023042.png ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495

244. b12031082.png ; $R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 0.495

245. q12001024.png ; $X _ { t } \sim X - t$ ; confidence 0.495

246. a014060109.png ; $a \geq$ ; confidence 0.495

247. b017470223.png ; $\pi$ ; confidence 0.495

248. c0221105.png ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k }$ ; confidence 0.495

249. q12001018.png ; $\varphi ; ( f )$ ; confidence 0.495

250. d1200706.png ; $a _ { 1 } , \dots , a _ { t }$ ; confidence 0.495

251. s12027035.png ; $f \in A _ { s } ^ { + }$ ; confidence 0.495

252. j13001017.png ; $( D )$ ; confidence 0.495

253. t120060128.png ; $- ( \text { const } ) \int _ { R ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 0.495

254. n067520275.png ; $h \in H$ ; confidence 0.495

255. e120010124.png ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495

256. f12011095.png ; $K \subset D ^ { \gamma }$ ; confidence 0.495

257. s12027018.png ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y v , m )$ ; confidence 0.495

258. r13010050.png ; $\hat { \Delta }$ ; confidence 0.495

259. a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495

260. m12003098.png ; $M = \int ( \partial / \partial e ) \eta ( \vec { x } , e ) \vec { x X } ^ { t } d H _ { \vec { \theta } } ( \vec { x } , y )$ ; confidence 0.495

261. a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495

262. s13044027.png ; $H ^ { N - 1 - k } ( S ^ { x } \backslash X )$ ; confidence 0.495

263. a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495

264. j120020119.png ; $\int _ { \partial D } \operatorname { exp } ( \varepsilon | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | ) d \vartheta$ ; confidence 0.495

265. n12003030.png ; $S _ { A } : A \times L A \rightarrow L A$ ; confidence 0.495

266. c1202806.png ; $( X _ { n } ) _ { n } > 0$ ; confidence 0.494

267. d1202902.png ; $\varphi ( q )$ ; confidence 0.494

268. k12005058.png ; $X = P ^ { d }$ ; confidence 0.494

269. i1300604.png ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty$ ; confidence 0.494

270. n067520451.png ; $\lambda _ { i } < 0$ ; confidence 0.494

271. a12023081.png ; $\Omega \subset C ^ { x }$ ; confidence 0.494

272. s12032055.png ; $F _ { k }$ ; confidence 0.494

273. l05702080.png ; $i \neq p$ ; confidence 0.494

274. z1200106.png ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494

275. y12004016.png ; $T ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 0.494

276. c02003032.png ; $V ^ { 1 } , V ^ { 2 } , \dots$ ; confidence 0.494

277. d12014071.png ; $V _ { f } = \{ f ( a ) : a \in F _ { q } \}$ ; confidence 0.494

278. t13013098.png ; $x$ ; confidence 0.494

279. z13011060.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \stackrel { P } { \rightarrow } \alpha ( x ) = - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } e ^ { - \lambda } } { x ! } R ( d \lambda )$ ; confidence 0.493

280. z13011039.png ; $x = 1 , \dots , f ( 1 , n )$ ; confidence 0.493

281. h13013010.png ; $r j > 0$ ; confidence 0.493

282. t13005041.png ; $\sigma _ { T } ( A , X ) : = \{ \lambda \in C ^ { n } : A - \lambda \text { is singular } \}$ ; confidence 0.493

283. e120260135.png ; $\pi _ { v , p } ( d \theta ) P ( \theta , \mu ) ( d x )$ ; confidence 0.493

284. a12020052.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } }$ ; confidence 0.493

285. b13026078.png ; $R ^ { n } \backslash K _ { 2 }$ ; confidence 0.493

286. s12023025.png ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493

287. w11006050.png ; $\Sigma n _ { j } = n$ ; confidence 0.493

288. l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493

289. b01528024.png ; $A _ { 0 } , \ldots , A _ { N }$ ; confidence 0.493

290. c120180223.png ; $\in A ^ { 2 } \varepsilon \otimes A ^ { 2 } \varepsilon$ ; confidence 0.493

291. s12032011.png ; $x \otimes y \rightarrow x . y$ ; confidence 0.493

292. l05700019.png ; $\lambda x x \equiv \lambda x x \not \equiv \lambda x y$ ; confidence 0.493

293. d03215060.png ; $i = 0 , \ldots , N$ ; confidence 0.492

294. d120230172.png ; $l _ { i } = \delta _ { i } ^ { * } G _ { i } \Theta _ { i } \left( \begin{array} { c } { 1 } \\ { 0 } \end{array} \right) , d _ { i } = | \delta _ { i } | ^ { 2 }$ ; confidence 0.492

295. k13006026.png ; $\alpha _ { 2 } = 1 , \dots , \alpha _ { k - 1 } = k - 2$ ; confidence 0.492

296. s13059018.png ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.492

297. b120400101.png ; $G \times ^ { R } V$ ; confidence 0.492

298. i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492

299. l12006081.png ; $( g f ( z ) )$ ; confidence 0.492

300. e12014029.png ; $f t _ { 1 } \ldots t _ { \rho } ( f ) \in T$ ; confidence 0.492

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/58. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/58&oldid=44468