Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/48"
(AUTOMATIC EDIT of page 48 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 48 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010028.png ; $\{ \pm i C ( t ) , 0 , \ldots , 0 \}$ ; confidence 0.678 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007039.png ; $( n - 1 ) ( n - 2 ) / 2$ ; confidence 0.678 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160111.png ; $NL$ ; confidence 0.678 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104601.png ; $\vec { B }$ ; confidence 0.678 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149054.png ; $x _ { 2 }$ ; confidence 0.678 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003037.png ; $\operatorname { IF } ( x ; T , F _ { \theta } ) = \frac { \Psi ( x , \theta ) } { \int \frac { \partial } { \partial \theta } \Psi ( y , \theta ) d F _ { \theta } ( y ) }$ ; confidence 0.678 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017054.png ; $\sum _ { k = 1 } ^ { \infty } e ^ { - \lambda _ { k } t } \approx \frac { A } { 4 \pi t } + \frac { L } { 8 \sqrt { \pi t } } + \frac { 1 } { 6 } ( 1 - r ) + O ( t )$ ; confidence 0.678 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l1201505.png ; $[ \alpha , [ b , c ] ] = [ [ \alpha , b ] , c ] + [ b , [ a , c ] ]$ ; confidence 0.678 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/m/m130/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014067.png ; $\int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in R ^ { n } , r \in R ^ { + }$ ; confidence 0.678 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014048.png ; $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$ ; confidence 0.678 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003034.png ; $\| \alpha \square \alpha ^ { * } \| = \| \alpha \| ^ { 2 }$ ; confidence 0.678 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301024.png ; $t _ { 1 } , \ldots , t _ { m }$ ; confidence 0.678 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027019.png ; $d f = d f _ { 1 } \wedge \ldots \wedge d f _ { n }$ ; confidence 0.678 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011020.png ; $D f / D t$ ; confidence 0.678 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.678 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201701.png ; $p ( \alpha , t )$ ; confidence 0.678 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011092.png ; $x ^ { 0 }$ ; confidence 0.678 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006015.png ; $3$ ; confidence 0.678 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620152.png ; $q _ { 1 } ( x ) \rightarrow 0$ ; confidence 0.677 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002050.png ; $\hat { f } | x , 1 , w \rangle \rightarrow | x , 1 - f ( x ) , w \rangle$ ; confidence 0.677 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029091.png ; $\{ h _ { i } \} _ { 0 \leq i \leq d - 1 }$ ; confidence 0.677 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040314.png ; $\epsilon _ { i , j } ^ { A } ( \alpha , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020127.png ; $H _ { 0 } ^ { 1 }$ ; confidence 0.677 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003065.png ; $\hat { \theta } = T _ { N }$ ; confidence 0.677 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008029.png ; $K v$ ; confidence 0.677 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167402.png ; $U _ { 2 }$ ; confidence 0.677 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030041.png ; $\frac { d \mu _ { Y } } { d \mu _ { Z } } = E _ { \mu _ { X } } [ \psi ( T ) ]$ ; confidence 0.677 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010047.png ; $\tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w )$ ; confidence 0.677 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139019.png ; $\pi$ ; confidence 0.677 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019095.png ; $K [ N ]$ ; confidence 0.677 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404906.png ; $\times x ^ { ( \nu _ { 1 } / 2 ) - 1 } ( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x ) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0$ ; confidence 0.677 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025027.png ; $Y _ { 1 } , \dots , Y _ { j - 1 }$ ; confidence 0.677 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a1302708.png ; $X _ { n } = \operatorname { dim } Y _ { n }$ ; confidence 0.677 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b1302006.png ; $a _ { i j } \leq 0$ ; confidence 0.677 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020071.png ; $\mathfrak { g } +$ ; confidence 0.677 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090106.png ; $0 < q _ { 1 } + \ldots + q _ { k } < 1$ ; confidence 0.676 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060153.png ; $S _ { E }$ ; confidence 0.676 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015011.png ; $( ( x ) 0 , ( \dot { x } ) _ { 0 } , t _ { 0 } ) \in \Omega$ ; confidence 0.676 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021013.png ; $F = ( F _ { r } ) _ { r \in R _ { W } , w \in W }$ ; confidence 0.676 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012078.png ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001033.png ; $D f , 1$ ; confidence 0.676 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010044.png ; $\alpha : = \xi / | \xi |$ ; confidence 0.676 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b1102502.png ; $M _ { 3 }$ ; confidence 0.676 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022044.png ; $M _ { f } ( t , x , \xi ) = M ( u ( t , x ) , \xi )$ ; confidence 0.676 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020019.png ; $( \text { End } V ) ^ { + }$ ; confidence 0.676 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012270/a01227057.png ; $S _ { 1 }$ ; confidence 0.676 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019025.png ; $\lambda _ { n } ( \Omega ) = \operatorname { inf } \{ \lambda ( L ) : L \subseteq C ^ { \infty } ( \Omega ) , \operatorname { dim } ( L ) = n \}$ ; confidence 0.676 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/p/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013043.png ; $S ^ { \prime \prime }$ ; confidence 0.676 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602035.png ; $\alpha ^ { \prime } < 1$ ; confidence 0.676 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840401.png ; $( N _ { f } ( z _ { i } , z _ { j } ) ) _ { 1 } ^ { n }$ ; confidence 0.675 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130064.png ; $k$ ; confidence 0.675 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002092.png ; $X ^ { * } = \operatorname { sup } _ { s \geq 0 } X _ { s }$ ; confidence 0.675 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008090.png ; $= \{ z \in D : \operatorname { limsup } _ { w \rightarrow X } [ K _ { D } ( z , w ) - K _ { D } ( z _ { 0 } , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \}$ ; confidence 0.675 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070225.png ; $\mathfrak { R } ( C _ { 1 } )$ ; confidence 0.675 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012015.png ; $d _ { A } = d _ { 0 } \circ$ ; confidence 0.675 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011047.png ; $2 \pi l / \theta$ ; confidence 0.675 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120174.png ; $K _ { S } [ \overline { \sigma } ]$ ; confidence 0.675 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070199.png ; $\operatorname { ord } _ { T } ( r / s ) = \lambda - \mu$ ; confidence 0.675 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g04302050.png ; $S : M _ { k } \rightarrow W$ ; confidence 0.675 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140133.png ; $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ ; confidence 0.675 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005024.png ; $\varphi _ { - } \in E$ ; confidence 0.675 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003058.png ; $f \in R$ ; confidence 0.675 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020185.png ; $S ^ { n } = \partial \overline { D } _ { \square } ^ { n + 1 }$ ; confidence 0.675 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170175.png ; $2 k j - 1$ ; confidence 0.675 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009044.png ; $E _ { 1 } ( k ) \rightarrow \prod _ { p | p } U _ { 1 , p }$ ; confidence 0.675 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s08636084.png ; $P$ ; confidence 0.675 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007048.png ; $C ( C , C ^ { \prime } )$ ; confidence 0.675 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018050.png ; $S ^ { \perp }$ ; confidence 0.675 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240116.png ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016019.png ; $| D ( C ) |$ ; confidence 0.674 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108004.png ; $\xi$ ; confidence 0.674 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052083.png ; $O ( N _ { n } )$ ; confidence 0.674 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020037.png ; $\delta _ { T } = \operatorname { sup } _ { x \in X } \operatorname { dim } \operatorname { lin } \{ x , T x , T ^ { 2 } x , \ldots \} = N$ ; confidence 0.674 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019024.png ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } ( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } )$ ; confidence 0.674 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669608.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - N / 2 } \operatorname { exp } \{ \frac { \lambda i t } { 1 - 2 i t } \}$ ; confidence 0.674 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752080.png ; $E _ { A , K }$ ; confidence 0.674 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302107.png ; $R _ { \mu \nu }$ ; confidence 0.674 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501025.png ; $M ^ { x }$ ; confidence 0.674 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009051.png ; $x \mapsto \int _ { \partial \Omega } f d \mu _ { x } ^ { \Omega }$ ; confidence 0.674 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002031.png ; $JC$ ; confidence 0.674 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240515.png ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051370/i05137010.png ; $\pi + 2$ ; confidence 0.674 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201203.png ; $B _ { r } ( 0 )$ ; confidence 0.674 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png ; $x . \xi$ ; confidence 0.674 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019021.png ; $\frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.674 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004027.png ; $C _ { 0 }$ ; confidence 0.674 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022056.png ; $\sum _ { i = 0 } ^ { m } ( p _ { m } - i y ^ { ( i ) } ) ^ { ( i ) } = 0$ ; confidence 0.674 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010088.png ; $y _ { 1 } , \dots , y _ { s }$ ; confidence 0.674 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002055.png ; $\{ z ^ { k } \} _ { k \geq 0 }$ ; confidence 0.674 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010098.png ; $w _ { 1 } , \dots , w _ { s }$ ; confidence 0.673 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001080.png ; $c = \operatorname { log } _ { \omega } \gamma$ ; confidence 0.673 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012015.png ; $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ ; confidence 0.673 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004033.png ; $0 \leq f _ { N } \uparrow f \in L ^ { 0 } ( \mu )$ ; confidence 0.673 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201108.png ; $\varphi ( \alpha , b , 2 ) = \alpha ^ { b }$ ; confidence 0.673 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g0433905.png ; $\delta f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.673 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040594.png ; $P$ ; confidence 0.673 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019028.png ; $L _ { p } ( R _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ ; confidence 0.673 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260204.png ; $e y = 0$ ; confidence 0.673 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007055.png ; $R _ { x } - 1$ ; confidence 0.673 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060105.png ; $( F R ^ { m } ) = m \operatorname { dim } ( F R )$ ; confidence 0.673 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300302.png ; $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$ ; confidence 0.673 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010046.png ; $A _ { m }$ ; confidence 0.672 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306606.png ; $I _ { n } ( f ) = \sum _ { k = 1 } ^ { n } \lambda _ { n k } f ( \xi _ { n k } )$ ; confidence 0.672 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010060.png ; $q = e ^ { 2 \pi i z }$ ; confidence 0.672 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489026.png ; $p ^ { n }$ ; confidence 0.672 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $2$ ; confidence 0.672 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009014.png ; $x \in B ( x _ { 0 } , r ) , \xi \in \partial B ( x _ { 0 } , r )$ ; confidence 0.672 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026079.png ; $M ( A ) = C _ { b } ( \Omega )$ ; confidence 0.672 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/s/s120/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015036.png ; $g \in G _ { X }$ ; confidence 0.672 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090227.png ; $Y ^ { \chi } = \{ y \in Y : \delta . y = \chi ( \delta ) \text { yfor } \delta \in \Delta \}$ ; confidence 0.672 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280171.png ; $( \pi , \{ U _ { t } \} _ { t \in R } )$ ; confidence 0.672 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540069.png ; $0 \leq x \leq 1$ ; confidence 0.672 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003086.png ; $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ ; confidence 0.672 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840363.png ; $T = i ( \square _ { - A } ^ { B } )$ ; confidence 0.672 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042160/f04216010.png ; $h ^ { - 1 }$ ; confidence 0.671 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013074.png ; $\psi _ { - }$ ; confidence 0.671 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011030.png ; $G _ { N } ( 1 ) = \mu _ { N }$ ; confidence 0.671 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080134.png ; $c \in D$ ; confidence 0.671 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/s/s130/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054040.png ; $\operatorname { diag } ( \alpha , \alpha ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300209.png ; $l = 1 , \dots , q$ ; confidence 0.671 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013028.png ; $\oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) x$ ; confidence 0.671 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201608.png ; $\Delta ^ { x - 1 } \rightarrow \Delta ^ { x - 1 }$ ; confidence 0.671 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100144.png ; $K \subset C ^ { 2 }$ ; confidence 0.671 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026022.png ; $m ^ { c } A$ ; confidence 0.671 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052049.png ; $x _ { y } = x ^ { * }$ ; confidence 0.671 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681709.png ; $F _ { n } ( . )$ ; confidence 0.671 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040479.png ; $C _ { \Gamma }$ ; confidence 0.670 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009030.png ; $M u _ { t } + u _ { x } + u u _ { x } = 0$ ; confidence 0.670 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017028.png ; $x _ { t } ^ { ( i ) }$ ; confidence 0.670 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004033.png ; $\vec { x } \cdot \vec { v } > 0$ ; confidence 0.670 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010545.png ; $( x _ { t } )$ ; confidence 0.670 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008034.png ; $\left\{ \begin{array}{l}{ m = - ( \frac { \partial F } { \partial H } ) _ { T } }\\{ \chi = ( \frac { \partial m } { \partial H } ) _ { T } }\\{ S = - ( \frac { \partial F } { \partial T } ) _ { H } }\end{array} \right.$ ; confidence 0.670 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026025.png ; $S _ { [ n t } ]$ ; confidence 0.670 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040112.png ; $H ^ { m } ( R ) < \infty$ ; confidence 0.670 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052077.png ; $B _ { N } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }$ ; confidence 0.670 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040032.png ; $f \in F$ ; confidence 0.670 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g12001014.png ; $\{ G _ { b } ^ { \alpha } f : b \in R \}$ ; confidence 0.670 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040042.png ; $g ( g ^ { \prime } \times ^ { \varrho } f ) = g g ^ { \prime } \times ^ { \varrho } f$ ; confidence 0.670 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201308.png ; $d N / d t \equiv 0$ ; confidence 0.670 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024039.png ; $p h ( t ) < \infty$ ; confidence 0.670 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033020/d03302027.png ; $J _ { 1 }$ ; confidence 0.670 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011072.png ; $T = \frac { i } { V - U }$ ; confidence 0.670 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010066.png ; $\pi _ { k } ( X )$ ; confidence 0.669 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024075.png ; $A = Z / p ^ { m } ( 1 )$ ; confidence 0.669 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/t/t120/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200155.png ; $k \in S$ ; confidence 0.669 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016018.png ; $D ( C ) = \operatorname { lim } _ { h \rightarrow 0 } W ( C ^ { h } )$ ; confidence 0.669 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240373.png ; $z _ { 1 }$ ; confidence 0.669 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015028.png ; $( A , [ , ] , d )$ ; confidence 0.669 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200202.png ; $( P )$ ; confidence 0.669 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049039.png ; $( \alpha _ { 2 } , \sigma _ { 2 } ^ { 2 } )$ ; confidence 0.669 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005070.png ; $r ( - k ) = \overline { r ( k ) }$ ; confidence 0.669 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010096.png ; $L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.669 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010105.png ; $\tau \in Wh \pi _ { 1 } M _ { 0 }$ ; confidence 0.669 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200901.png ; $( A , [ , ] _ { A } , q _ { A } )$ ; confidence 0.668 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140127.png ; $p = 1 , \dots , n$ ; confidence 0.668 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008019.png ; $\left. \begin{array} { l } { \frac { d ^ { 2 } u } { d t ^ { 2 } } + A u = f ( t ) , \quad t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 } } \end{array} \right.$ ; confidence 0.668 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007073.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1$ ; confidence 0.668 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023055.png ; $\{ Z , J \}$ ; confidence 0.668 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080178.png ; $F B \rightarrow \overline { F B }$ ; confidence 0.668 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010104.png ; $m \geq 3$ ; confidence 0.668 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008048.png ; $( x , y ) \in O _ { S } \times O _ { S }$ ; confidence 0.668 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001017.png ; $A = [ \alpha _ { j } ]$ ; confidence 0.668 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240279.png ; $S = ( q F _ { \alpha ; q , n - \gamma } ) ^ { 1 / 2 }$ ; confidence 0.668 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019049.png ; $1 \ll | \alpha / q | \ll 1$ ; confidence 0.668 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022070.png ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi$ ; confidence 0.668 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110110/i11011024.png ; $m _ { i j } = 1$ ; confidence 0.667 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006092.png ; $\leq \| V \| \cdot \| ( \mu I - A ) ^ { - 1 } \| \cdot \| V ^ { - 1 } \|$ ; confidence 0.667 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180398.png ; $\operatorname { det } g ^ { - 1 }$ ; confidence 0.667 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013017.png ; $m _ { i j } = 2$ ; confidence 0.667 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752052.png ; $1 \leq j \leq r$ ; confidence 0.667 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019041.png ; $C _ { 1 }$ ; confidence 0.667 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696017.png ; $F _ { R } ( x ; \lambda )$ ; confidence 0.667 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j130030103.png ; $J B W ^ { x }$ ; confidence 0.667 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006018.png ; $Bel$ ; confidence 0.667 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016015.png ; $P = \cup _ { k = 1 } ^ { \infty } \operatorname { DTIME } [ n ^ { k } ] = \operatorname { DTIME } [ n ^ { Q ( 1 ) } ]$ ; confidence 0.667 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b1202408.png ; $S = \overline { C } = D _ { + } \cup T \cup D _ { - }$ ; confidence 0.667 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230158.png ; $j = 1 , \dots , s$ ; confidence 0.667 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001054.png ; $\operatorname { Tr } _ { E / F } ( \omega ) = a$ ; confidence 0.667 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584060.png ; $H / Ker G$ ; confidence 0.667 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160120.png ; $j ^ { \prime }$ ; confidence 0.667 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006090.png ; $\operatorname { dim } ( G ) = \operatorname { Idim } ( P _ { G } )$ ; confidence 0.666 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008042.png ; $J > 0$ ; confidence 0.666 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001042.png ; $\overline { U } _ { 1 } = \{ x ^ { ( 2 ) } : 0 \leq i < p ^ { m } - 1 \}$ ; confidence 0.666 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201004.png ; $x _ { i } \equiv ( q _ { i } , p _ { i } ) \in R ^ { \nu } \times R ^ { \nu }$ ; confidence 0.666 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008091.png ; $E [ W _ { p } + 1 ] / E [ W _ { p } ]$ ; confidence 0.666 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002030.png ; $| f ( x ) | \leq A e ^ { - \pi a x ^ { 2 } }$ ; confidence 0.666 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007047.png ; $Z C ( C , C )$ ; confidence 0.666 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001057.png ; $B ^ { * } = ( \gamma _ { 0 } , \dots , \gamma _ { n - 1 } )$ ; confidence 0.666 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170222.png ; $K = K _ { 0 } \subset K _ { 1 } \subset \ldots$ ; confidence 0.666 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067010.png ; $C ( C , D )$ ; confidence 0.666 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010063.png ; $P ( x )$ ; confidence 0.666 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027057.png ; $\{ b _ { n } \}$ ; confidence 0.666 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003038.png ; $F \nmid R$ ; confidence 0.665 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034100/d03410010.png ; $L _ { \Phi }$ ; confidence 0.665 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014012.png ; $j \in Z$ ; confidence 0.665 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200197.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | \geq \delta _ { 1 } >$ ; confidence 0.665 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012093.png ; $f \in A$ ; confidence 0.665 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027038.png ; $\Gamma ( z _ { 1 } ) = z _ { 1 } ^ { M } + b _ { 1 } z _ { 1 } ^ { M - 1 } + \ldots + b _ { M - 1 } z _ { 1 } + b _ { M }$ ; confidence 0.665 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011069.png ; $T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } )$ ; confidence 0.665 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021069.png ; $= \frac { ( n _ { 1 } + l ) ! } { ! ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots$ ; confidence 0.665 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737026.png ; $L ^ { - 1 }$ ; confidence 0.665 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007048.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.665 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006018.png ; $a _ { k } + 1$ ; confidence 0.665 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040621.png ; $S _ { P } \Gamma$ ; confidence 0.665 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004060.png ; $WF _ { s } u$ ; confidence 0.665 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110670/a11067030.png ; $\{ u _ { N } \}$ ; confidence 0.665 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021038.png ; $\operatorname { ind } _ { F } ( \operatorname { log } | z | ) = 1$ ; confidence 0.665 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230128.png ; $( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } )$ ; confidence 0.665 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301101.png ; $H ^ { 2 } = ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }$ ; confidence 0.664 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015036.png ; $\| T \| < \delta$ ; confidence 0.664 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025021.png ; $( \pi )$ ; confidence 0.664 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070103.png ; $1 _ { - 1 } = id$ ; confidence 0.664 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013062.png ; $N ^ { 1 }$ ; confidence 0.664 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010059.png ; $M \# M ^ { \prime }$ ; confidence 0.664 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201209.png ; $M$ ; confidence 0.664 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018043.png ; $\{ e _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.664 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303409.png ; $S _ { 2 } , \infty ( M )$ ; confidence 0.664 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737058.png ; $k \in R$ ; confidence 0.664 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021054.png ; $u _ { i l } = z ^ { \lambda _ { i } } \sum _ { j = 0 } ^ { l } \sum _ { k = 0 } ^ { \infty } b _ { j k } ( \operatorname { log } z ) ^ { j } z ^ { k }$ ; confidence 0.664 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016016.png ; $C ^ { k } : t \rightarrow C ( t + h ) - C ( t ) / h$ ; confidence 0.664 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010041.png ; $\tilde { f } ( \xi ) = \int _ { R ^ { n } } f ( x ) e ^ { i \xi x } d x$ ; confidence 0.664 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110145.png ; $\overline { R } ^ { \pm }$ ; confidence 0.664 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033830/d03383015.png ; $x > y$ ; confidence 0.664 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200108.png ; $\{ f _ { \alpha } : \alpha \in GF ( m ) \}$ ; confidence 0.663 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053086.png ; $a _ { i } \geq 1$ ; confidence 0.663 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001023.png ; $f _ { 2 } = \operatorname { gcd } ( x ^ { q ^ { 2 } } - x , f / f _ { 1 } )$ ; confidence 0.663 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300304.png ; $\tau u _ { X X } = \rho u _ { t t }$ ; confidence 0.663 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027015.png ; $\omega = \operatorname { inf } _ { p \in \Omega } \frac { Vol ( \Omega _ { p } ) } { \alpha ( n - 1 ) }$ ; confidence 0.663 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210107.png ; $= \mathfrak { c } _ { 0 } z ^ { \lambda } \pi ( \lambda ) +$ ; confidence 0.663 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027068.png ; $II _ { \infty }$ ; confidence 0.663 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032017.png ; $| x | | = \| u$ ; confidence 0.663 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100170.png ; $\mu _ { z }$ ; confidence 0.663 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040543.png ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n } - 1 ) \} )$ ; confidence 0.663 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001011.png ; $GF ( m )$ ; confidence 0.663 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013029.png ; $( \theta _ { n } - 1 , X _ { n } - 1 )$ ; confidence 0.663 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011063.png ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203407.png ; $SH ^ { * } ( M , \omega , L _ { + } , L _ { - } )$ ; confidence 0.662 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011039.png ; $\omega ^ { \omega }$ ; confidence 0.662 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010034.png ; $T \otimes B -$ ; confidence 0.662 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066049.png ; $T : D ( R ^ { n } ) \rightarrow D ^ { \prime } ( R ^ { n } )$ ; confidence 0.662 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152025.png ; $x \in V$ ; confidence 0.662 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002032.png ; $i = 1 , \ldots , \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.662 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290174.png ; $R ( L )$ ; confidence 0.662 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064032.png ; $a ( e ^ { i \theta } ) - z$ ; confidence 0.662 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040055.png ; $S$ ; confidence 0.662 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007055.png ; $Ab ^ { Z C } \approx Ab ^ { C }$ ; confidence 0.662 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630108.png ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$ ; confidence 0.662 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023048.png ; $\operatorname { St } _ { G } ( n )$ ; confidence 0.662 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005076.png ; $\Lambda _ { \varphi , w }$ ; confidence 0.662 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c1200507.png ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}$ ; confidence 0.662 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008067.png ; $\sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0$ ; confidence 0.662 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034074.png ; $P$ ; confidence 0.662 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004079.png ; $c ^ { 2 }$ ; confidence 0.662 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004012.png ; $v = t$ ; confidence 0.662 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018020.png ; $\lambda | < 1$ ; confidence 0.662 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008085.png ; $\xi \sim w + ^ { ( 1 / N ) }$ ; confidence 0.662 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006059.png ; $\operatorname { det } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) \not \equiv 0$ ; confidence 0.662 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003031.png ; $x ; B \rightarrow C$ ; confidence 0.661 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016720/b01672047.png ; $\hat { f }$ ; confidence 0.661 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003036.png ; $H _ { 1 } ^ { \bullet } ( \Gamma \backslash X , \tilde { M } )$ ; confidence 0.661 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202503.png ; $\tilde { \kappa } = \kappa | \nabla L | = L _ { y } ^ { 2 } L _ { x x } - 2 L _ { x } L _ { y } L _ { x y } + L _ { x } ^ { 2 } L _ { y y }$ ; confidence 0.661 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018087.png ; $C ( g ) \in \otimes ^ { 3 } E$ ; confidence 0.661 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016030.png ; $Y = \partial \nmid \partial \theta$ ; confidence 0.661 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090230.png ; $\Lambda = Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.661 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200125.png ; $D \subset C ^ { x }$ ; confidence 0.661 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png ; $D$ ; confidence 0.661 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021075.png ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014048.png ; $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ ; confidence 0.661 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840110.png ; $L _ { + }$ ; confidence 0.661 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080104.png ; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012028.png ; $L ( \theta | Y _ { \text { aug } } )$ ; confidence 0.661 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032094.png ; $A ^ { p } | q$ ; confidence 0.661 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004019.png ; $\operatorname { Re } s > 1$ ; confidence 0.661 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090217.png ; $( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \cong \text { varprojlim } A _ { n } ( k ^ { \prime } )$ ; confidence 0.661 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180486.png ; $x = ( x ^ { 1 } , \dots , x ^ { n } )$ ; confidence 0.660 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015680/b01568010.png ; $n \geq n _ { 0 }$ ; confidence 0.660 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200507.png ; $S _ { n + 1 } ( z ) = \frac { 1 } { z } \frac { S _ { n } ( z ) - S _ { n } ( 0 ) } { 1 - S _ { n } ( 0 ) S _ { n } ( z ) } , n \geq 0$ ; confidence 0.660 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010062.png ; $H e$ ; confidence 0.660 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024088.png ; $U ( \operatorname { si } ( n ) )$ ; confidence 0.660 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016016.png ; $f _ { 2 x } = f _ { 2 x - 1 } - g _ { x }$ ; confidence 0.660 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201109.png ; $f ( \sum _ { j \in l } x _ { j } )$ ; confidence 0.660 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004050.png ; $P _ { m } ( v ) \neq 0$ ; confidence 0.660 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010141.png ; $\mu \mapsto \pi$ ; confidence 0.660 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027028.png ; $\chi = \text { trace o } \rho$ ; confidence 0.660 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033017.png ; $r ^ { \prime }$ ; confidence 0.660 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010017.png ; $B = \operatorname { End } _ { H } ( T )$ ; confidence 0.660 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302805.png ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.660 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008053.png ; $E [ T _ { p } ] _ { PR } = \infty$ ; confidence 0.660 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002023.png ; $K e ^ { - c x ^ { 2 } }$ ; confidence 0.660 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002065.png ; $\operatorname { lim } Q$ ; confidence 0.660 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602027.png ; $\overline { D } ^ { - } = D ^ { - } \cup \Gamma$ ; confidence 0.660 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026052.png ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200209.png ; $\times [ \frac { \operatorname { sin } \frac { \pi \mu } { 2 } } { \operatorname { cosh } \frac { \pi \tau } { 2 } } \operatorname { Re } J _ { i \tau } ( x ) - \frac { \operatorname { cos } \frac { \pi \mu } { 2 } } { \operatorname { sinh } \frac { \pi \tau } { 2 } } \operatorname { Im } J _ { i \tau } ( x ) ] , f ( x ) = \frac { 2 ^ { - \mu } } { \pi ^ { 2 } x } x$ ; confidence 0.660 |
Revision as of 00:10, 13 February 2020
List
1. ; $\{ \pm i C ( t ) , 0 , \ldots , 0 \}$ ; confidence 0.678
2. ; $( n - 1 ) ( n - 2 ) / 2$ ; confidence 0.678
3. ; $NL$ ; confidence 0.678
4. ; $\vec { B }$ ; confidence 0.678
5. ; $x _ { 2 }$ ; confidence 0.678
6. ; $\operatorname { IF } ( x ; T , F _ { \theta } ) = \frac { \Psi ( x , \theta ) } { \int \frac { \partial } { \partial \theta } \Psi ( y , \theta ) d F _ { \theta } ( y ) }$ ; confidence 0.678
7. ; $\sum _ { k = 1 } ^ { \infty } e ^ { - \lambda _ { k } t } \approx \frac { A } { 4 \pi t } + \frac { L } { 8 \sqrt { \pi t } } + \frac { 1 } { 6 } ( 1 - r ) + O ( t )$ ; confidence 0.678
8. ; $[ \alpha , [ b , c ] ] = [ [ \alpha , b ] , c ] + [ b , [ a , c ] ]$ ; confidence 0.678
9. ; $\int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in R ^ { n } , r \in R ^ { + }$ ; confidence 0.678
10. ; $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$ ; confidence 0.678
11. ; $\| \alpha \square \alpha ^ { * } \| = \| \alpha \| ^ { 2 }$ ; confidence 0.678
12. ; $t _ { 1 } , \ldots , t _ { m }$ ; confidence 0.678
13. ; $d f = d f _ { 1 } \wedge \ldots \wedge d f _ { n }$ ; confidence 0.678
14. ; $D f / D t$ ; confidence 0.678
15. ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.678
16. ; $p ( \alpha , t )$ ; confidence 0.678
17. ; $x ^ { 0 }$ ; confidence 0.678
18. ; $3$ ; confidence 0.678
19. ; $q _ { 1 } ( x ) \rightarrow 0$ ; confidence 0.677
20. ; $\hat { f } | x , 1 , w \rangle \rightarrow | x , 1 - f ( x ) , w \rangle$ ; confidence 0.677
21. ; $\{ h _ { i } \} _ { 0 \leq i \leq d - 1 }$ ; confidence 0.677
22. ; $\epsilon _ { i , j } ^ { A } ( \alpha , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677
23. ; $H _ { 0 } ^ { 1 }$ ; confidence 0.677
24. ; $\hat { \theta } = T _ { N }$ ; confidence 0.677
25. ; $K v$ ; confidence 0.677
26. ; $U _ { 2 }$ ; confidence 0.677
27. ; $\frac { d \mu _ { Y } } { d \mu _ { Z } } = E _ { \mu _ { X } } [ \psi ( T ) ]$ ; confidence 0.677
28. ; $\tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w )$ ; confidence 0.677
29. ; $\pi$ ; confidence 0.677
30. ; $K [ N ]$ ; confidence 0.677
31. ; $\times x ^ { ( \nu _ { 1 } / 2 ) - 1 } ( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x ) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0$ ; confidence 0.677
32. ; $Y _ { 1 } , \dots , Y _ { j - 1 }$ ; confidence 0.677
33. ; $X _ { n } = \operatorname { dim } Y _ { n }$ ; confidence 0.677
34. ; $a _ { i j } \leq 0$ ; confidence 0.677
35. ; $\mathfrak { g } +$ ; confidence 0.677
36. ; $0 < q _ { 1 } + \ldots + q _ { k } < 1$ ; confidence 0.676
37. ; $S _ { E }$ ; confidence 0.676
38. ; $( ( x ) 0 , ( \dot { x } ) _ { 0 } , t _ { 0 } ) \in \Omega$ ; confidence 0.676
39. ; $F = ( F _ { r } ) _ { r \in R _ { W } , w \in W }$ ; confidence 0.676
40. ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676
41. ; $D f , 1$ ; confidence 0.676
42. ; $\alpha : = \xi / | \xi |$ ; confidence 0.676
43. ; $M _ { 3 }$ ; confidence 0.676
44. ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676
45. ; $M _ { f } ( t , x , \xi ) = M ( u ( t , x ) , \xi )$ ; confidence 0.676
46. ; $( \text { End } V ) ^ { + }$ ; confidence 0.676
47. ; $S _ { 1 }$ ; confidence 0.676
48. ; $\lambda _ { n } ( \Omega ) = \operatorname { inf } \{ \lambda ( L ) : L \subseteq C ^ { \infty } ( \Omega ) , \operatorname { dim } ( L ) = n \}$ ; confidence 0.676
49. ; $S ^ { \prime \prime }$ ; confidence 0.676
50. ; $\alpha ^ { \prime } < 1$ ; confidence 0.676
51. ; $( N _ { f } ( z _ { i } , z _ { j } ) ) _ { 1 } ^ { n }$ ; confidence 0.675
52. ; $k$ ; confidence 0.675
53. ; $X ^ { * } = \operatorname { sup } _ { s \geq 0 } X _ { s }$ ; confidence 0.675
54. ; $= \{ z \in D : \operatorname { limsup } _ { w \rightarrow X } [ K _ { D } ( z , w ) - K _ { D } ( z _ { 0 } , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \}$ ; confidence 0.675
55. ; $\mathfrak { R } ( C _ { 1 } )$ ; confidence 0.675
56. ; $d _ { A } = d _ { 0 } \circ$ ; confidence 0.675
57. ; $2 \pi l / \theta$ ; confidence 0.675
58. ; $K _ { S } [ \overline { \sigma } ]$ ; confidence 0.675
59. ; $\operatorname { ord } _ { T } ( r / s ) = \lambda - \mu$ ; confidence 0.675
60. ; $S : M _ { k } \rightarrow W$ ; confidence 0.675
61. ; $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ ; confidence 0.675
62. ; $\varphi _ { - } \in E$ ; confidence 0.675
63. ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675
64. ; $f \in R$ ; confidence 0.675
65. ; $S ^ { n } = \partial \overline { D } _ { \square } ^ { n + 1 }$ ; confidence 0.675
66. ; $2 k j - 1$ ; confidence 0.675
67. ; $E _ { 1 } ( k ) \rightarrow \prod _ { p | p } U _ { 1 , p }$ ; confidence 0.675
68. ; $P$ ; confidence 0.675
69. ; $C ( C , C ^ { \prime } )$ ; confidence 0.675
70. ; $S ^ { \perp }$ ; confidence 0.675
71. ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675
72. ; $| D ( C ) |$ ; confidence 0.674
73. ; $\xi$ ; confidence 0.674
74. ; $O ( N _ { n } )$ ; confidence 0.674
75. ; $\delta _ { T } = \operatorname { sup } _ { x \in X } \operatorname { dim } \operatorname { lin } \{ x , T x , T ^ { 2 } x , \ldots \} = N$ ; confidence 0.674
76. ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } ( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } )$ ; confidence 0.674
77. ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - N / 2 } \operatorname { exp } \{ \frac { \lambda i t } { 1 - 2 i t } \}$ ; confidence 0.674
78. ; $E _ { A , K }$ ; confidence 0.674
79. ; $R _ { \mu \nu }$ ; confidence 0.674
80. ; $M ^ { x }$ ; confidence 0.674
81. ; $x \mapsto \int _ { \partial \Omega } f d \mu _ { x } ^ { \Omega }$ ; confidence 0.674
82. ; $JC$ ; confidence 0.674
83. ; $P _ { 1 }$ ; confidence 0.674
84. ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674
85. ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
