Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/47"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 47 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 47 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290172.png ; $H _ { m } ^ { i } ( A )$ ; confidence 0.733
+
1. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001043.png ; $( \partial _ { 1 } , \dots , \partial _ { n } )$ ; confidence 0.696
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029014.png ; $e _ { q } ^ { 0 } ( M )$ ; confidence 0.892
+
2. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004034.png ; $u \in G ^ { S } ( \Omega )$ ; confidence 0.696
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300135.png ; $n = n _ { 1 } n _ { 2 }$ ; confidence 0.837
+
3. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005032.png ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696
  
4. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030015.png ; $x ^ { x } \equiv 1$ ; confidence 0.469
+
4. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002073.png ; $\gamma \in F ( S )$ ; confidence 0.695
  
5. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300160.png ; $G \cap B = \{ 1 \}$ ; confidence 0.998
+
5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110253.png ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }$ ; confidence 0.695
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040176.png ; $i = 1 , \ldots , 4$ ; confidence 0.636
+
6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003017.png ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0$ ; confidence 0.695
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010199.png ; $\overline { a }$ ; confidence 0.683
+
7. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023060.png ; $g : Y \rightarrow S$ ; confidence 0.695
  
8. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200307.png ; $X \backslash P$ ; confidence 0.482
+
8. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050127.png ; $M _ { \sigma _ { T } } ( B , X )$ ; confidence 0.695
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004026.png ; $f \in H ^ { 1 } ( D )$ ; confidence 0.998
+
9. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008053.png ; $\{ - S _ { i } \}$ ; confidence 0.695
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004040.png ; $w = w ( z , \zeta )$ ; confidence 0.976
+
10. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021055.png ; $b _ { 0 } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { l } }$ ; confidence 0.695
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005019.png ; $L ^ { p } ( \mu , D )$ ; confidence 0.978
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032028.png ; $\lambda _ { j } ^ { ( i ) }$ ; confidence 0.695
  
12. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c1200506.png ; $\mu ( S ) \leq C h$ ; confidence 0.979
+
12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012090.png ; $\operatorname { log } L ( \mu , \Sigma | Y _ { aug } )$ ; confidence 0.695
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008099.png ; $T _ { 00 } = I _ { N }$ ; confidence 0.242
+
13. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452013.png ; $a b \in P$ ; confidence 0.694
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200801.png ; $C ^ { n } \times n$ ; confidence 0.069
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020027.png ; $t ^ { M }$ ; confidence 0.694
  
15. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008064.png ; $M _ { m } ( P _ { n } )$ ; confidence 0.380
+
15. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817011.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \int _ { 0 } ^ { 1 } Z _ { n } ^ { 2 } ( t ) d t < \lambda \} = P \{ \omega ^ { 2 } < \lambda \} =$ ; confidence 0.694
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007039.png ; $( n - 1 ) ( n - 2 ) / 2$ ; confidence 0.678
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013017.png ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694
  
17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007093.png ; $X = X ^ { \prime }$ ; confidence 0.955
+
17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002087.png ; $Q +$ ; confidence 0.694
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070218.png ; $T \in \Re ( C , P )$ ; confidence 0.933
+
18. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001014.png ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007099.png ; $X ^ { \prime } = 0$ ; confidence 0.996
+
19. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005020.png ; $\xi ^ { 11 }$ ; confidence 0.694
  
20. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009011.png ; $j = 0 , \ldots , N$ ; confidence 0.213
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025016.png ; $L = L _ { 0 } \oplus L$ ; confidence 0.694
  
21. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037026.png ; $\hat { \theta }$ ; confidence 0.942
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050085.png ; $8$ ; confidence 0.694
  
22. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c13013024.png ; $Q = f ( L , N , K , P )$ ; confidence 0.999
+
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
  
23. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014017.png ; $A = ( \alpha , j )$ ; confidence 0.330
+
23. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
  
24. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015021.png ; $N ( D ( \Omega ) )$ ; confidence 0.993
+
24. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080104.png ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694
  
25. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170155.png ; $Z ^ { k } = p ( Z , Z )$ ; confidence 0.998
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016059.png ; $u _ { k }$ ; confidence 0.694
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017040.png ; $K = R ^ { \gamma }$ ; confidence 0.566
+
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026093.png ; $\{ P ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence 0.694
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170158.png ; $k \leq [ n / 2 ] + 1$ ; confidence 0.951
+
27. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520269.png ; $\overline { A } _ { 11 }$ ; confidence 0.694
  
28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017029.png ; $p ( E ) ( \gamma )$ ; confidence 0.999
+
28. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029089.png ; $T \circ f ^ { \leftarrow } \geq S$ ; confidence 0.694
  
29. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180484.png ; $( N , \lambda g )$ ; confidence 0.996
+
29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s1304402.png ; $[ W \wedge X , S ] _ { 0 }$ ; confidence 0.693
  
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180476.png ; $\pi _ { 0 } ^ { * } g$ ; confidence 0.860
+
30. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c1301909.png ; $S = \operatorname { inv } ( N ) : = \{ x \in N : \varphi ( t , x ) \in \text { Nfor all } t \in R \}$ ; confidence 0.693
  
31. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180267.png ; $\otimes ^ { * } E$ ; confidence 0.587
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046025.png ; $H = C _ { G } ( x )$ ; confidence 0.693
  
32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c1201806.png ; $( M , \lambda g )$ ; confidence 0.998
+
32. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008022.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in C ^ { n }$ ; confidence 0.693
  
33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180132.png ; $\otimes ^ { r } E$ ; confidence 0.479
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040404.png ; $P _ { SD } K$ ; confidence 0.693
  
34. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180266.png ; $\Lambda ^ { * } E$ ; confidence 0.415
+
34. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004092.png ; $\alpha _ { 2 } , 2 = 1$ ; confidence 0.693
  
35. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019047.png ; $A \in L ( R ^ { n } )$ ; confidence 0.963
+
35. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140177.png ; $Z ^ { ( l _ { C } ) }$ ; confidence 0.693
  
36. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019039.png ; $[ L ^ { \prime } ]$ ; confidence 0.993
+
36. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105073.png ; $F ( E ) = \{ t \in T : \text { there is an } \square \omega \in \Omega \square \text { such that } \square ( \omega , t ) \in F \}$ ; confidence 0.693
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130023.png ; $\overline { M }$ ; confidence 0.233
+
37. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025045.png ; $( a , b ) = ( - \infty , \infty )$ ; confidence 0.693
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210115.png ; $P _ { n , \theta }$ ; confidence 0.560
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193047.png ; $p \in M$ ; confidence 0.693
  
39. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583020.png ; $T ^ { n } = P B ^ { n }$ ; confidence 0.412
+
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; $S ( p )$ ; confidence 0.693
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots$ ; confidence 0.294
+
40. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101010.png ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583081.png ; $T ( K ) \subset K$ ; confidence 0.996
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023030.png ; $f _ { 1 }$ ; confidence 0.693
  
42. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026055.png ; $k h ^ { - 2 } \leq 1$ ; confidence 0.999
+
42. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005058.png ; $0 < \operatorname { liminf } _ { x \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) \leq \operatorname { limsup } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) < 1$ ; confidence 0.693
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026019.png ; $( x ; ( n + 1 / 2 ) k )$ ; confidence 0.478
+
43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301907.png ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693
  
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026085.png ; $U _ { R } ( t _ { R } )$ ; confidence 0.162
+
44. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120331.png ; $A _ { F }$ ; confidence 0.693
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028062.png ; $H ^ { n + 1 } ( G , A )$ ; confidence 0.991
+
45. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005068.png ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693
  
46. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300103.png ; $u ( t ) = e ^ { i k t }$ ; confidence 0.897
+
46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014073.png ; $0 < r < \text { dist } ( x , \partial D )$ ; confidence 0.693
  
47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031019.png ; $e _ { x } ( F _ { d } )$ ; confidence 0.448
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040372.png ; $F \subset G$ ; confidence 0.693
  
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020103.png ; $\overline { q }$ ; confidence 0.247
+
48. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170114.png ; $C$ ; confidence 0.693
  
49. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020250.png ; $\overline { U }$ ; confidence 0.098
+
49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005062.png ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693
  
50. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002037.png ; $\mu _ { k } \geq 0$ ; confidence 0.996
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004047.png ; $\mu _ { f } ( \lambda ) = \mu \{ t \in \Omega : | f ( t ) | > \lambda \} = \mu _ { g } ( \lambda )$ ; confidence 0.693
  
51. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020234.png ; $v _ { N A } = v ^ { * }$ ; confidence 0.577
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180126.png ; $\pi _ { i } : \square ^ { n } U \rightarrow \square ^ { ( n - 1 ) } U$ ; confidence 0.693
  
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003067.png ; $f ( x ) \in ( 0,1 ]$ ; confidence 0.999
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067081.png ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { * } ) )$ ; confidence 0.693
  
53. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033020.png ; $E _ { c } ^ { * } ( M )$ ; confidence 0.807
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026061.png ; $( a , a , \dots )$ ; confidence 0.693
  
54. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027012.png ; $f \in C _ { 2 } \pi$ ; confidence 0.988
+
54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300106.png ; $R = \operatorname { limsup } _ { N \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 0.692
  
55. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008019.png ; $[ L : K ] = d . e . f g$ ; confidence 0.512
+
55. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001028.png ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692
  
56. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006091.png ; $m _ { B } ( A ) = 0$ ; confidence 0.968
+
56. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020106.png ; $( LP )$ ; confidence 0.692
  
57. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
+
57. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057980/l05798033.png ; $\Gamma _ { f }$ ; confidence 0.692
  
58. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013013.png ; $S ( V ) ^ { G L ( V ) }$ ; confidence 0.979
+
58. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030108.png ; $m \in Z$ ; confidence 0.692
  
59. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013014.png ; $S ( V ) ^ { G L ( V ) }$ ; confidence 0.817
+
59. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005081.png ; $\sigma _ { \pi }$ ; confidence 0.692
  
60. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014082.png ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781
+
60. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006059.png ; $N < Z$ ; confidence 0.692
  
61. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201408.png ; $D _ { 1 } ( x , a ) = x$ ; confidence 0.724
+
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050109.png ; $\Sigma ^ { 2 }$ ; confidence 0.692
  