86. ; $\pi + 2$ ; confidence 0.674
87. ; $B _ { r } ( 0 )$ ; confidence 0.674
88. ; $x . \xi$ ; confidence 0.674
89. ; $\frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.674
90. ; $C _ { 0 }$ ; confidence 0.674
91. ; $\sum _ { i = 0 } ^ { m } ( p _ { m } - i y ^ { ( i ) } ) ^ { ( i ) } = 0$ ; confidence 0.674
92. ; $y _ { 1 } , \dots , y _ { s }$ ; confidence 0.674
93. ; $\{ z ^ { k } \} _ { k \geq 0 }$ ; confidence 0.674
94. ; $w _ { 1 } , \dots , w _ { s }$ ; confidence 0.673
95. ; $c = \operatorname { log } _ { \omega } \gamma$ ; confidence 0.673
96. ; $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ ; confidence 0.673
97. ; $0 \leq f _ { N } \uparrow f \in L ^ { 0 } ( \mu )$ ; confidence 0.673
98. ; $\varphi ( \alpha , b , 2 ) = \alpha ^ { b }$ ; confidence 0.673
99. ; $\delta f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.673
100. ; $P$ ; confidence 0.673
101. ; $L _ { p } ( R _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ ; confidence 0.673
102. ; $e y = 0$ ; confidence 0.673
103. ; $R _ { x } - 1$ ; confidence 0.673
104. ; $( F R ^ { m } ) = m \operatorname { dim } ( F R )$ ; confidence 0.673
105. ; $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$ ; confidence 0.673
106. ; $A _ { m }$ ; confidence 0.672
107. ; $I _ { n } ( f ) = \sum _ { k = 1 } ^ { n } \lambda _ { n k } f ( \xi _ { n k } )$ ; confidence 0.672
108. ; $q = e ^ { 2 \pi i z }$ ; confidence 0.672
109. ; $p ^ { n }$ ; confidence 0.672
110. ; $2$ ; confidence 0.672
111. ; $x \in B ( x _ { 0 } , r ) , \xi \in \partial B ( x _ { 0 } , r )$ ; confidence 0.672
112. ; $M ( A ) = C _ { b } ( \Omega )$ ; confidence 0.672
113. ; $g \in G _ { X }$ ; confidence 0.672
114. ; $Y ^ { \chi } = \{ y \in Y : \delta . y = \chi ( \delta ) \text { yfor } \delta \in \Delta \}$ ; confidence 0.672
115. ; $( \pi , \{ U _ { t } \} _ { t \in R } )$ ; confidence 0.672
116. ; $0 \leq x \leq 1$ ; confidence 0.672
117. ; $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ ; confidence 0.672
118. ; $T = i ( \square _ { - A } ^ { B } )$ ; confidence 0.672
119. ; $h ^ { - 1 }$ ; confidence 0.671
120. ; $\psi _ { - }$ ; confidence 0.671
121. ; $G _ { N } ( 1 ) = \mu _ { N }$ ; confidence 0.671
122. ; $c \in D$ ; confidence 0.671
123. ; $\operatorname { diag } ( \alpha , \alpha ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671
124. ; $l = 1 , \dots , q$ ; confidence 0.671
125. ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
126. ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
127. ; $\oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) x$ ; confidence 0.671
128. ; $\Delta ^ { x - 1 } \rightarrow \Delta ^ { x - 1 }$ ; confidence 0.671
129. ; $K \subset C ^ { 2 }$ ; confidence 0.671
130. ; $m ^ { c } A$ ; confidence 0.671
131. ; $x _ { y } = x ^ { * }$ ; confidence 0.671
132. ; $F _ { n } ( . )$ ; confidence 0.671
133. ; $C _ { \Gamma }$ ; confidence 0.670
134. ; $M u _ { t } + u _ { x } + u u _ { x } = 0$ ; confidence 0.670
135. ; $x _ { t } ^ { ( i ) }$ ; confidence 0.670
136. ; $\vec { x } \cdot \vec { v } > 0$ ; confidence 0.670
137. ; $( x _ { t } )$ ; confidence 0.670
138. ; $\left\{ \begin{array}{l}{ m = - ( \frac { \partial F } { \partial H } ) _ { T } }\\{ \chi = ( \frac { \partial m } { \partial H } ) _ { T } }\\{ S = - ( \frac { \partial F } { \partial T } ) _ { H } }\end{array} \right.$ ; confidence 0.670
139. ; $S _ { [ n t } ]$ ; confidence 0.670
140. ; $H ^ { m } ( R ) < \infty$ ; confidence 0.670
141. ; $B _ { N } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }$ ; confidence 0.670
142. ; $f \in F$ ; confidence 0.670
143. ; $\{ G _ { b } ^ { \alpha } f : b \in R \}$ ; confidence 0.670
144. ; $g ( g ^ { \prime } \times ^ { \varrho } f ) = g g ^ { \prime } \times ^ { \varrho } f$ ; confidence 0.670
145. ; $d N / d t \equiv 0$ ; confidence 0.670
146. ; $p h ( t ) < \infty$ ; confidence 0.670
147. ; $J _ { 1 }$ ; confidence 0.670
148. ; $T = \frac { i } { V - U }$ ; confidence 0.670
149. ; $\pi _ { k } ( X )$ ; confidence 0.669
150. ; $A = Z / p ^ { m } ( 1 )$ ; confidence 0.669
151. ; $k \in S$ ; confidence 0.669
152. ; $D ( C ) = \operatorname { lim } _ { h \rightarrow 0 } W ( C ^ { h } )$ ; confidence 0.669
153. ; $z _ { 1 }$ ; confidence 0.669
154. ; $( A , [ , ] , d )$ ; confidence 0.669
155. ; $( P )$ ; confidence 0.669
156. ; $( \alpha _ { 2 } , \sigma _ { 2 } ^ { 2 } )$ ; confidence 0.669
157. ; $r ( - k ) = \overline { r ( k ) }$ ; confidence 0.669
158. ; $L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.669
159. ; $\tau \in Wh \pi _ { 1 } M _ { 0 }$ ; confidence 0.669
160. ; $( A , [ , ] _ { A } , q _ { A } )$ ; confidence 0.668
161. ; $p = 1 , \dots , n$ ; confidence 0.668
162. ; $\left. \begin{array} { l } { \frac { d ^ { 2 } u } { d t ^ { 2 } } + A u = f ( t ) , \quad t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 } } \end{array} \right.$ ; confidence 0.668
163. ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1$ ; confidence 0.668
164. ; $\{ Z , J \}$ ; confidence 0.668
165. ; $F B \rightarrow \overline { F B }$ ; confidence 0.668
166. ; $m \geq 3$ ; confidence 0.668
167. ; $( x , y ) \in O _ { S } \times O _ { S }$ ; confidence 0.668
168. ; $A = [ \alpha _ { j } ]$ ; confidence 0.668
169. ; $S = ( q F _ { \alpha ; q , n - \gamma } ) ^ { 1 / 2 }$ ; confidence 0.668
170. ; $1 \ll | \alpha / q | \ll 1$ ; confidence 0.668
171. ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi$ ; confidence 0.668
172. ; $m _ { i j } = 1$ ; confidence 0.667
173. ; $\leq \| V \| \cdot \| ( \mu I - A ) ^ { - 1 } \| \cdot \| V ^ { - 1 } \|$ ; confidence 0.667
174. ; $\operatorname { det } g ^ { - 1 }$ ; confidence 0.667
175. ; $m _ { i j } = 2$ ; confidence 0.667
176. ; $1 \leq j \leq r$ ; confidence 0.667
177. ; $C _ { 1 }$ ; confidence 0.667
178. ; $F _ { R } ( x ; \lambda )$ ; confidence 0.667
179. ; $J B W ^ { x }$ ; confidence 0.667
180. ; $Bel$ ; confidence 0.667
181. ; $P = \cup _ { k = 1 } ^ { \infty } \operatorname { DTIME } [ n ^ { k } ] = \operatorname { DTIME } [ n ^ { Q ( 1 ) } ]$ ; confidence 0.667
182. ; $S = \overline { C } = D _ { + } \cup T \cup D _ { - }$ ; confidence 0.667
183. ; $j = 1 , \dots , s$ ; confidence 0.667
184. ; $\operatorname { Tr } _ { E / F } ( \omega ) = a$ ; confidence 0.667
185. ; $H / Ker G$ ; confidence 0.667
186. ; $j ^ { \prime }$ ; confidence 0.667
187. ; $\operatorname { dim } ( G ) = \operatorname { Idim } ( P _ { G } )$ ; confidence 0.666
188. ; $J > 0$ ; confidence 0.666
189. ; $\overline { U } _ { 1 } = \{ x ^ { ( 2 ) } : 0 \leq i < p ^ { m } - 1 \}$ ; confidence 0.666
190. ; $x _ { i } \equiv ( q _ { i } , p _ { i } ) \in R ^ { \nu } \times R ^ { \nu }$ ; confidence 0.666
191. ; $E [ W _ { p } + 1 ] / E [ W _ { p } ]$ ; confidence 0.666
192. ; $| f ( x ) | \leq A e ^ { - \pi a x ^ { 2 } }$ ; confidence 0.666
193. ; $Z C ( C , C )$ ; confidence 0.666
194. ; $B ^ { * } = ( \gamma _ { 0 } , \dots , \gamma _ { n - 1 } )$ ; confidence 0.666
195. ; $K = K _ { 0 } \subset K _ { 1 } \subset \ldots$ ; confidence 0.666
196. ; $C ( C , D )$ ; confidence 0.666
197. ; $P ( x )$ ; confidence 0.666