62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201407.png ; $D _ { 0 } ( x , a ) = 2$ ; confidence 0.968
+
62. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220202.png ; $m = ( i + 1 ) + 2$ ; confidence 0.692
  
63. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015042.png ; $Z [ \zeta _ { e } ]$ ; confidence 0.147
+
63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021017.png ; $\sigma \in Sp ( E )$ ; confidence 0.692
  
64. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800141.png ; $0 < \theta < \pi$ ; confidence 0.999
+
64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014035.png ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692
  
65. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013082.png ; $\hbar \nmid 2 e$ ; confidence 0.713
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030057.png ; $0 \rightarrow K \rightarrow T _ { n } \rightarrow O _ { n } \rightarrow 0$ ; confidence 0.692
  
66. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
+
66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027020.png ; $b _ { v , m } \in R$ ; confidence 0.692
  
67. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018082.png ; $( g _ { \alpha } )$ ; confidence 0.999
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b1301104.png ; $f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence 0.692
  
68. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029028.png ; $f ( q ) = c / q ^ { 2 }$ ; confidence 0.990
+
68. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002048.png ; $P ( X = 0 ) \leq \frac { \operatorname { var } ( X ) } { \lambda }$ ; confidence 0.691
  
69. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029014.png ; $f ( q ) = 1 / q ^ { 2 }$ ; confidence 1.000
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066084.png ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691
  
70. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203008.png ; $X ( t ) \in R ^ { n }$ ; confidence 0.968
+
70. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006055.png ; $F \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.691
  
71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030024.png ; $\gamma ( X ( t ) )$ ; confidence 1.000
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005089.png ; $t$ ; confidence 0.691
  
72. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010190.png ; $( \Omega , F , P )$ ; confidence 0.650
+
72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305007.png ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691
  
73. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031020.png ; $h ( T ) = g ( f ( T ) )$ ; confidence 0.998
+
73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202007.png ; $( i = 1 , \dots , m )$ ; confidence 0.691
  
74. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012061.png ; $\phi = Y _ { mis }$ ; confidence 0.832
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007028.png ; $a = 2$ ; confidence 0.691
  
75. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120109.png ; $t = 0,1 , \ldots$ ; confidence 0.562
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015086.png ; $\{ d \in D : d _ { S } = 0 \}$ ; confidence 0.691
  
76. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120105.png ; $\theta ^ { ( t ) }$ ; confidence 0.896
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058038.png ; $92$ ; confidence 0.691
  
77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002071.png ; $\pi _ { n } ( X , Y )$ ; confidence 0.619
+
77. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070144.png ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691
  
78. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007010.png ; $\overline { T }$ ; confidence 0.469
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022023.png ; $I = [ a , b ]$ ; confidence 0.691
  
79. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006088.png ; $G _ { \Gamma }$ ; confidence 0.691
  
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070100.png ; $p _ { h } \in P ( k )$ ; confidence 0.705
+
80. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050102.png ; $i _ { 2 } = \ldots = i _ { r } = 1$ ; confidence 0.691
  
81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009016.png ; $\nabla \mu \nu$ ; confidence 0.413
+
81. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029015.png ; $\pi _ { 1 } ( F , e ) \rightarrow \pi _ { 1 } ( E , e )$ ; confidence 0.691
  
82. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003029.png ; $K _ { \infty }$ ; confidence 0.984
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027078.png ; $r _ { P } ( a )$ ; confidence 0.691
  
83. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011010.png ; $\varepsilon D$ ; confidence 0.553
+
83. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520381.png ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { k } \geq - 1 , q _ { 1 } + \ldots + q _ { n } \geq 0 \}$ ; confidence 0.691
  
84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004042.png ; $( g - g ) \psi ( t )$ ; confidence 0.993
+
84. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602034.png ; $\| P C \| _ { \infty } < 1$ ; confidence 0.691
  
85. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004051.png ; $P _ { - } \psi ( t )$ ; confidence 0.875
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610120.png ; $- \dot { k }$ ; confidence 0.691
  
86. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500085.png ; $( X , \rho , \mu )$ ; confidence 0.998
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040629.png ; $D S _ { F }$ ; confidence 0.691
  
87. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550047.png ; $\xi ^ { \prime }$ ; confidence 0.949
+
87. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007078.png ; $n - a$ ; confidence 0.691
  
88. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500083.png ; $L _ { 2 } ( [ a , b ] )$ ; confidence 0.733
+
88. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007056.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691
  
89. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190145.png ; $S ( f ( m ) , \rho )$ ; confidence 0.924
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212020.png ; $G _ { Q }$ ; confidence 0.691
  
90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190146.png ; $g ( f ( a ) , f ( b ) )$ ; confidence 0.984
+
90. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005049.png ; $h _ { 1 } \circ h _ { 2 }$ ; confidence 0.691
  
91. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e12020022.png ; $( 1 + \epsilon )$ ; confidence 1.000
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204302.png ; $\therefore B \otimes B \rightarrow B$ ; confidence 0.690
  
92. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740261.png ; $\alpha = \beta$ ; confidence 0.999
+
92. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010106.png ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690
  
93. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230152.png ; $\phi _ { t } ^ { k }$ ; confidence 0.920
+
93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008095.png ; $F _ { Z _ { 0 } } ( x , R ) =$ ; confidence 0.690
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980165.png ; $k = 0,1 , \ldots$ ; confidence 0.650
+
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015041.png ; $E _ { P } ( d _ { 1 } ^ { * } ) = E _ { P } ( d _ { 2 } ^ { * } )$ ; confidence 0.690
  
95. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024070.png ; $\square ( E / K )$ ; confidence 0.987
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029065.png ; $M ( Q )$ ; confidence 0.690
  
96. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024045.png ; $\square ( E / Q )$ ; confidence 0.712
+
96. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200405.png ; $\operatorname { lim } _ { j \rightarrow \infty } \int _ { \Omega } \varphi ( x , f j ( x ) ) d x =$ ; confidence 0.690
  
97. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024018.png ; $L | L ^ { \prime }$ ; confidence 0.809
+
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029079.png ; $i \neq s$ ; confidence 0.690
  
98. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240139.png ; $\square ( E , Q )$ ; confidence 0.645
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010085.png ; $P _ { 0 } f$ ; confidence 0.690
  
99. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024075.png ; $A = Z / p ^ { m } ( 1 )$ ; confidence 0.669
+
99. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260109.png ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690
  
100. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e1202606.png ; $\{ \theta , x \}$ ; confidence 0.967
+
100. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004072.png ; $\lambda _ { 2 } ( \Omega ) \nmid \lambda _ { 1 } ( \Omega )$ ; confidence 0.690
  
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026088.png ; $\Lambda ( \mu )$ ; confidence 0.989
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054050.png ; $\pi$ ; confidence 0.690
  
102. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001039.png ; $0 \leq n x \leq y$ ; confidence 0.995
+
102. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630101.png ; $a _ { i } > 1$ ; confidence 0.689
  
103. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001027.png ; $f ^ { 2 } \simeq f$ ; confidence 0.998
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001054.png ; $v \in V ^ { * }$ ; confidence 0.689
  
104. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001023.png ; $\pi _ { 1 } ( X , * )$ ; confidence 0.995
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007088.png ; $K _ { 3 }$ ; confidence 0.689
  
105. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001052.png ; $F _ { q } [ x ] / ( f )$ ; confidence 0.434
+
105. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230124.png ; $V = E ( x _ { 1 } x _ { 1 } ^ { \prime } )$ ; confidence 0.689
  
106. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001045.png ; $\omega < 2.376$ ; confidence 0.958
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022042.png ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689
  
107. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300105.png ; $f \in F _ { q } [ x ]$ ; confidence 0.731
+
107. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007016.png ; $m = 0$ ; confidence 0.689
  
108. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024790/c02479058.png ; $\overline { C }$ ; confidence 0.596
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031049.png ; $Q _ { 1 }$ ; confidence 0.689
  
109. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007030.png ; $n = 4,5,6,8,12$ ; confidence 0.999
+
109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120197.png ; $( F / M ( t ) ) \cong G$ ; confidence 0.689
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009029.png ; $n = 0,1 , \ldots$ ; confidence 0.649
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040466.png ; $D ( K )$ ; confidence 0.689
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009066.png ; $R _ { l } ( p ; k , n )$ ; confidence 0.617
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009097.png ; $n = 0,1 , \ldots$ ; confidence 0.538
+
112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $\overline { Q } _ { p }$ ; confidence 0.689
  
113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009076.png ; $N _ { k , \gamma }$ ; confidence 0.090
+
113. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004024.png ; $\Omega _ { \perp }$ ; confidence 0.689
  
114. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009069.png ; $R _ { S } ( p ; k , n )$ ; confidence 0.191
+
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004079.png ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010044.png ; $\alpha , x \in G$ ; confidence 0.410
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040646.png ; $\operatorname { Th } _ { S _ { P } } \mathfrak { M } = \operatorname { Th } _ { S _ { P } } \mathfrak { N }$ ; confidence 0.689
  
116. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100150.png ; $u \in A _ { p } ( H )$ ; confidence 0.965
+
116. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090115.png ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010058.png ; $L _ { C } ^ { p } ( G )$ ; confidence 0.641
+
117. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005013.png ; $k = s \mu$ ; confidence 0.689
  
118. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301007.png ; $L _ { C } ^ { p } ( G )$ ; confidence 0.624
+
118. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700099.png ; $+ 1 = f a$ ; confidence 0.688
  
119. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100157.png ; $u \in A _ { p } ( G )$ ; confidence 0.983
+
119. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062025.png ; $y ( . , \lambda )$ ; confidence 0.688
  
120. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100108.png ; $\psi \subset V$ ; confidence 0.990
+
120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003020.png ; $\underline { \beta } ^ { ( l ) } = ( \beta _ { 0 } ^ { ( l ) } , \beta _ { 1 } ^ { ( l ) } , \ldots )$ ; confidence 0.688
  
121. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100107.png ; $\phi \subset U$ ; confidence 0.998
+
121. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021024.png ; $1 = 0$ ; confidence 0.688
  
122. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012026.png ; $h ( G ) \leq 1 ( A )$ ; confidence 0.740
+
122. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011023.png ; $\Gamma ( 1 - \alpha _ { j } + s )$ ; confidence 0.688
  
123. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009014.png ; $f \in H ( C ^ { n } )$ ; confidence 0.850
+
123. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900165.png ; $\zeta \mapsto T ( \zeta )$ ; confidence 0.688
  
124. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302106.png ; $L _ { C } ^ { 1 } ( G )$ ; confidence 0.513
+
124. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090118.png ; $Z \lambda$ ; confidence 0.688
  
125. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080190.png ; $A ( K ) \subset K$ ; confidence 0.996
+
125. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002075.png ; $\| A \| _ { 1 } = E [ A ^ { * } ]$ ; confidence 0.688
  
126. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008060.png ; $T \in C ^ { * } ( G )$ ; confidence 0.984
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008085.png ; $13$ ; confidence 0.688
  
127. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008036.png ; $\xi , \eta \in H$ ; confidence 0.999
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460175.png ; $f _ { j } ( x )$ ; confidence 0.688
  
128. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301705.png ; $u \in A _ { 2 } ( G )$ ; confidence 0.984
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012078.png ; $x _ { t } + c _ { t } = y _ { t }$ ; confidence 0.688
  
129. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010024.png ; $\square ^ { t } a$ ; confidence 0.833
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501011.png ; $\xi ^ { * } : X \rightarrow B$ ; confidence 0.688
  
130. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010052.png ; $\tau ( n ) \neq 0$ ; confidence 0.999
+
130. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010070.png ; $b ( x , t , \alpha ) t _ { + } ^ { n - 1 } + b ( x , - t , - \alpha ) t ^ { n - 1 }$ ; confidence 0.688
  
131. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010060.png ; $q = e ^ { 2 \pi i z }$ ; confidence 0.672
+
131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012013.png ; $x _ { 2 } \prec y _ { 2 }$ ; confidence 0.688
  
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010041.png ; $( 8 \times 8 )$ ; confidence 1.000
+
132. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584075.png ; $10$ ; confidence 0.688
  
133. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011038.png ; $e ^ { - i x \zeta }$ ; confidence 0.956
+
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045078.png ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687
  
134. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110230.png ; $\vec { R } ^ { x } +$ ; confidence 0.139
+
134. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021038.png ; $r _ { y } = 0$ ; confidence 0.687
  
135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011074.png ; $D ^ { n } + i R ^ { n }$ ; confidence 0.679
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237058.png ; $[ L : K ]$ ; confidence 0.687
  
136. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011056.png ; $G _ { k } ( \zeta )$ ; confidence 0.975
+
136. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011027.png ; $G _ { N } ( x ) = \sum _ { i = 1 } ^ { N } 1 \{ f _ { i n } \geq x \}$ ; confidence 0.687
  
137. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110109.png ; $K = D ^ { \gamma }$ ; confidence 0.381
+
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051061.png ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687
  
138. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301909.png ; $x _ { j } = \pi j / N$ ; confidence 0.924
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028065.png ; $\rho \in X *$ ; confidence 0.687
  
139. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101507.png ; $\overline { a }$ ; confidence 0.124
+
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019027.png ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687
  
140. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150171.png ; $\| T \| < \mu ( A )$ ; confidence 0.348
+
140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003037.png ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w )$ ; confidence 0.687
  
141. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150185.png ; $\| T \| < \nu ( A )$ ; confidence 0.401
+
141. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530307.png ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687
  
142. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015079.png ; $i ( A ) = + \infty$ ; confidence 1.000
+
142. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010053.png ; $H ^ { p } ( K , C ) = 0$ ; confidence 0.687
  
143. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015077.png ; $i ( A ) = - \infty$ ; confidence 0.999
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350258.png ; $A _ { t }$ ; confidence 0.687
  
144. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015036.png ; $\| T \| < \delta$ ; confidence 0.664
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780225.png ; $\overline { k }$ ; confidence 0.687
  
145. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150131.png ; $F _ { \pm } ( X , Y )$ ; confidence 0.999
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201307.png ; $\| f \| _ { p , G } ^ { p } = \int | f ( z ) | ^ { p } d A ( z ) < \infty$ ; confidence 0.687
  
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016040.png ; $( \lambda I - T )$ ; confidence 0.995
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200179.png ; $\Lambda ( h _ { i } ) \in Z \geq 0$ ; confidence 0.687
  
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019017.png ; $N \cap H = \{ 1 \}$ ; confidence 0.973
+
147. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202307.png ; $F \subseteq R ^ { m }$ ; confidence 0.687
  
148. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021047.png ; $u ( z , \lambda )$ ; confidence 1.000
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006020.png ; $u \in P ( x )$ ; confidence 0.687
  
149. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202102.png ; $n = 0 , \ldots , N$ ; confidence 0.552
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007045.png ; $m | k$ ; confidence 0.687
  
150. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024049.png ; $x ( t ) \in R ^ { n }$ ; confidence 0.873
+
150. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017047.png ; $y _ { t + r } - \hat { y } _ { t , r } = \sum _ { j = 0 } ^ { r - 1 } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.687
  
151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024039.png ; $p h ( t ) < \infty$ ; confidence 0.670
+
151. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100136.png ; $\| \rho \| _ { L } \propto ( R ) \leq L / m$ ; confidence 0.687
  
152. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024067.png ; $u \in C ( J _ { t } )$ ; confidence 0.988
+
152. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015022.png ; $( C ( T ) ) \approx Z$ ; confidence 0.687
  
153. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028024.png ; $A x \in \hat { B }$ ; confidence 0.708
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049054.png ; $\{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.687
  
154. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029068.png ; $f \rightarrow$ ; confidence 0.824
+
154. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010016.png ; $\hat { f } _ { p } : = \frac { \partial \hat { f } } { \partial p }$ ; confidence 0.686
  
155. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290118.png ; $f ^ { \prime } O p$ ; confidence 0.169
+
155. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013013.png ; $\Lambda ^ { o p }$ ; confidence 0.686
  
156. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003023.png ; $\alpha _ { \nu }$ ; confidence 0.984
+
156. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010054.png ; $\cup x$ ; confidence 0.686
  
157. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002036.png ; $0 < | \alpha | < 1$ ; confidence 0.999
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025042.png ; $PG ( k - n - 2 , q )$ ; confidence 0.686
  
158. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002027.png ; $i = 1 , \ldots , d$ ; confidence 0.645
+
158. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004039.png ; $\partial u / \partial \overline { z } _ { j } = f$ ; confidence 0.686
  
159. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002039.png ; $2 \sqrt [ 4 ] { 3 }$ ; confidence 0.958
+
159. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011021.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } a _ { n } g ( S ^ { n } y )$ ; confidence 0.686
  
160. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170125.png ; $\mu \equiv \sum \rho _ { i } \delta _ { z _ { i } }$ ; confidence 0.686
  
161. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002038.png ; $2 \sqrt [ 2 ] { 3 }$ ; confidence 0.954
+
161. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840152.png ; $[ T x , T x ] \geq 0$ ; confidence 0.686
  
162. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003043.png ; $u _ { j } \equiv 0$ ; confidence 0.433
+
162. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008061.png ; $a \in \partial B$ ; confidence 0.686
  
163. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005047.png ; $2 ^ { d - 1 } ( d + 1 )$ ; confidence 0.842
+
163. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050121.png ; $Q _ { x } = T W _ { x } / \operatorname { Im } ( d f _ { x } )$ ; confidence 0.686
  
164. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006085.png ; $A = [ \alpha , j ]$ ; confidence 0.937
+
164. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002067.png ; $x ^ { \prime } = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.686
  
165. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006072.png ; $a _ { i , j } \neq 0$ ; confidence 0.658
+
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006031.png ; $[ \alpha ] + = \operatorname { max } \{ 0 , \alpha \}$ ; confidence 0.686
  
166. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040119.png ; $1 \leq s < s _ { 0 }$ ; confidence 0.645
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027024.png ; $x _ { n } \in X _ { n } , Q _ { n } f \in Y _ { n } , T _ { n } = ( Q _ { n } T ) | x _ { n }$ ; confidence 0.686
  
167. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004094.png ; $u \in G ^ { s } ( U )$ ; confidence 0.991
+
167. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018025.png ; $f \in A ( D )$ ; confidence 0.686
  
168. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200508.png ; $\subset R ^ { m }$ ; confidence 0.515
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406099.png ; $\rho$ ; confidence 0.686
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011830/a0118304.png ; $\alpha , \beta$ ; confidence 0.993
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022093.png ; $Z$ ; confidence 0.686
  
170. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002031.png ; $N = N ( q , r ) \in N$ ; confidence 0.578
+
170. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085035.png ; $\chi _ { V }$ ; confidence 0.686
  
171. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002072.png ; $F ( S ^ { d } ) ^ { q }$ ; confidence 0.815
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018044.png ; $\langle e _ { i } , e _ { j } \rangle = 0$ ; confidence 0.686
  
172. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002027.png ; $w ( t ) = 2 t 1 + 213$ ; confidence 0.740
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040618.png ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686
  
173. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001021.png ; $S _ { f } ( a _ { 0 } )$ ; confidence 0.636
+
173. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003020.png ; $x , \theta$ ; confidence 0.685
  
174. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002022.png ; $f \in L ^ { 1 } ( T )$ ; confidence 0.966
+
174. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140114.png ; $l , m = 1 , \dots , n$ ; confidence 0.685
  
175. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002061.png ; $H ^ { \infty } + C$ ; confidence 0.965
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380163.png ; $-$ ; confidence 0.685
  
176. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003015.png ; $( y ^ { \alpha } )$ ; confidence 0.992
+
176. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202001.png ; $\{ A _ { 1 } , \dots , A _ { n } + 1 \}$ ; confidence 0.685
  
177. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300506.png ; $u ( x , 0 ) = u 0 ( x )$ ; confidence 0.579
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420104.png ; $| v | , | w | \in G$ ; confidence 0.685
  
178. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005019.png ; $r _ { \gamma } > 0$ ; confidence 0.158
+
178. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002045.png ; $= \operatorname { min } _ { x \in X } c ^ { T } x + u _ { 1 } ^ { T } ( A _ { 1 } x - b _ { 1 } ) =$ ; confidence 0.685
  
179. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200408.png ; $B \backslash A$ ; confidence 0.957
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064036.png ; $G ( \alpha ) = \operatorname { exp } ( [ \operatorname { log } \operatorname { det } a ] _ { 0 } )$ ; confidence 0.685
  
180. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004025.png ; $\eta < \lambda$ ; confidence 0.999
+
180. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520198.png ; $i \in S$ ; confidence 0.685
  
181. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200405.png ; $A \backslash B$ ; confidence 0.996
+
181. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022940/c0229403.png ; $\Omega _ { 1 }$ ; confidence 0.685
  
182. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200404.png ; $A \subseteq * B$ ; confidence 0.990
+
182. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032045.png ; $S ( V )$ ; confidence 0.685
  
183. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043880/g04388018.png ; $t \downarrow 0$ ; confidence 0.769
+
183. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120132.png ; $K _ { p }$ ; confidence 0.685
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\overline { D }$ ; confidence 0.164
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014040.png ; $| f _ { \rho } ^ { C } ( x _ { 0 } ) - \frac { f + ( x _ { 0 } ) + f - ( x _ { 0 } ) } { 2 } | = O ( \rho \operatorname { ln } \rho ) \text { as } \rho \rightarrow 0$ ; confidence 0.684
  
185. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007024.png ; $a \in R [ t ] ^ { j }$ ; confidence 0.290
+
185. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017070.png ; $y _ { 1 } , \dots , y _ { T }$ ; confidence 0.684
  
186. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007043.png ; $k ^ { i - \gamma }$ ; confidence 0.468
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031072.png ; $| 1 | p - 1 / 2 | \geq 1 / ( n + 1 )$ ; confidence 0.684
  
187. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007023.png ; $f \in R ( t ) ^ { l }$ ; confidence 0.745
+
187. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520288.png ; $K _ { \rho }$ ; confidence 0.684
  
188. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011041.png ; $L ^ { p } ( H ^ { x } )$ ; confidence 0.598
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010106.png ; $G ( Q ) = \operatorname { Sp } ( 2 n , F )$ ; confidence 0.684
  
189. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012025.png ; $\phi \nabla = 0$ ; confidence 0.999
+
189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014016.png ; $\lambda \theta ^ { n }$ ; confidence 0.684
  
190. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807028.png ; $( \nu , \Sigma )$ ; confidence 0.999
+
190. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016038.png ; $L _ { 3 / 2 } ^ { 2 }$ ; confidence 0.684
  
191. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301304.png ; $T = ( - \pi , \pi ]$ ; confidence 0.994
+
191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009010.png ; $[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { 4 } ( X ) , f ) Y$ ; confidence 0.684
  
192. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001029.png ; $_ { S } \in R ^ { 1 }$ ; confidence 0.193
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029029.png ; $z \mapsto \varepsilon _ { z } ^ { C U } ( f )$ ; confidence 0.684
  
193. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004062.png ; $\{ z : r ( z ) < 0 \}$ ; confidence 0.999
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034039.png ; $B _ { N } ( D ^ { \circ } ) < \frac { 0.446663 } { n }$ ; confidence 0.684
  
194. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004094.png ; $K _ { 0 } = K _ { BN }$ ; confidence 0.878
+
194. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032044.png ; $V = V _ { 0 }$ ; confidence 0.684
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013970/a01397010.png ; $\epsilon _ { Y }$ ; confidence 0.093
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
  
196. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006011.png ; $Q = ( X _ { P } , < Q )$ ; confidence 0.402
+
196. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003070.png ; $\hat { f } ( w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { \infty } f ( x ) e ^ { i u x } d x$ ; confidence 0.684
  
197. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006030.png ; $x _ { 1 } < p x _ { 2 }$ ; confidence 0.895
+
197. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002012.png ; $U | i \rangle$ ; confidence 0.684
  
198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200106.png ; $[ a , b ] = ( a | b ) x _ { \alpha }$ ; confidence 0.684
  
199. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005076.png ; $r + ( k ) = O ( 1 / k )$ ; confidence 0.749
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241090.png ; $V _ { i }$ ; confidence 0.684
  
200. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005033.png ; $A _ { \pm } ( x , y )$ ; confidence 0.974
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013040.png ; $2 e g / \hbar = n$ ; confidence 0.684
  
201. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060112.png ; $\kappa = - 2 J - 1$ ; confidence 0.995
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302802.png ; $H * X = H * ( X , Z / p Z )$ ; confidence 0.684
  
202. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060156.png ; $( a - \delta , a )$ ; confidence 0.907
+
202. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005084.png ; $\operatorname { log } \alpha _ { n } = o ( n ^ { 1 / 3 } ) \text { as } n \rightarrow \infty$ ; confidence 0.683
  
203. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006059.png ; $S ( k ) = - \kappa$ ; confidence 0.776
+
203. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065010/m065010211.png ; $\lambda _ { y }$ ; confidence 0.683
  
204. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006026.png ; $L ^ { 2 } ( R _ { + } )$ ; confidence 0.971
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163603.png ; $\left| \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right|$ ; confidence 0.683
  
205. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006012.png ; $f ( 0 , k ) : = f ( k )$ ; confidence 0.748
+
205. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014033.png ; $Q _ { \lambda } = \sum _ { T } x ^ { T } ,$ ; confidence 0.683
  
206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007079.png ; $L ^ { 2 } ( R _ { 3 } )$ ; confidence 0.965
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010199.png ; $\overline { a }$ ; confidence 0.683
  
207. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007066.png ; $\forall x \in P$ ; confidence 0.327
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024084.png ; $\beta$ ; confidence 0.683
  
208. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007069.png ; $u ( x , y , k _ { 0 } )$ ; confidence 0.869
+
208. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050020.png ; $| A | ( n - l ) \leq | \nabla ( A ) | ( l + 1 )$ ; confidence 0.683
  
209. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png ; $D$ ; confidence 0.683
  
210. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090110.png ; $\nu _ { p } ( K / k )$ ; confidence 0.984
+
210. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008047.png ; $m s$ ; confidence 0.683
  
211. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090151.png ; $p < 12000000$ ; confidence 1.000
+
211. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
  
212. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090134.png ; $k = Q ( \mu _ { p } )$ ; confidence 0.411
+
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028012.png ; $E _ { n } ( X ) = \operatorname { lim } _ { k } \pi _ { n + k } ( X \wedge E _ { k } ) = \pi _ { n } ^ { S } ( X \wedge E )$ ; confidence 0.683
  
213. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090114.png ; $\mu _ { p } ( K / k )$ ; confidence 0.989
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060131.png ; $i = 1 , \dots , n - 1$ ; confidence 0.683
  
214. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003058.png ; $H _ { 3 } ( O ^ { C } )$ ; confidence 0.549
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003046.png ; $J \subset I$ ; confidence 0.683
  
215. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002014.png ; $\lambda = E ( X )$ ; confidence 0.885
+
215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023028.png ; $\Omega ( M ) = \oplus _ { k \geq 0 } \Omega ^ { k } ( M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Gamma ( \bigwedge T ^ { * } M )$ ; confidence 0.683
  
216. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002036.png ; $\{ i j , i k , j k \}$ ; confidence 0.994
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040701.png ; $( X , x , v )$ ; confidence 0.683
  
217. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002031.png ; $p _ { i } = p = p ( n )$ ; confidence 0.997
+
217. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c1301307.png ; $\dot { k } = K / L$ ; confidence 0.683
  
218. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002079.png ; $\sum _ { x \in N }$ ; confidence 0.270
+
218. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003054.png ; $H ( . )$ ; confidence 0.683
  
219. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002074.png ; $\{ T = \infty \}$ ; confidence 1.000
+
219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026080.png ; $F = \{ f d \nu : f \in S \}$ ; confidence 0.683
  
220. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004047.png ; $K _ { 1 } \# K _ { 2 }$ ; confidence 0.933
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030043.png ; $\theta _ { Y } : ( T W , d ) \rightarrow C * \Omega Y$ ; confidence 0.683
  
221. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004094.png ; $P _ { K } ( v , z ) - 1$ ; confidence 0.997
+
221. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003021.png ; $\tilde { M } \otimes C = \tilde { M }$ ; confidence 0.683
  
222. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040107.png ; $( v ^ { - 1 } - v ) / z$ ; confidence 0.989
+
222. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002083.png ; $F X , Y$ ; confidence 0.682
  
223. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007047.png ; $\{ F ( z _ { N } ) \}$ ; confidence 0.343
+
223. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840161.png ; $U = ( A - z _ { 0 } ) ( A - z _ { 0 } ) ^ { - 1 }$ ; confidence 0.682
  
224. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005074.png ; $m \geq m _ { 0 }$ ; confidence 0.997
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201106.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi } \alpha ( \frac { x + y } { 2 } , \xi ) u ( y ) d y d \xi$ ; confidence 0.682
  
225. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012023.png ; $[ - 1 , + \infty ]$ ; confidence 1.000
+
225. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080102.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.682
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103302.png ; $| X | ^ { \prime }$ ; confidence 0.497
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015730/b01573021.png ; $1$ ; confidence 0.682
  
227. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840312.png ; $K \oplus K _ { 2 }$ ; confidence 0.848
+
227. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010099.png ; $\operatorname { PSL } ( 2 , Z )$ ; confidence 0.682
  
228. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840134.png ; $y \in D ( T ^ { + } )$ ; confidence 0.852
+
228. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260202.png ; $0 \leq e \leq 1$ ; confidence 0.682
  
229. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840152.png ; $[ T x , T x ] \geq 0$ ; confidence 0.686
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020051.png ; $[ h _ { i j } , h _ { m n } ] = 0$ ; confidence 0.682
  
230. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840340.png ; $[ x , y ] = ( G x , y )$ ; confidence 0.951
+
230. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
  
231. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840311.png ; $K \oplus K _ { 1 }$ ; confidence 0.839
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
  
232. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013018.png ; $[ a , b ] = [ - 1,1 ]$ ; confidence 0.979
+
232. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011034.png ; $H ( 2 )$ ; confidence 0.682
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399068.png ; $\alpha _ { 1 } = 0$ ; confidence 0.478
+
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001056.png ; $U _ { S } \cap V$ ; confidence 0.682
  
234. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006027.png ; $\alpha _ { k } = n$ ; confidence 0.520
+
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027012.png ; $\Lambda _ { m } ^ { \alpha , \beta }$ ; confidence 0.682
  
235. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007058.png ; $\dot { k } = O ( 1 )$ ; confidence 0.573
+
235. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211061.png ; $\xi _ { 1 } , \dots , \xi _ { k - 1 }$ ; confidence 0.682
  
236. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007059.png ; $k = 1 / \sqrt { 2 }$ ; confidence 0.996
+
236. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001021.png ; $r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }$ ; confidence 0.682
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245019.png ; $C ^ { 2 } / \Gamma$ ; confidence 0.421
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028074.png ; $x \in X$ ; confidence 0.682
  
238. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200304.png ; $c _ { 1 } ( M ) _ { R }$ ; confidence 0.553
+
238. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050106.png ; $\rho = | \alpha - x | / | b - x |$ ; confidence 0.682
  
239. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507074.png ; $M ^ { 4 } \times K$ ; confidence 0.999
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024035.png ; $\dot { x } ( t ) = f ( t , \int _ { t - h ( t ) } ^ { t } K ( t , s , x ( s ) ) d s )$ ; confidence 0.682
  
240. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508016.png ; $( h _ { \mu \nu } )$ ; confidence 0.868
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011026.png ; $( x _ { i j } )$ ; confidence 0.682
  
241. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001069.png ; $P \cap P = \{ 0 \}$ ; confidence 0.998
+
241. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006069.png ; $W _ { 2 } ^ { * } = \frac { 1 } { D _ { 2 } ^ { * } } = \operatorname { min } _ { i } \sqrt { m _ { i } ^ { 2 } + p _ { 2 } ^ { 2 } }$ ; confidence 0.681
  
242. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001033.png ; $f , g \in C ( X , R )$ ; confidence 0.987
+
242. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004032.png ; $u ( x _ { i } , t ^ { n + 1 } )$ ; confidence 0.681
  
243. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001070.png ; $P P \subseteq P$ ; confidence 0.503
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a1200707.png ; $\rho ( A ( t ) ) \supset S _ { \theta _ { 0 } } = \{ z \in C : | \operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.681
  
244. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020159.png ; $\alpha ^ { n } < b$ ; confidence 0.310
+
244. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001048.png ; $V ^ { 2 x + 1 }$ ; confidence 0.681
  
245. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002077.png ; $P \cap P = \{ e \}$ ; confidence 0.988
+
245. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090207.png ; $k ^ { \prime } = k _ { \chi } ( \mu _ { p } )$ ; confidence 0.681
  
246. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002061.png ; $x ^ { + } = x \vee e$ ; confidence 0.973
+
246. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000114.png ; $H _ { \epsilon } ( C )$ ; confidence 0.681
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003096.png ; $\Omega = [ 0,1 ]$ ; confidence 0.999
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022037.png ; $V _ { 2 } = \rho _ { 1 } \oplus \rho _ { 196883 } \oplus \rho _ { 21296876 }$ ; confidence 0.681
  
248. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003093.png ; $[ L ^ { 1 } ( \mu ) ]$ ; confidence 0.875
+
248. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008020.png ; $L ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }$ ; confidence 0.681
  
249. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004046.png ; $F _ { X } ( T ) \in X$ ; confidence 0.985
+
249. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004068.png ; $\Omega = \{ z : | z | < r \}$ ; confidence 0.681
  
250. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700027.png ; $\lambda x ( x x )$ ; confidence 0.981
+
250. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040126.png ; $\pi T = 3111324$ ; confidence 0.681
  
251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003019.png ; $S q ^ { 1 } = \beta$ ; confidence 0.405
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012920/a01292068.png ; $\psi ( x )$ ; confidence 0.681
  
252. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004088.png ; $\rho _ { L } = 1.0$ ; confidence 0.997
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025020.png ; $- [ \alpha _ { 1 } , D _ { 1 } ] = [ D _ { 1 } , \alpha _ { 1 } ] = D _ { 1 } \alpha _ { 1 }$ ; confidence 0.681
  
253. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009029.png ; $( f ^ { * } g ) ( x ) =$ ; confidence 0.995
+
253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029071.png ; $q _ { N } = n ^ { k }$ ; confidence 0.681
  
254. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001026.png ; $L ^ { 1 } ( T ^ { n } )$ ; confidence 0.583
+
254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034075.png ; $\operatorname { Re } f ( z ) > 0$ ; confidence 0.681
  
255. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009061.png ; $( P \times g ) / G$ ; confidence 0.644
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180165.png ; $g \in S ^ { 2 } E$ ; confidence 0.681
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009078.png ; $A \times \{ 0 \}$ ; confidence 1.000
+
256. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012054.png ; $-$ ; confidence 0.681
  
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009064.png ; $( P \times P ) / G$ ; confidence 0.990
+
257. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011019.png ; $S ^ { \prime } \hookrightarrow Q$ ; confidence 0.681
  
258. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300407.png ; $[ x y z ] = - [ y x z ]$ ; confidence 0.899
+
258. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021031.png ; $R ( x _ { i } ; a _ { 0 } , \dots , a _ { N } ) = 0$ ; confidence 0.681
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007038.png ; $L ^ { 2 } ( R ^ { n } )$ ; confidence 0.710
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480112.png ; $p \nmid q$ ; confidence 0.681
  
260. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011024.png ; $A v = \lambda M v$ ; confidence 0.942
+
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016044.png ; $NL = NSPACE [ \operatorname { log } n ]$ ; confidence 0.681
  
261. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005022.png ; $L = ( L _ { k } ( a ) )$ ; confidence 0.986
+
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023055.png ; $= \int _ { a } ^ { b } E ( L ) ( \sigma ^ { 2 } ( x ) ) z ( x ) d x$ ; confidence 0.681
  
262. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006085.png ; $p ^ { \gamma } - 1$ ; confidence 0.436
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052058.png ; $u , v \in R ^ { N }$ ; confidence 0.681
  
263. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006075.png ; $0 \leq z _ { i } < p$ ; confidence 0.996
+
263. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003064.png ; $H ^ { * }$ ; confidence 0.681
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830163.png ; $( 0 , \ldots , 0 )$ ; confidence 0.533
+
264. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m1301305.png ; $\{ e _ { 1 } , \dots , e _ { \epsilon } \}$ ; confidence 0.681
  
265. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596101.png ; $w _ { N } ( p , q ; t )$ ; confidence 0.985
+
265. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020161.png ; $\mu _ { s }$ ; confidence 0.680
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003043.png ; $\alpha = \pi / 2$ ; confidence 0.970
+
266. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028057.png ; $D _ { m } = \{ z : \Phi ^ { m } ( z , z ) < 0 \}$ ; confidence 0.680
  
267. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005078.png ; $\square ^ { 1 } s$ ; confidence 0.613
+
267. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000188.png ; $\lambda x \cdot f ( x )$ ; confidence 0.680
  
268. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120216.png ; $S = \{ \infty \}$ ; confidence 0.912
+
268. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014053.png ; $\psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma > 0$ ; confidence 0.680
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780225.png ; $\overline { k }$ ; confidence 0.687
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005053.png ; $\tilde { f } \in H _ { b } ( E ^ { * * } )$ ; confidence 0.680
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450249.png ; $\epsilon \in R$ ; confidence 0.976
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240397.png ; $M _ { E }$ ; confidence 0.680
  
271. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010051.png ; $WF ( B f ) = WF ( f )$ ; confidence 0.743
+
271. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
  
272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014029.png ; $A \in L _ { 0 } ( X )$ ; confidence 0.993
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220105.png ; $H _ { B } ^ { 2 } ( X / R , A ( j ) )$ ; confidence 0.680
  
273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170308.png ; $X \times I ^ { 2 }$ ; confidence 0.760
+
273. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c1201403.png ; $R / 2 \pi Z$ ; confidence 0.680
  
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170131.png ; $K ^ { 2 } \times I$ ; confidence 0.951
+
274. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010037.png ; $\int ( f _ { 1 } + f _ { 2 } ) d m = ( C ) \int f _ { 1 } d m + ( C ) \int f _ { 2 } d m$ ; confidence 0.680
  
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170307.png ; $K ^ { 2 \times 1 }$ ; confidence 0.454
+
275. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008048.png ; $\vec { V } _ { n } = \vec { V } _ { n } ( T _ { m } )$ ; confidence 0.680
  
276. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170306.png ; $X ^ { 2 } \times I$ ; confidence 0.277
+
276. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003061.png ; $\tilde { \chi } ( x ) = [ x ^ { 2 } - 1 - a ] _ { - b } ^ { b }$ ; confidence 0.680
  
277. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170164.png ; $K ^ { x } \times 1$ ; confidence 0.263
+
277. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022061.png ; $y ^ { ( n ) } + p ( x ) y = 0$ ; confidence 0.680
  
278. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170137.png ; $C ^ { 2 } \times I$ ; confidence 0.651
+
278. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001011.png ; $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ ; confidence 0.680
  
279. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019029.png ; $U = - x ^ { * } C x < 0$ ; confidence 0.867
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003042.png ; $\| x z \| ^ { \prime } \leq \| x \| ^ { \prime } \| z \| ^ { \prime }$ ; confidence 0.680
  
280. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003062.png ; $b \downarrow 0$ ; confidence 0.590
+
280. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014041.png ; $r _ { 1 } + r _ { 2 } < R$ ; confidence 0.679
  
281. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003070.png ; $\vec { \theta }$ ; confidence 0.929
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007080.png ; $Ab ( Z ( C ) , M )$ ; confidence 0.679
  
282. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009033.png ; $r ^ { 2 } + b r + c = 0$ ; confidence 0.996
+
282. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028083.png ; $A ( D ) ^ { * } \simeq A ( \overline { D } )$ ; confidence 0.679
  
283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011065.png ; $\pi _ { 1 } ( M ) = Z$ ; confidence 0.842
+
283. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011074.png ; $D ^ { n } + i R ^ { n }$ ; confidence 0.679
  
284. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120102.png ; $u \in Q _ { 1 } ( R )$ ; confidence 0.497
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300404.png ; $\cong 0.915965594177219015 \ldots$ ; confidence 0.679
  
285. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012027.png ; $A q \subseteq R$ ; confidence 0.973
+
285. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007016.png ; $| \hat { k } | < 1$ ; confidence 0.679
  
286. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007019.png ; $m \geq m _ { 0 } > 0$ ; confidence 0.880
+
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004013.png ; $a _ { \delta } = \prod _ { i < j } ( x _ { i } - x _ { j } )$ ; confidence 0.679
  
287. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300906.png ; $\hbar = h / 2 \pi$ ; confidence 0.917
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007035.png ; $a ^ { i } b ^ { k } a ^ { - j }$ ; confidence 0.679
  
288. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008034.png ; $\int h ( s ) d s = 1$ ; confidence 0.997
+
288. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010116.png ; $( R )$ ; confidence 0.679
  
289. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m1301104.png ; $f = f ( x ^ { 0 } , t )$ ; confidence 0.932
+
289. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002049.png ; $\hat { f } | x , 0 , w \rangle \rightarrow | x , f ( x ) , w \rangle$ ; confidence 0.679
  
290. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201308.png ; $d N / d t \equiv 0$ ; confidence 0.670
+
290. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005067.png ; $\sum _ { n \in Z } x ^ { n }$ ; confidence 0.679
  
291. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013024.png ; $n ( t ) = N ( t ) - N x$ ; confidence 0.653
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020092.png ; $\omega h _ { i } = - h$ ; confidence 0.679
  
292. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015053.png ; $( p n \times r s )$ ; confidence 0.987
+
292. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150160.png ; $\gamma ( T ) = \operatorname { inf } \frac { \| T _ { X } \| } { d ( x , N ( T ) ) }$ ; confidence 0.679
  
293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015014.png ; $R ^ { p \times N }$ ; confidence 0.342
+
293. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019018.png ; $X < 0$ ; confidence 0.679
  
294. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015024.png ; $f _ { X , Y } ( X , Y )$ ; confidence 0.999
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031051.png ; $M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0$ ; confidence 0.679
  
295. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014034.png ; $f \in C ( B _ { R } )$ ; confidence 0.996
+
295. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004015.png ; $( L _ { D } )$ ; confidence 0.679
  
296. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014093.png ; $f \in C ( C ^ { n } )$ ; confidence 0.820
+
296. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023039.png ; $D | _ { \Omega ^ { 0 } } ( M ) = 0$ ; confidence 0.679
  
297. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301407.png ; $f \in C ( R ^ { n } )$ ; confidence 0.856
+
297. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211043.png ; $\partial ^ { 2 } p _ { i } ( \theta ) \nmid \partial \theta _ { j } \partial \theta _ { r }$ ; confidence 0.679
  
298. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014065.png ; $u \in C ( R ^ { n } )$ ; confidence 0.846
+
298. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010078.png ; $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ ; confidence 0.678
  
299. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021026.png ; $\lambda K + t$ ; confidence 0.994
+
299. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001072.png ; $F = GF ( q )$ ; confidence 0.678
  
300. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023071.png ; $H = R ^ { \gamma }$ ; confidence 0.618
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059023.png ; $L ( z ) \equiv 0$ ; confidence 0.678

Revision as of 00:10, 13 February 2020

List

1. j12001043.png ; $( \partial _ { 1 } , \dots , \partial _ { n } )$ ; confidence 0.696

2. g12004034.png ; $u \in G ^ { S } ( \Omega )$ ; confidence 0.696

3. h12005032.png ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696

4. h13002073.png ; $\gamma \in F ( S )$ ; confidence 0.695

5. w120110253.png ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }$ ; confidence 0.695

6. m12003017.png ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0$ ; confidence 0.695

7. m13023060.png ; $g : Y \rightarrow S$ ; confidence 0.695

8. t130050127.png ; $M _ { \sigma _ { T } } ( B , X )$ ; confidence 0.695

9. i12008053.png ; $\{ - S _ { i } \}$ ; confidence 0.695

10. f12021055.png ; $b _ { 0 } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { l } }$ ; confidence 0.695

11. a11032028.png ; $\lambda _ { j } ^ { ( i ) }$ ; confidence 0.695

12. e12012090.png ; $\operatorname { log } L ( \mu , \Sigma | Y _ { aug } )$ ; confidence 0.695

13. p07452013.png ; $a b \in P$ ; confidence 0.694

14. a12020027.png ; $t ^ { M }$ ; confidence 0.694

15. o06817011.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \int _ { 0 } ^ { 1 } Z _ { n } ^ { 2 } ( t ) d t < \lambda \} = P \{ \omega ^ { 2 } < \lambda \} =$ ; confidence 0.694

16. a12013017.png ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694

17. f12002087.png ; $Q +$ ; confidence 0.694

18. f13001014.png ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694

19. t13005020.png ; $\xi ^ { 11 }$ ; confidence 0.694

20. a13025016.png ; $L = L _ { 0 } \oplus L$ ; confidence 0.694

21. a11050085.png ; $8$ ; confidence 0.694

22. t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694

23. k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694

24. r130080104.png ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694

25. a12016059.png ; $u _ { k }$ ; confidence 0.694

26. e12026093.png ; $\{ P ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence 0.694

27. n067520269.png ; $\overline { A } _ { 11 }$ ; confidence 0.694

28. f13029089.png ; $T \circ f ^ { \leftarrow } \geq S$ ; confidence 0.694

29. s1304402.png ; $[ W \wedge X , S ] _ { 0 }$ ; confidence 0.693

30. c1301909.png ; $S = \operatorname { inv } ( N ) : = \{ x \in N : \varphi ( t , x ) \in \text { Nfor all } t \in R \}$ ; confidence 0.693

31. b12046025.png ; $H = C _ { G } ( x )$ ; confidence 0.693

32. r13008022.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in C ^ { n }$ ; confidence 0.693

33. a130040404.png ; $P _ { SD } K$ ; confidence 0.693

34. j13004092.png ; $\alpha _ { 2 } , 2 = 1$ ; confidence 0.693

35. t130140177.png ; $Z ^ { ( l _ { C } ) }$ ; confidence 0.693

36. l06105073.png ; $F ( E ) = \{ t \in T : \text { there is an } \square \omega \in \Omega \square \text { such that } \square ( \omega , t ) \in F \}$ ; confidence 0.693

37. s12025045.png ; $( a , b ) = ( - \infty , \infty )$ ; confidence 0.693

38. a01193047.png ; $p \in M$ ; confidence 0.693

39. t120010135.png ; $S ( p )$ ; confidence 0.693

40. p07101010.png ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693

41. a13023030.png ; $f _ { 1 }$ ; confidence 0.693

42. i12005058.png ; $0 < \operatorname { liminf } _ { x \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) \leq \operatorname { limsup } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) < 1$ ; confidence 0.693

43. m1301907.png ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693

44. d034120331.png ; $A _ { F }$ ; confidence 0.693

45. o12005068.png ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693

46. m13014073.png ; $0 < r < \text { dist } ( x , \partial D )$ ; confidence 0.693

47. a130040372.png ; $F \subset G$ ; confidence 0.693

48. p120170114.png ; $C$ ; confidence 0.693

49. o13005062.png ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693

50. b12004047.png ; $\mu _ { f } ( \lambda ) = \mu \{ t \in \Omega : | f ( t ) | > \lambda \} = \mu _ { g } ( \lambda )$ ; confidence 0.693

51. a130180126.png ; $\pi _ { i } : \square ^ { n } U \rightarrow \square ^ { ( n - 1 ) } U$ ; confidence 0.693

52. s09067081.png ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { * } ) )$ ; confidence 0.693

53. a12026061.png ; $( a , a , \dots )$ ; confidence 0.693

54. z1300106.png ; $R = \operatorname { limsup } _ { N \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 0.692

55. i13001028.png ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692

56. d120020106.png ; $( LP )$ ; confidence 0.692

57. l05798033.png ; $\Gamma _ { f }$ ; confidence 0.692

58. g130030108.png ; $m \in Z$ ; confidence 0.692

59. t13005081.png ; $\sigma _ { \pi }$ ; confidence 0.692

60. t12006059.png ; $N < Z$ ; confidence 0.692

61. t120050109.png ; $\Sigma ^ { 2 }$ ; confidence 0.692

62. b110220202.png ; $m = ( i + 1 ) + 2$ ; confidence 0.692

63. e12021017.png ; $\sigma \in Sp ( E )$ ; confidence 0.692

64. m13014035.png ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692

65. c12030057.png ; $0 \rightarrow K \rightarrow T _ { n } \rightarrow O _ { n } \rightarrow 0$ ; confidence 0.692

66. s12027020.png ; $b _ { v , m } \in R$ ; confidence 0.692

67. b1301104.png ; $f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence 0.692

68. j13002048.png ; $P ( X = 0 ) \leq \frac { \operatorname { var } ( X ) } { \lambda }$ ; confidence 0.691

69. b11066084.png ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691

70. k13006055.png ; $F \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.691

71. a12005089.png ; $t$ ; confidence 0.691

72. s1305007.png ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691

73. l1202007.png ; $( i = 1 , \dots , m )$ ; confidence 0.691

74. a13007028.png ; $a = 2$ ; confidence 0.691

75. b12015086.png ; $\{ d \in D : d _ { S } = 0 \}$ ; confidence 0.691

76. a11058038.png ; $92$ ; confidence 0.691

77. r130070144.png ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691

78. d11022023.png ; $I = [ a , b ]$ ; confidence 0.691

79. a13006088.png ; $G _ { \Gamma }$ ; confidence 0.691

80. t120050102.png ; $i _ { 2 } = \ldots = i _ { r } = 1$ ; confidence 0.691

81. c12029015.png ; $\pi _ { 1 } ( F , e ) \rightarrow \pi _ { 1 } ( E , e )$ ; confidence 0.691

82. a12027078.png ; $r _ { P } ( a )$ ; confidence 0.691

83. n067520381.png ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { k } \geq - 1 , q _ { 1 } + \ldots + q _ { n } \geq 0 \}$ ; confidence 0.691

84. h04602034.png ; $\| P C \| _ { \infty } < 1$ ; confidence 0.691

85. a110610120.png ; $- \dot { k }$ ; confidence 0.691

86. a130040629.png ; $D S _ { F }$ ; confidence 0.691

87. c13007078.png ; $n - a$ ; confidence 0.691

88. e13007056.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691

89. a01212020.png ; $G _ { Q }$ ; confidence 0.691

90. q13005049.png ; $h _ { 1 } \circ h _ { 2 }$ ; confidence 0.691

91. b1204302.png ; $\therefore B \otimes B \rightarrow B$ ; confidence 0.690

92. o130010106.png ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690

93. d13008095.png ; $F _ { Z _ { 0 } } ( x , R ) =$ ; confidence 0.690

94. b12015041.png ; $E _ { P } ( d _ { 1 } ^ { * } ) = E _ { P } ( d _ { 2 } ^ { * } )$ ; confidence 0.690

95. a13029065.png ; $M ( Q )$ ; confidence 0.690

96. y1200405.png ; $\operatorname { lim } _ { j \rightarrow \infty } \int _ { \Omega } \varphi ( x , f j ( x ) ) d x =$ ; confidence 0.690

97. b13029079.png ; $i \neq s$ ; confidence 0.690

98. p13010085.png ; $P _ { 0 } f$ ; confidence 0.690

99. m130260109.png ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690

100. r13004072.png ; $\lambda _ { 2 } ( \Omega ) \nmid \lambda _ { 1 } ( \Omega )$ ; confidence 0.690

101. s13054050.png ; $\pi$ ; confidence 0.690

102. n066630101.png ; $a _ { i } > 1$ ; confidence 0.689

103. b13001054.png ; $v \in V ^ { * }$ ; confidence 0.689

104. a12007088.png ; $K _ { 3 }$ ; confidence 0.689

105. s120230124.png ; $V = E ( x _ { 1 } x _ { 1 } ^ { \prime } )$ ; confidence 0.689

106. a13022042.png ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689

107. g12007016.png ; $m = 0$ ; confidence 0.689

108. a13031049.png ; $Q _ { 1 }$ ; confidence 0.689

109. l120120197.png ; $( F / M ( t ) ) \cong G$ ; confidence 0.689

110. a130040466.png ; $D ( K )$ ; confidence 0.689

111. a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689

112. i130090155.png ; $\overline { Q } _ { p }$ ; confidence 0.689

113. e13004024.png ; $\Omega _ { \perp }$ ; confidence 0.689

114. l12004079.png ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689

115. a130040646.png ; $\operatorname { Th } _ { S _ { P } } \mathfrak { M } = \operatorname { Th } _ { S _ { P } } \mathfrak { N }$ ; confidence 0.689

116. i130090115.png ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689

117. n13005013.png ; $k = s \mu$ ; confidence 0.689

118. l05700099.png ; $+ 1 = f a$ ; confidence 0.688

119. s13062025.png ; $y ( . , \lambda )$ ; confidence 0.688

120. m13003020.png ; $\underline { \beta } ^ { ( l ) } = ( \beta _ { 0 } ^ { ( l ) } , \beta _ { 1 } ^ { ( l ) } , \ldots )$ ; confidence 0.688

121. d13021024.png ; $1 = 0$ ; confidence 0.688

122. m11011023.png ; $\Gamma ( 1 - \alpha _ { j } + s )$ ; confidence 0.688

123. v096900165.png ; $\zeta \mapsto T ( \zeta )$ ; confidence 0.688

124. w120090118.png ; $Z \lambda$ ; confidence 0.688

125. j12002075.png ; $\| A \| _ { 1 } = E [ A ^ { * } ]$ ; confidence 0.688

126. a13008085.png ; $13$ ; confidence 0.688

127. a012460175.png ; $f _ { j } ( x )$ ; confidence 0.688

128. a12012078.png ; $x _ { t } + c _ { t } = y _ { t }$ ; confidence 0.688

129. b01501011.png ; $\xi ^ { * } : X \rightarrow B$ ; confidence 0.688

130. l13010070.png ; $b ( x , t , \alpha ) t _ { + } ^ { n - 1 } + b ( x , - t , - \alpha ) t ^ { n - 1 }$ ; confidence 0.688

131. r13012013.png ; $x _ { 2 } \prec y _ { 2 }$ ; confidence 0.688

132. k05584075.png ; $10$ ; confidence 0.688

133. s13045078.png ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687

134. t13021038.png ; $r _ { y } = 0$ ; confidence 0.687

135. c02237058.png ; $[ L : K ]$ ; confidence 0.687

136. z13011027.png ; $G _ { N } ( x ) = \sum _ { i = 1 } ^ { N } 1 \{ f _ { i n } \geq x \}$ ; confidence 0.687

137. s13051061.png ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687

138. a12028065.png ; $\rho \in X *$ ; confidence 0.687

139. m13019027.png ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687

140. z13003037.png ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w )$ ; confidence 0.687

141. i0530307.png ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687

142. p13010053.png ; $H ^ { p } ( K , C ) = 0$ ; confidence 0.687

143. b015350258.png ; $A _ { t }$ ; confidence 0.687

144. c022780225.png ; $\overline { k }$ ; confidence 0.687

145. b1201307.png ; $\| f \| _ { p , G } ^ { p } = \int | f ( z ) | ^ { p } d A ( z ) < \infty$ ; confidence 0.687

146. b130200179.png ; $\Lambda ( h _ { i } ) \in Z \geq 0$ ; confidence 0.687

147. e1202307.png ; $F \subseteq R ^ { m }$ ; confidence 0.687

148. a12006020.png ; $u \in P ( x )$ ; confidence 0.687

149. b13007045.png ; $m | k$ ; confidence 0.687

150. w13017047.png ; $y _ { t + r } - \hat { y } _ { t , r } = \sum _ { j = 0 } ^ { r - 1 } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.687

151. l120100136.png ; $\| \rho \| _ { L } \propto ( R ) \leq L / m$ ; confidence 0.687

152. t13015022.png ; $( C ( T ) ) \approx Z$ ; confidence 0.687

153. b12049054.png ; $\{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.687

154. l13010016.png ; $\hat { f } _ { p } : = \frac { \partial \hat { f } } { \partial p }$ ; confidence 0.686

155. t13013013.png ; $\Lambda ^ { o p }$ ; confidence 0.686

156. z13010054.png ; $\cup x$ ; confidence 0.686

157. a12025042.png ; $PG ( k - n - 2 , q )$ ; confidence 0.686

158. i12004039.png ; $\partial u / \partial \overline { z } _ { j } = f$ ; confidence 0.686

159. w13011021.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } a _ { n } g ( S ^ { n } y )$ ; confidence 0.686

160. c120170125.png ; $\mu \equiv \sum \rho _ { i } \delta _ { z _ { i } }$ ; confidence 0.686

161. k055840152.png ; $[ T x , T x ] \geq 0$ ; confidence 0.686

162. d13008061.png ; $a \in \partial B$ ; confidence 0.686

163. t120050121.png ; $Q _ { x } = T W _ { x } / \operatorname { Im } ( d f _ { x } )$ ; confidence 0.686

164. c12002067.png ; $x ^ { \prime } = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.686

165. t12006031.png ; $[ \alpha ] + = \operatorname { max } \{ 0 , \alpha \}$ ; confidence 0.686

166. a13027024.png ; $x _ { n } \in X _ { n } , Q _ { n } f \in Y _ { n } , T _ { n } = ( Q _ { n } T ) | x _ { n }$ ; confidence 0.686

167. d12018025.png ; $f \in A ( D )$ ; confidence 0.686

168. a01406099.png ; $\rho$ ; confidence 0.686

169. a01022093.png ; $Z$ ; confidence 0.686

170. b11085035.png ; $\chi _ { V }$ ; confidence 0.686

171. s12018044.png ; $\langle e _ { i } , e _ { j } \rangle = 0$ ; confidence 0.686

172. a130040618.png ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686

173. x12003020.png ; $x , \theta$ ; confidence 0.685

174. m130140114.png ; $l , m = 1 , \dots , n$ ; confidence 0.685

175. a011380163.png ; $-$ ; confidence 0.685

176. l1202001.png ; $\{ A _ { 1 } , \dots , A _ { n } + 1 \}$ ; confidence 0.685

177. b120420104.png ; $| v | , | w | \in G$ ; confidence 0.685

178. d12002045.png ; $= \operatorname { min } _ { x \in X } c ^ { T } x + u _ { 1 } ^ { T } ( A _ { 1 } x - b _ { 1 } ) =$ ; confidence 0.685

179. s13064036.png ; $G ( \alpha ) = \operatorname { exp } ( [ \operatorname { log } \operatorname { det } a ] _ { 0 } )$ ; confidence 0.685

180. c024520198.png ; $i \in S$ ; confidence 0.685

181. c0229403.png ; $\Omega _ { 1 }$ ; confidence 0.685

182. s12032045.png ; $S ( V )$ ; confidence 0.685

183. l120120132.png ; $K _ { p }$ ; confidence 0.685

184. p13014040.png ; $| f _ { \rho } ^ { C } ( x _ { 0 } ) - \frac { f + ( x _ { 0 } ) + f - ( x _ { 0 } ) } { 2 } | = O ( \rho \operatorname { ln } \rho ) \text { as } \rho \rightarrow 0$ ; confidence 0.684

185. w13017070.png ; $y _ { 1 } , \dots , y _ { T }$ ; confidence 0.684

186. b12031072.png ; $| 1 | p - 1 / 2 | \geq 1 / ( n + 1 )$ ; confidence 0.684

187. n067520288.png ; $K _ { \rho }$ ; confidence 0.684

188. b130010106.png ; $G ( Q ) = \operatorname { Sp } ( 2 n , F )$ ; confidence 0.684

189. p12014016.png ; $\lambda \theta ^ { n }$ ; confidence 0.684

190. l12016038.png ; $L _ { 3 / 2 } ^ { 2 }$ ; confidence 0.684

191. l12009010.png ; $[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { 4 } ( X ) , f ) Y$ ; confidence 0.684

192. b12029029.png ; $z \mapsto \varepsilon _ { z } ^ { C U } ( f )$ ; confidence 0.684

193. b12034039.png ; $B _ { N } ( D ^ { \circ } ) < \frac { 0.446663 } { n }$ ; confidence 0.684

194. s12032044.png ; $V = V _ { 0 }$ ; confidence 0.684

195. b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684

196. z13003070.png ; $\hat { f } ( w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { \infty } f ( x ) e ^ { i u x } d x$ ; confidence 0.684

197. q13002012.png ; $U | i \rangle$ ; confidence 0.684

198. b130200106.png ; $[ a , b ] = ( a | b ) x _ { \alpha }$ ; confidence 0.684

199. a01241090.png ; $V _ { i }$ ; confidence 0.684

200. d13013040.png ; $2 e g / \hbar = n$ ; confidence 0.684

201. b1302802.png ; $H * X = H * ( X , Z / p Z )$ ; confidence 0.684

202. i12005084.png ; $\operatorname { log } \alpha _ { n } = o ( n ^ { 1 / 3 } ) \text { as } n \rightarrow \infty$ ; confidence 0.683