198. ; $\{ b _ { n } \}$ ; confidence 0.666
199. ; $F \nmid R$ ; confidence 0.665
200. ; $L _ { \Phi }$ ; confidence 0.665
201. ; $j \in Z$ ; confidence 0.665
202. ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | \geq \delta _ { 1 } >$ ; confidence 0.665
203. ; $f \in A$ ; confidence 0.665
204. ; $\Gamma ( z _ { 1 } ) = z _ { 1 } ^ { M } + b _ { 1 } z _ { 1 } ^ { M - 1 } + \ldots + b _ { M - 1 } z _ { 1 } + b _ { M }$ ; confidence 0.665
205. ; $T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } )$ ; confidence 0.665
206. ; $= \frac { ( n _ { 1 } + l ) ! } { ! ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots$ ; confidence 0.665
207. ; $L ^ { - 1 }$ ; confidence 0.665
208. ; $A ( 0 ) u _ { 0 } + f ( 0 ) \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.665
209. ; $a _ { k } + 1$ ; confidence 0.665
210. ; $S _ { P } \Gamma$ ; confidence 0.665
211. ; $WF _ { s } u$ ; confidence 0.665
212. ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665
213. ; $\{ u _ { N } \}$ ; confidence 0.665
214. ; $\operatorname { ind } _ { F } ( \operatorname { log } | z | ) = 1$ ; confidence 0.665
215. ; $( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } )$ ; confidence 0.665
216. ; $H ^ { 2 } = ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }$ ; confidence 0.664
217. ; $\| T \| < \delta$ ; confidence 0.664
218. ; $( \pi )$ ; confidence 0.664
219. ; $1 _ { - 1 } = id$ ; confidence 0.664
220. ; $N ^ { 1 }$ ; confidence 0.664
221. ; $M \# M ^ { \prime }$ ; confidence 0.664
222. ; $M$ ; confidence 0.664
223. ; $\{ e _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.664
224. ; $S _ { 2 } , \infty ( M )$ ; confidence 0.664
225. ; $k \in R$ ; confidence 0.664
226. ; $u _ { i l } = z ^ { \lambda _ { i } } \sum _ { j = 0 } ^ { l } \sum _ { k = 0 } ^ { \infty } b _ { j k } ( \operatorname { log } z ) ^ { j } z ^ { k }$ ; confidence 0.664
227. ; $C ^ { k } : t \rightarrow C ( t + h ) - C ( t ) / h$ ; confidence 0.664
228. ; $\tilde { f } ( \xi ) = \int _ { R ^ { n } } f ( x ) e ^ { i \xi x } d x$ ; confidence 0.664
229. ; $\overline { R } ^ { \pm }$ ; confidence 0.664
230. ; $x > y$ ; confidence 0.664
231. ; $\{ f _ { \alpha } : \alpha \in GF ( m ) \}$ ; confidence 0.663
232. ; $a _ { i } \geq 1$ ; confidence 0.663
233. ; $f _ { 2 } = \operatorname { gcd } ( x ^ { q ^ { 2 } } - x , f / f _ { 1 } )$ ; confidence 0.663
234. ; $\tau u _ { X X } = \rho u _ { t t }$ ; confidence 0.663
235. ; $\omega = \operatorname { inf } _ { p \in \Omega } \frac { Vol ( \Omega _ { p } ) } { \alpha ( n - 1 ) }$ ; confidence 0.663
236. ; $= \mathfrak { c } _ { 0 } z ^ { \lambda } \pi ( \lambda ) +$ ; confidence 0.663
237. ; $II _ { \infty }$ ; confidence 0.663
238. ; $| x | | = \| u$ ; confidence 0.663
239. ; $\mu _ { z }$ ; confidence 0.663
240. ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n } - 1 ) \} )$ ; confidence 0.663
241. ; $GF ( m )$ ; confidence 0.663
242. ; $( \theta _ { n } - 1 , X _ { n } - 1 )$ ; confidence 0.663
243. ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663
244. ; $SH ^ { * } ( M , \omega , L _ { + } , L _ { - } )$ ; confidence 0.662
245. ; $\omega ^ { \omega }$ ; confidence 0.662
246. ; $T \otimes B -$ ; confidence 0.662
247. ; $T : D ( R ^ { n } ) \rightarrow D ^ { \prime } ( R ^ { n } )$ ; confidence 0.662
248. ; $x \in V$ ; confidence 0.662
249. ; $i = 1 , \ldots , \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.662
250. ; $R ( L )$ ; confidence 0.662
251. ; $a ( e ^ { i \theta } ) - z$ ; confidence 0.662
252. ; $S$ ; confidence 0.662
253. ; $Ab ^ { Z C } \approx Ab ^ { C }$ ; confidence 0.662
254. ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$ ; confidence 0.662
255. ; $\operatorname { St } _ { G } ( n )$ ; confidence 0.662
256. ; $\Lambda _ { \varphi , w }$ ; confidence 0.662
257. ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}$ ; confidence 0.662
258. ; $\sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0$ ; confidence 0.662
259. ; $P$ ; confidence 0.662
260. ; $c ^ { 2 }$ ; confidence 0.662
261. ; $v = t$ ; confidence 0.662
262. ; $\lambda | < 1$ ; confidence 0.662
263. ; $\xi \sim w + ^ { ( 1 / N ) }$ ; confidence 0.662
264. ; $\operatorname { det } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) \not \equiv 0$ ; confidence 0.662
265. ; $x ; B \rightarrow C$ ; confidence 0.661
266. ; $\hat { f }$ ; confidence 0.661
267. ; $H _ { 1 } ^ { \bullet } ( \Gamma \backslash X , \tilde { M } )$ ; confidence 0.661
268. ; $\tilde { \kappa } = \kappa | \nabla L | = L _ { y } ^ { 2 } L _ { x x } - 2 L _ { x } L _ { y } L _ { x y } + L _ { x } ^ { 2 } L _ { y y }$ ; confidence 0.661
269. ; $C ( g ) \in \otimes ^ { 3 } E$ ; confidence 0.661
270. ; $Y = \partial \nmid \partial \theta$ ; confidence 0.661
271. ; $\Lambda = Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.661
272. ; $D \subset C ^ { x }$ ; confidence 0.661
273. ; $D$ ; confidence 0.661
274. ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661
275. ; $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ ; confidence 0.661
276. ; $L _ { + }$ ; confidence 0.661
277. ; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661
278. ; $L ( \theta | Y _ { \text { aug } } )$ ; confidence 0.661
279. ; $A ^ { p } | q$ ; confidence 0.661
280. ; $\operatorname { Re } s > 1$ ; confidence 0.661
281. ; $( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \cong \text { varprojlim } A _ { n } ( k ^ { \prime } )$ ; confidence 0.661
282. ; $x = ( x ^ { 1 } , \dots , x ^ { n } )$ ; confidence 0.660
283. ; $n \geq n _ { 0 }$ ; confidence 0.660
284. ; $S _ { n + 1 } ( z ) = \frac { 1 } { z } \frac { S _ { n } ( z ) - S _ { n } ( 0 ) } { 1 - S _ { n } ( 0 ) S _ { n } ( z ) } , n \geq 0$ ; confidence 0.660
285. ; $H e$ ; confidence 0.660
286. ; $U ( \operatorname { si } ( n ) )$ ; confidence 0.660
287. ; $f _ { 2 x } = f _ { 2 x - 1 } - g _ { x }$ ; confidence 0.660
288. ; $f ( \sum _ { j \in l } x _ { j } )$ ; confidence 0.660
289. ; $P _ { m } ( v ) \neq 0$ ; confidence 0.660
290. ; $\mu \mapsto \pi$ ; confidence 0.660
291. ; $\chi = \text { trace o } \rho$ ; confidence 0.660
292. ; $r ^ { \prime }$ ; confidence 0.660
293. ; $B = \operatorname { End } _ { H } ( T )$ ; confidence 0.660
294. ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.660
295. ; $E [ T _ { p } ] _ { PR } = \infty$ ; confidence 0.660
296. ; $K e ^ { - c x ^ { 2 } }$ ; confidence 0.660
297. ; $\operatorname { lim } Q$ ; confidence 0.660
298. ; $\overline { D } ^ { - } = D ^ { - } \cup \Gamma$ ; confidence 0.660
299. ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660
300. ; $\times [ \frac { \operatorname { sin } \frac { \pi \mu } { 2 } } { \operatorname { cosh } \frac { \pi \tau } { 2 } } \operatorname { Re } J _ { i \tau } ( x ) - \frac { \operatorname { cos } \frac { \pi \mu } { 2 } } { \operatorname { sinh } \frac { \pi \tau } { 2 } } \operatorname { Im } J _ { i \tau } ( x ) ] , f ( x ) = \frac { 2 ^ { - \mu } } { \pi ^ { 2 } x } x$ ; confidence 0.660
Maximilian Janisch/latexlist/latex/NoNroff/48. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/48&oldid=44458