203. m065010211.png ; $\lambda _ { y }$ ; confidence 0.683

204. b0163603.png ; $\left| \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right|$ ; confidence 0.683

205. s13014033.png ; $Q _ { \lambda } = \sum _ { T } x ^ { T } ,$ ; confidence 0.683

206. c120010199.png ; $\overline { a }$ ; confidence 0.683

207. a13024084.png ; $\beta$ ; confidence 0.683

208. s13050020.png ; $| A | ( n - l ) \leq | \nabla ( A ) | ( l + 1 )$ ; confidence 0.683

209. a110420127.png ; $D$ ; confidence 0.683

210. i12008047.png ; $m s$ ; confidence 0.683

211. k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683

212. s12028012.png ; $E _ { n } ( X ) = \operatorname { lim } _ { k } \pi _ { n + k } ( X \wedge E _ { k } ) = \pi _ { n } ^ { S } ( X \wedge E )$ ; confidence 0.683

213. a014060131.png ; $i = 1 , \dots , n - 1$ ; confidence 0.683

214. c12003046.png ; $J \subset I$ ; confidence 0.683

215. f12023028.png ; $\Omega ( M ) = \oplus _ { k \geq 0 } \Omega ^ { k } ( M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Gamma ( \bigwedge T ^ { * } M )$ ; confidence 0.683

216. a130040701.png ; $( X , x , v )$ ; confidence 0.683

217. c1301307.png ; $\dot { k } = K / L$ ; confidence 0.683

218. q13003054.png ; $H ( . )$ ; confidence 0.683

219. e12026080.png ; $F = \{ f d \nu : f \in S \}$ ; confidence 0.683

220. a11030043.png ; $\theta _ { Y } : ( T W , d ) \rightarrow C * \Omega Y$ ; confidence 0.683

221. e13003021.png ; $\tilde { M } \otimes C = \tilde { M }$ ; confidence 0.683

222. k13002083.png ; $F X , Y$ ; confidence 0.682

223. k055840161.png ; $U = ( A - z _ { 0 } ) ( A - z _ { 0 } ) ^ { - 1 }$ ; confidence 0.682

224. w1201106.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi } \alpha ( \frac { x + y } { 2 } , \xi ) u ( y ) d y d \xi$ ; confidence 0.682

225. c120080102.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.682

226. b01573021.png ; $1$ ; confidence 0.682

227. f12010099.png ; $\operatorname { PSL } ( 2 , Z )$ ; confidence 0.682

228. m130260202.png ; $0 \leq e \leq 1$ ; confidence 0.682

229. b13020051.png ; $[ h _ { i j } , h _ { m n } ] = 0$ ; confidence 0.682

230. e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682

231. s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682

232. d13011034.png ; $H ( 2 )$ ; confidence 0.682

233. b13001056.png ; $U _ { S } \cap V$ ; confidence 0.682

234. e12027012.png ; $\Lambda _ { m } ^ { \alpha , \beta }$ ; confidence 0.682

235. c02211061.png ; $\xi _ { 1 } , \dots , \xi _ { k - 1 }$ ; confidence 0.682

236. o13001021.png ; $r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }$ ; confidence 0.682

237. a12028074.png ; $x \in X$ ; confidence 0.682

238. q130050106.png ; $\rho = | \alpha - x | / | b - x |$ ; confidence 0.682

239. f12024035.png ; $\dot { x } ( t ) = f ( t , \int _ { t - h ( t ) } ^ { t } K ( t , s , x ( s ) ) d s )$ ; confidence 0.682

240. d12011026.png ; $( x _ { i j } )$ ; confidence 0.682

241. l13006069.png ; $W _ { 2 } ^ { * } = \frac { 1 } { D _ { 2 } ^ { * } } = \operatorname { min } _ { i } \sqrt { m _ { i } ^ { 2 } + p _ { 2 } ^ { 2 } }$ ; confidence 0.681

242. l12004032.png ; $u ( x _ { i } , t ^ { n + 1 } )$ ; confidence 0.681

243. a1200707.png ; $\rho ( A ( t ) ) \supset S _ { \theta _ { 0 } } = \{ z \in C : | \operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.681

244. h12001048.png ; $V ^ { 2 x + 1 }$ ; confidence 0.681

245. i130090207.png ; $k ^ { \prime } = k _ { \chi } ( \mu _ { p } )$ ; confidence 0.681

246. e035000114.png ; $H _ { \epsilon } ( C )$ ; confidence 0.681

247. m13022037.png ; $V _ { 2 } = \rho _ { 1 } \oplus \rho _ { 196883 } \oplus \rho _ { 21296876 }$ ; confidence 0.681

248. i13008020.png ; $L ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }$ ; confidence 0.681

249. c12004068.png ; $\Omega = \{ z : | z | < r \}$ ; confidence 0.681

250. s120040126.png ; $\pi T = 3111324$ ; confidence 0.681

251. a01292068.png ; $\psi ( x )$ ; confidence 0.681

252. a13025020.png ; $- [ \alpha _ { 1 } , D _ { 1 } ] = [ D _ { 1 } , \alpha _ { 1 } ] = D _ { 1 } \alpha _ { 1 }$ ; confidence 0.681

253. d12029071.png ; $q _ { N } = n ^ { k }$ ; confidence 0.681

254. b12034075.png ; $\operatorname { Re } f ( z ) > 0$ ; confidence 0.681

255. c120180165.png ; $g \in S ^ { 2 } E$ ; confidence 0.681

256. d12012054.png ; $-$ ; confidence 0.681

257. f12011019.png ; $S ^ { \prime } \hookrightarrow Q$ ; confidence 0.681

258. t13021031.png ; $R ( x _ { i } ; a _ { 0 } , \dots , a _ { N } ) = 0$ ; confidence 0.681

259. a011480112.png ; $p \nmid q$ ; confidence 0.681

260. c13016044.png ; $NL = NSPACE [ \operatorname { log } n ]$ ; confidence 0.681

261. e12023055.png ; $= \int _ { a } ^ { b } E ( L ) ( \sigma ^ { 2 } ( x ) ) z ( x ) d x$ ; confidence 0.681

262. b12052058.png ; $u , v \in R ^ { N }$ ; confidence 0.681

263. b13003064.png ; $H ^ { * }$ ; confidence 0.681

264. m1301305.png ; $\{ e _ { 1 } , \dots , e _ { \epsilon } \}$ ; confidence 0.681

265. h120020161.png ; $\mu _ { s }$ ; confidence 0.680

266. d12028057.png ; $D _ { m } = \{ z : \Phi ^ { m } ( z , z ) < 0 \}$ ; confidence 0.680

267. l057000188.png ; $\lambda x \cdot f ( x )$ ; confidence 0.680

268. p13014053.png ; $\psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma > 0$ ; confidence 0.680

269. b12005053.png ; $\tilde { f } \in H _ { b } ( E ^ { * * } )$ ; confidence 0.680

270. a130240397.png ; $M _ { E }$ ; confidence 0.680

271. l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680

272. b110220105.png ; $H _ { B } ^ { 2 } ( X / R , A ( j ) )$ ; confidence 0.680

273. c1201403.png ; $R / 2 \pi Z$ ; confidence 0.680

274. c13010037.png ; $\int ( f _ { 1 } + f _ { 2 } ) d m = ( C ) \int f _ { 1 } d m + ( C ) \int f _ { 2 } d m$ ; confidence 0.680

275. w13008048.png ; $\vec { V } _ { n } = \vec { V } _ { n } ( T _ { m } )$ ; confidence 0.680

276. m12003061.png ; $\tilde { \chi } ( x ) = [ x ^ { 2 } - 1 - a ] _ { - b } ^ { b }$ ; confidence 0.680

277. d11022061.png ; $y ^ { ( n ) } + p ( x ) y = 0$ ; confidence 0.680

278. j12001011.png ; $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ ; confidence 0.680

279. b13003042.png ; $\| x z \| ^ { \prime } \leq \| x \| ^ { \prime } \| z \| ^ { \prime }$ ; confidence 0.680

280. m13014041.png ; $r _ { 1 } + r _ { 2 } < R$ ; confidence 0.679

281. c12007080.png ; $Ab ( Z ( C ) , M )$ ; confidence 0.679

282. d12028083.png ; $A ( D ) ^ { * } \simeq A ( \overline { D } )$ ; confidence 0.679

283. f12011074.png ; $D ^ { n } + i R ^ { n }$ ; confidence 0.679

284. c1300404.png ; $\cong 0.915965594177219015 \ldots$ ; confidence 0.679

285. k13007016.png ; $| \hat { k } | < 1$ ; confidence 0.679

286. s12004013.png ; $a _ { \delta } = \prod _ { i < j } ( x _ { i } - x _ { j } )$ ; confidence 0.679

287. b13007035.png ; $a ^ { i } b ^ { k } a ^ { - j }$ ; confidence 0.679

288. x120010116.png ; $( R )$ ; confidence 0.679

289. q13002049.png ; $\hat { f } | x , 0 , w \rangle \rightarrow | x , f ( x ) , w \rangle$ ; confidence 0.679

290. v13005067.png ; $\sum _ { n \in Z } x ^ { n }$ ; confidence 0.679

291. b13020092.png ; $\omega h _ { i } = - h$ ; confidence 0.679

292. f120150160.png ; $\gamma ( T ) = \operatorname { inf } \frac { \| T _ { X } \| } { d ( x , N ( T ) ) }$ ; confidence 0.679

293. l12019018.png ; $X < 0$ ; confidence 0.679

294. b12031051.png ; $M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0$ ; confidence 0.679

295. k12004015.png ; $( L _ { D } )$ ; confidence 0.679

296. f12023039.png ; $D | _ { \Omega ^ { 0 } } ( M ) = 0$ ; confidence 0.679

297. c02211043.png ; $\partial ^ { 2 } p _ { i } ( \theta ) \nmid \partial \theta _ { j } \partial \theta _ { r }$ ; confidence 0.679

298. l12010078.png ; $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ ; confidence 0.678

299. g13001072.png ; $F = GF ( q )$ ; confidence 0.678

300. s13059023.png ; $L ( z ) \equiv 0$ ; confidence 0.678

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/47. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/47&oldid=44457