Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/46"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 46 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 46 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200506.png ; $S _ { 0 } ( z ) = S ( z )$ ; confidence 0.955
+
1. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060146.png ; $\int _ { 0 } ^ { \infty } x ^ { n } | q ( x ) | d x = o ( n ^ { b x } )$ ; confidence 0.714
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005064.png ; $A X _ { 1 } = X _ { 2 } A$ ; confidence 0.988
+
2. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110130/d1101301.png ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714
  
3. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200503.png ; $D = \{ z : | z | < 1 \}$ ; confidence 0.812
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005059.png ; $M ( H _ { \phi } ( E ) )$ ; confidence 0.714
  
4. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059180/l05918058.png ; $x \in \partial D$ ; confidence 0.808
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
  
5. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110060/h11006021.png ; $D \subset R ^ { d }$ ; confidence 0.658
+
5. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150143.png ; $S \in F ( X , Y )$ ; confidence 0.714
  
6. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015032.png ; $\pi ^ { - 1 } ( x ) = S$ ; confidence 0.964
+
6. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015740/b01574017.png ; $\operatorname { Lip } \alpha$ ; confidence 0.714
  
7. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150130.png ; $G \times G _ { X } S$ ; confidence 0.853
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180464.png ; $N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714
  
8. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l05705023.png ; $S \rightarrow S$ ; confidence 0.992
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029012.png ; $\varepsilon _ { X } ^ { A }$ ; confidence 0.714
  
9. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032780/d03278014.png ; $G \subset R ^ { 2 }$ ; confidence 0.999
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018045.png ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ \alpha , b ]$ ; confidence 0.713
  
10. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016013.png ; $m _ { i } = 2 ^ { i - 1 }$ ; confidence 0.999
+
10. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008064.png ; $+ \frac { R ( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in G , L } \rho _ { p } ^ { 2 } ) } { 2 ( 1 - \rho ) }$ ; confidence 0.713
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620355.png ; $\lambda _ { 0 } = 1$ ; confidence 0.995
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002036.png ; $8$ ; confidence 0.713
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017078.png ; $| F ( A , d ) | \geq k$ ; confidence 0.984
+
12. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010101.png ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713
  
13. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085260/s08526050.png ; $\overline { D } =$ ; confidence 0.360
+
13. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007017.png ; $F ( \alpha ) \in \sigma ( \alpha )$ ; confidence 0.713
  
14. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018057.png ; $M + M ^ { \perp } = E$ ; confidence 0.999
+
14. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013082.png ; $\hbar \nmid 2 e$ ; confidence 0.713
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018011.png ; $\{ E , K , \{ , \} \}$ ; confidence 0.330
+
15. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006025.png ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega WP$ ; confidence 0.713
  
16. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018059.png ; $\neq M \subset E$ ; confidence 0.939
+
16. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201405.png ; $0 < a _ { 0 } < \alpha _ { 1 }$ ; confidence 0.713
  
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044024.png ; $X \subset S ^ { N }$ ; confidence 0.900
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028051.png ; $\{ . . \}$ ; confidence 0.713
  
18. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045056.png ; $( X _ { 2 } , Y _ { 3 } )$ ; confidence 0.988
+
18. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049031.png ; $x ^ { 2 }$ ; confidence 0.713
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045048.png ; $( X _ { 2 } , Y _ { 2 } )$ ; confidence 0.987
+
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038021.png ; $\operatorname { ln } t _ { \rho } A$ ; confidence 0.713
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045049.png ; $( X _ { 3 } , Y _ { 3 } )$ ; confidence 0.977
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209048.png ; $x ^ { x } = 0$ ; confidence 0.713
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045057.png ; $( X _ { 3 } , Y _ { 2 } )$ ; confidence 0.976
+
21. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o13004020.png ; $M = R ^ { d }$ ; confidence 0.713
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045035.png ; $( x _ { 1 } , y _ { 1 } )$ ; confidence 0.997
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007071.png ; $Q ( x )$ ; confidence 0.713
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045036.png ; $( x _ { 2 } , y _ { 2 } )$ ; confidence 0.957
+
23. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001077.png ; $\square _ { A } ^ { A } c$ ; confidence 0.713
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045074.png ; $| R _ { i } - S _ { i } |$ ; confidence 0.867
+
24. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080198.png ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202008.png ; $\lambda _ { r } > 0$ ; confidence 0.950
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022090.png ; $a ( \xi ) = v$ ; confidence 0.713
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s1202203.png ; $C ^ { \infty } ( E )$ ; confidence 0.994
+
26. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020116.png ; $m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304806.png ; $\Gamma ( \beta )$ ; confidence 0.999
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043038.png ; $k [ x$ ; confidence 0.713
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202304.png ; $X _ { i } = \Gamma X$ ; confidence 0.450
+
28. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004021.png ; $\operatorname { Re } s > 1 , a \in C \backslash Z _ { 0 }$ ; confidence 0.713
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023053.png ; $B _ { \delta } ( . )$ ; confidence 0.487
+
29. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002052.png ; $M ^ { p }$ ; confidence 0.712
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202307.png ; $\Gamma \in O ( p )$ ; confidence 0.998
+
30. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001065.png ; $J ^ { 2 } = id$ ; confidence 0.712
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230128.png ; $S = X X ^ { \prime }$ ; confidence 0.841
+
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020097.png ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305106.png ; $S \subset Z ^ { 0 }$ ; confidence 0.946
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002040.png ; $( S )$ ; confidence 0.712
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051022.png ; $b _ { i } \in Z ^ { 0 }$ ; confidence 0.573
+
33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060140.png ; $E ( \mu )$ ; confidence 0.712
  
34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510143.png ; $\infty ( L _ { 2 } )$ ; confidence 0.992
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007073.png ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ]$ ; confidence 0.712
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510142.png ; $\infty ( L _ { 1 } )$ ; confidence 0.950
+
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201308.png ; $M = S _ { 1 } ^ { - 1 } S _ { 2 }$ ; confidence 0.712
  
36. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202408.png ; $H _ { x } ^ { S } ( ; G )$ ; confidence 0.304
+
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019018.png ; $\operatorname { lim } _ { r \rightarrow \infty } r t ( r + 1 , r ) = \infty$ ; confidence 0.712
  
37. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024041.png ; $X \subset S ^ { x }$ ; confidence 0.447
+
37. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040119.png ; $a , j$ ; confidence 0.712
  
38. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026060.png ; $\partial _ { s } +$ ; confidence 0.599
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019074.png ; $b _ { 3 }$ ; confidence 0.712
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202604.png ; $S ^ { \prime } ( R )$ ; confidence 0.918
+
39. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700074.png ; $M ^ { 0 } N \equiv N$ ; confidence 0.712
  
40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027013.png ; $R _ { n } = I - Q _ { n }$ ; confidence 0.632
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png ; $31$ ; confidence 0.712
  
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027035.png ; $f \in A _ { s } ^ { + }$ ; confidence 0.495
+
41. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017016.png ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j }$ ; confidence 0.712
  
42. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305906.png ; $\Lambda _ { p , q }$ ; confidence 0.365
+
42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028045.png ; $r g _ { 1 } \simeq g$ ; confidence 0.443
+
43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in R$ ; confidence 0.712
  
44. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062076.png ; $\mu = d \rho _ { 0 }$ ; confidence 0.980
+
44. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006018.png ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \}$ ; confidence 0.712
  
45. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620221.png ; $\mu _ { ac } ( A ) > 0$ ; confidence 0.973
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034051.png ; $c _ { 1 } \in H ^ { 2 } ( M ; Z )$ ; confidence 0.712
  
46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320116.png ; $U \subset C ^ { p }$ ; confidence 0.983
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290202.png ; $t _ { i } \leq t + 1 + 1$ ; confidence 0.712
  
47. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068510/o06851012.png ; $U \subset R ^ { p }$ ; confidence 0.938
+
47. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024045.png ; $\square ( E / Q )$ ; confidence 0.712
  
48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033045.png ; $P G _ { d } - 1 ( d , q )$ ; confidence 0.804
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016065.png ; $\mu _ { k }$ ; confidence 0.712
  
49. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203403.png ; $( L _ { + } , L _ { - } )$ ; confidence 0.993
+
49. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n1200104.png ; $( M , g ) = ( R ^ { 2 } \backslash \{ 0 \} , 2 / ( u ^ { 2 } + v ^ { 2 } ) d u d v )$ ; confidence 0.712
  
50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064060.png ; $L ^ { 2 } [ 0 , \tau ]$ ; confidence 0.997
+
50. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007023.png ; $1 ^ { 2 }$ ; confidence 0.712
  
51. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064064.png ; $I + W _ { \tau } ( k )$ ; confidence 0.768
+
51. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061190/l06119027.png ; $x \in R ^ { 3 }$ ; confidence 0.712
  
52. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065057.png ; $S _ { 0 } = S _ { \mu }$ ; confidence 0.919
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040128.png ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712
  
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066017.png ; $Q _ { n } ( z , \tau )$ ; confidence 0.654
+
53. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003029.png ; $o _ { A } : 1 \rightarrow L A$ ; confidence 0.712
  
54. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920309.png ; $U _ { y } \not \ni x$ ; confidence 0.309
+
54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003083.png ; $X ^ { * * * }$ ; confidence 0.711
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t1200206.png ; $( F ^ { Z } , B ^ { Z } )$ ; confidence 0.848
+
55. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m0622208.png ; $\Omega ^ { j }$ ; confidence 0.711
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004030.png ; $D y _ { n } ^ { * } ( x )$ ; confidence 0.322
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016046.png ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 }$ ; confidence 0.711
  
57. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005011.png ; $\xi \in \Lambda$ ; confidence 0.997
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160167.png ; $k j$ ; confidence 0.711
  
58. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998
+
58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005032.png ; $A = R .1 \oplus N$ ; confidence 0.711
  
59. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050134.png ; $\sigma _ { B } ( A )$ ; confidence 0.992
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240349.png ; $23$ ; confidence 0.711
  
60. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050163.png ; $( A - \lambda ) = 1$ ; confidence 1.000
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
  
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003034.png ; $K = ( 1 + k ) / ( 1 - k )$ ; confidence 0.934
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711
  
62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003011.png ; $\mu ( z ) ( d z / d z )$ ; confidence 0.990
+
62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
  
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007026.png ; $L _ { 2 } [ 0,2 \pi ]$ ; confidence 0.994
+
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202006.png ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711
  
64. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005038.png ; $\Sigma ^ { i } ( f )$ ; confidence 0.882
+
64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029037.png ; $( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.711
  
65. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448032.png ; $U \subset R ^ { x }$ ; confidence 0.466
+
65. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584035.png ; $K _ { + }$ ; confidence 0.711
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006038.png ; $\rho _ { N } ^ { TF }$ ; confidence 0.584
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028018.png ; $\pi ( B C ) \cong C$ ; confidence 0.711
  
67. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070158.png ; $\alpha _ { 1 } ( g )$ ; confidence 0.568
+
67. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520385.png ; $\Lambda \neq 0$ ; confidence 0.711
  
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007053.png ; $j _ { e } ( z ) = J ( z )$ ; confidence 0.873
+
68. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002031.png ; $\tilde { \varphi }$ ; confidence 0.711
  
69. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011011.png ; $- \otimes _ { B } T$ ; confidence 0.925
+
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028066.png ; $K \times L$ ; confidence 0.711
  
70. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014038.png ; $\tilde { D } _ { n }$ ; confidence 0.094
+
70. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036035.png ; $n ( x )$ ; confidence 0.711
  
71. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014082.png ; $q _ { B } ( v ) \geq 0$ ; confidence 0.584
+
71. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003019.png ; $f : I \times G \rightarrow R ^ { m }$ ; confidence 0.711
  
72. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013074.png ; $\iota w \equiv 0$ ; confidence 0.120
+
72. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016031.png ; $b _ { 1 } , \dots , b _ { t }$ ; confidence 0.710
  
73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013080.png ; $x , y \in R ^ { l + 1 }$ ; confidence 0.823
+
73. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e1201807.png ; $| a _ { n } | \rightarrow \infty$ ; confidence 0.710
  
74. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
+
74. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013019.png ; $L | F$ ; confidence 0.710
  
75. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015046.png ; $I _ { k + 1 } / I _ { k }$ ; confidence 0.296
+
75. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020215.png ; $I \backslash \cup I$ ; confidence 0.710
  
76. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015010.png ; $T _ { f } h : = P ( f h )$ ; confidence 0.733
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710
  
77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014011.png ; $\hat { \phi } ( j )$ ; confidence 0.408
+
77. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007038.png ; $L ^ { 2 } ( R ^ { n } )$ ; confidence 0.710
  
78. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408025.png ; $\Omega ( X ; A , B )$ ; confidence 0.999
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012091.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c t \leq y 0$ ; confidence 0.710
  
79. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408028.png ; $* \in A \subset X$ ; confidence 0.968
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034025.png ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710
  
80. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940801.png ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $22$ ; confidence 0.710
  
81. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021042.png ; $h = ( b - a ) \nmid N$ ; confidence 0.387
+
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
  
82. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005032.png ; $L _ { \infty } ( T )$ ; confidence 0.982
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042020.png ; $W \otimes V$ ; confidence 0.710
  
83. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v09604018.png ; $P ( Y < T ) < P ( Z < T )$ ; confidence 0.549
+
83. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006028.png ; $x \in X _ { F }$ ; confidence 0.710
  
84. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005054.png ; $( d f d x ) Y ( v , x ) 1$ ; confidence 0.425
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029094.png ; $1 _ { A } ( H _ { m } ^ { i } ( A ) ) = h _ { i }$ ; confidence 0.710
  
85. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020201.png ; $( p , q ) \subset F$ ; confidence 0.981
+
85. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047019.png ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710
  
86. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020119.png ; $( p ^ { * } , q ^ { * } )$ ; confidence 0.991
+
86. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043270/g043270124.png ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709
  
87. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020171.png ; $\{ X , Y , Z , p , q \}$ ; confidence 0.994
+
87. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019065.png ; $H = \{ u \in G : \omega ^ { \lambda } = \omega \}$ ; confidence 0.709
  
88. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002066.png ; $Q \subset M _ { k }$ ; confidence 0.991
+
88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045052.png ; $- 3 P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ]$ ; confidence 0.709
  
89. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007034.png ; $Z \rightarrow w$ ; confidence 0.930
+
89. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005015.png ; $h \in QS ( R )$ ; confidence 0.709
  
90. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v1200308.png ; $\mu \ll \lambda$ ; confidence 0.990
+
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006065.png ; $N = Z$ ; confidence 0.709
  
91. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011049.png ; $d \beta _ { j } / d t$ ; confidence 0.816
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030033.png ; $[ \theta ( d v _ { \alpha } ) ] = K _ { n _ { \alpha } } [ f _ { \alpha } ]$ ; confidence 0.709
  
92. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011069.png ; $\theta = 2 \pi$ ; confidence 0.999
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032024.png ; $E ( Y ) = \theta$ ; confidence 0.709
  
93. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900158.png ; $\zeta \in Z _ { N }$ ; confidence 0.450
+
93. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202208.png ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709
  
94. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691031.png ; $\mu ( x ) = \infty$ ; confidence 0.997
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024094.png ; $m$ ; confidence 0.709
  
95. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006022.png ; $( p - 1 ) p ^ { h } | 2 n$ ; confidence 0.917
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201509.png ; $( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024770/c02477031.png ; $x _ { i } ^ { x _ { i } }$ ; confidence 0.405
+
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003043.png ; $\operatorname { Ker } ( y ) = \{ x \in V ^ { \sigma } : Q _ { y } x = 0 \}$ ; confidence 0.709
  
97. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001026.png ; $L _ { n } = - z ^ { n } D$ ; confidence 0.364
+
97. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
  
98. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200605.png ; $x _ { 0 } \in R ^ { m }$ ; confidence 0.406
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
  
99. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006058.png ; $A \rightarrow R$ ; confidence 0.981
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709
  
100. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070103.png ; $\zeta \in C ^ { k }$ ; confidence 0.922
+
100. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007026.png ; $f \in \operatorname { Hol } ( \Delta , C )$ ; confidence 0.709
  
101. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007071.png ; $\sigma ( \xi , x )$ ; confidence 0.998
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005042.png ; $v , g ( w ) , g ^ { 2 } ( w )$ ; confidence 0.709
  
102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007052.png ; $L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.911
+
102. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007088.png ; $\sum _ { i = 1 } ^ { k } m _ { i } ^ { k } = \sum _ { i = 1 } ^ { k } n _ { i } ^ { k }$ ; confidence 0.709
  
103. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007064.png ; $L ^ { 2 } ( R ^ { 2 n } )$ ; confidence 0.941
+
103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002064.png ; $\hat { M } _ { k }$ ; confidence 0.709
  
104. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082480/r08248050.png ; $\alpha \in \Phi$ ; confidence 0.839
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046049.png ; $\chi ( h ) = \chi _ { e } ( h ) + \chi f ( h )$ ; confidence 0.709
  
105. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009030.png ; $E _ { s } \otimes r$ ; confidence 0.057
+
105. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007032.png ; $z \in \Delta$ ; confidence 0.709
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b110420103.png ; $\alpha ( x , \xi )$ ; confidence 0.748
+
106. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004057.png ; $x \xi : = x _ { 1 } \xi _ { 1 } + \ldots + x _ { n } \xi _ { n }$ ; confidence 0.708
  
107. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110169.png ; $T ^ { * } ( \Omega )$ ; confidence 0.986
+
107. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022530/c02253010.png ; $t = b$ ; confidence 0.708
  
108. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110191.png ; $X \mapsto G _ { X }$ ; confidence 0.913
+
108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008018.png ; $M ( \hat { G } )$ ; confidence 0.708
  
109. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110182.png ; $a _ { m } + a _ { m - 1 }$ ; confidence 0.424
+
109. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003017.png ; $P _ { 0 } | 0 \rangle = | 0 \rangle$ ; confidence 0.708
  
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w1201304.png ; $\sigma _ { c } ( T )$ ; confidence 0.952
+
110. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005020.png ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708
  
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013012.png ; $\sigma _ { d } ( T )$ ; confidence 0.987
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001068.png ; $F _ { 2 }$ ; confidence 0.708
  
112. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520167.png ; $\sigma _ { p } ( T )$ ; confidence 0.875
+
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201101.png ; $h : F \rightarrow F$ ; confidence 0.708
  
113. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008088.png ; $w \rightarrow 0$ ; confidence 0.986
+
113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028024.png ; $A x \in \hat { B }$ ; confidence 0.708
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080126.png ; $s _ { x } = - i T _ { x }$ ; confidence 0.296
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004074.png ; $s _ { \lambda } = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } ^ { \lambda } p _ { \mu }$ ; confidence 0.708
  
115. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080185.png ; $( v _ { i } , u _ { i } )$ ; confidence 0.797
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160171.png ; $x _ { j t }$ ; confidence 0.708
  
116. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017063.png ; $d \leq ( 5 l + 2 ) / 3$ ; confidence 0.991
+
116. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030105.png ; $x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$ ; confidence 0.708
  
117. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017065.png ; $\omega ^ { p } ( G )$ ; confidence 0.963
+
117. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001087.png ; $\omega ^ { c } + \omega ^ { d } = \omega ^ { c } ( 1 + \omega ^ { d - c } )$ ; confidence 0.708
  
118. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009090.png ; $( \iota ^ { - 1 } g )$ ; confidence 0.351
+
118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011023.png ; $X ( T _ { A } ) = \{ N _ { B } : N \otimes _ { B } T = 0 \}$ ; confidence 0.708
  
119. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018053.png ; $A \subset R ^ { 2 }$ ; confidence 0.993
+
119. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002053.png ; $H _ { d }$ ; confidence 0.708
  
120. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018047.png ; $t _ { 2 } \in D ^ { + }$ ; confidence 0.994
+
120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041041.png ; $\sum _ { j = n - k } ^ { n + 1 } b _ { n , j } P _ { j } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \beta _ { n + 1 , j } Q _ { j } ( x )$ ; confidence 0.708
  
121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018077.png ; $\xi ( t ) - \xi ( s )$ ; confidence 1.000
+
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070231.png ; $T \in \Re ( C )$ ; confidence 0.707
  
122. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006030.png ; $\{ \dot { y } , f \}$ ; confidence 0.741
+
122. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003020.png ; $a \in R ^ { + }$ ; confidence 0.707
  
123. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006050.png ; $\Sigma n _ { j } = n$ ; confidence 0.493
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240366.png ; $M _ { H } = Z _ { 1 } ^ { \prime } Z _ { 1 }$ ; confidence 0.707
  
124. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006020.png ; $C = C [ 0 , \infty )$ ; confidence 1.000
+
124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i1200805.png ; $H = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.707
  
125. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019049.png ; $\Omega A _ { W } = A$ ; confidence 0.802
+
125. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080104.png ; $a \in \partial D$ ; confidence 0.707
  
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021026.png ; $M N ^ { T } = N M ^ { T }$ ; confidence 0.998
+
126. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840104.png ; $K _ { C }$ ; confidence 0.707
  
127. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013066.png ; $W = \int H ^ { 2 } d A$ ; confidence 1.000
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300133.png ; $N$ ; confidence 0.707
  
128. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013036.png ; $W \geq 2 \pi ^ { 2 }$ ; confidence 0.994
+
128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001028.png ; $E \subset C ^ { x }$ ; confidence 0.707
  
129. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010117.png ; $\Phi _ { \sigma }$ ; confidence 0.981
+
129. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004050.png ; $\vec { x } \cdot \vec { v } > 0$ ; confidence 0.707
  
130. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001039.png ; $V \otimes _ { k } V$ ; confidence 0.727
+
130. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021043.png ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707
  
131. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001040.png ; $A \otimes _ { k } A$ ; confidence 0.950
+
131. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017068.png ; $\alpha = 0.6197$ ; confidence 0.707
  
132. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128042.png ; $Z \rightarrow X$ ; confidence 0.948
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001013.png ; $A \in R ^ { n \times n }$ ; confidence 0.707
  
133. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001072.png ; $\delta _ { k } ( n )$ ; confidence 0.893
+
133. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540283.png ; $K = R$ ; confidence 0.707
  
134. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001029.png ; $y ^ { \prime } ( n )$ ; confidence 0.881
+
134. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663040.png ; $\Omega \neq \emptyset$ ; confidence 0.707
  
135. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150537.png ; $\{ \emptyset \}$ ; confidence 0.900
+
135. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010062.png ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t$ ; confidence 0.706
  
136. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010020.png ; $( \neg \varphi )$ ; confidence 0.938
+
136. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009029.png ; $\Omega \subset R ^ { x }$ ; confidence 0.706
  
137. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010035.png ; $\emptyset \in z$ ; confidence 0.593
+
137. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300905.png ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706
  
138. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002021.png ; $E \subset ( 0,1 )$ ; confidence 0.998
+
138. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005011.png ; $u ( x ; 0 ) = \Phi ( x ) , u _ { m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0$ ; confidence 0.706
  
139. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002053.png ; $A D _ { + } < A D ^ { - }$ ; confidence 0.997
+
139. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019022.png ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.706
  
140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005047.png ; $\Omega _ { k } ( R )$ ; confidence 0.996
+
140. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008025.png ; $F = - \frac { k _ { B } T \operatorname { ln } Z } { N } , \quad Z = \operatorname { Tr } \operatorname { exp } ( - \frac { H } { k _ { B } T } )$ ; confidence 0.706
  
141. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007059.png ; $, \dots , g _ { x } )$ ; confidence 0.395
+
141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022019.png ; $u \in R ^ { N }$ ; confidence 0.706
  
142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007016.png ; $u = \pm x ^ { - 1 } g x$ ; confidence 1.000
+
142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005033.png ; $D = Dbx _ { f }$ ; confidence 0.706
  
143. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z1200204.png ; $F _ { 1 } = F _ { 2 } = 1$ ; confidence 0.996
+
143. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001057.png ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706
  
144. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021014.png ; $a _ { 1 } = 1 , a _ { 2 } = 2$ ; confidence 0.706
  
145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
+
145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005048.png ; $\operatorname { dim } ( \Gamma _ { x } \cap ( R ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706
  
146. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200106.png ; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997
+
146. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004016.png ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) | \Delta ^ { 2 } \alpha _ { k } | < \infty$ ; confidence 0.706
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013022.png ; $\phi ( x , t , z ) =$ ; confidence 0.998
+
147. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002019.png ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302309.png ; $f \in H$ ; confidence 0.705
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013092.png ; $( 2 \times 2 )$ ; confidence 1.000
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028050.png ; $D \times H \times \Omega ^ { \infty } X$ ; confidence 0.705
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
+
150. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008013.png ; $E [ T _ { p } ] = E [ W _ { p } ] + b _ { p }$ ; confidence 0.705
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.616
+
151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014069.png ; $M _ { i j } ^ { \beta } \in M _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008076.png ; $u _ { 0 } \in D ( A )$ ; confidence 0.705
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480
+
153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230129.png ; $[ K , L ]$ ; confidence 0.705
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240424.png ; $( 1 \times p )$ ; confidence 1.000
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027012.png ; $P _ { N } x \rightarrow x$ ; confidence 0.705
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240353.png ; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631
+
155. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008065.png ; $T _ { c } > 0$ ; confidence 0.705
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032013.png ; $E _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } P _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240333.png ; $n \times p _ { 1 }$ ; confidence 0.620
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l13009010.png ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240172.png ; $\gamma _ { j } = 0$ ; confidence 0.990
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040352.png ; $CPC$ ; confidence 0.705
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240498.png ; $X _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733
+
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001047.png ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024056.png ; $i = 1 , \ldots , I$ ; confidence 0.368
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050031.png ; $X \in F$ ; confidence 0.705
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698
+
161. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019012.png ; $\times \Gamma ( \frac { 1 } { 2 } - k - i \tau ) \int _ { 1 } ^ { \infty } P _ { i \tau } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau } ^ { ( k ) } - 1 / 2 ( x ) F ( \tau ) d \tau$ ; confidence 0.705
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240187.png ; $\| y - X b \| ^ { 2 }$ ; confidence 0.634
+
162. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007031.png ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240350.png ; $( n - r ) \times p$ ; confidence 0.969
+
163. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200303.png ; $K = \{ x _ { n } / n : n \in N \} \cup \{ 0 \}$ ; confidence 0.705
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016050.png ; $J ^ { \prime } \mapsto M ^ { \prime t } J ^ { \prime } M ^ { \prime }$ ; confidence 0.705
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240170.png ; $\gamma _ { i } = 0$ ; confidence 0.966
+
165. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100101.png ; $V = - V _ { - }$ ; confidence 0.705
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310133.png ; $A ^ { \infty } / M$ ; confidence 0.964
+
166. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584072.png ; $f , g \in L _ { 2 , r }$ ; confidence 0.705
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032020.png ; $E ( Y ) E ( N ) = E ( S _ { N } )$ ; confidence 0.705
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009044.png ; $- \frac { 1 + \alpha ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004018.png ; $\varphi \in Fm$ ; confidence 0.986
+
169. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070100.png ; $p _ { h } \in P ( k )$ ; confidence 0.705
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040516.png ; $c \in FFI _ { D } A$ ; confidence 0.275
+
170. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010083.png ; $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ ; confidence 0.704
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680168.png ; $x \in S$ ; confidence 0.704
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040296.png ; $A / \Theta \in Q$ ; confidence 0.302
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020940/c02094072.png ; $C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.704
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040189.png ; $2 t ^ { * } s ^ { * } s$ ; confidence 0.257
+
173. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005044.png ; $\int _ { X } ^ { \infty } d s$ ; confidence 0.704
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004024.png ; $f _ { i + 1 / 2 }$ ; confidence 0.704
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981
+
175. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100119.png ; $V _ { 0 } = \emptyset ; V _ { \alpha } = \cup _ { \beta < \alpha } P ( V _ { \beta + 1 } ) ; \text { and } V = \cup _ { \alpha } V _ { \alpha }$ ; confidence 0.704
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050131.png ; $R \times R ^ { m }$ ; confidence 0.926
+
176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140167.png ; $B f = \Psi _ { 2 } ^ { - 1 } P _ { + } \overline { \Lambda } P _ { + } \overline { \Psi } _ { \square } ^ { - 1 } f$ ; confidence 0.704
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050120.png ; $t \mapsto A ( t )$ ; confidence 0.997
+
177. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010131.png ; $Z \subseteq X \times X$ ; confidence 0.704
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005047.png ; $i = 1 , \ldots , k$ ; confidence 0.626
+
178. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200607.png ; $j = 1 , \ldots , m$ ; confidence 0.591
+
179. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663082.png ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200605.png ; $\Omega = R ^ { m }$ ; confidence 0.820
+
180. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230117.png ; $- ( - 1 ) ^ { ( q + k _ { 1 } ) k _ { 2 } } L ( K _ { 2 } ) \omega \wedge K _ { 1 } +$ ; confidence 0.704
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006075.png ; $u \in D ( S ^ { 2 } )$ ; confidence 0.819
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001080.png ; $G = SL ( 2 , Q )$ ; confidence 0.704
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070126.png ; $v \mapsto u ( v )$ ; confidence 0.651
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031019.png ; $M _ { sa }$ ; confidence 0.704
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007075.png ; $\eta \in ( 0,1 ]$ ; confidence 1.000
+
183. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680806.png ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z }$ ; confidence 0.704
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891
+
184. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005062.png ; $p$ ; confidence 0.704
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007071.png ; $\rho \in ( 0,1 ]$ ; confidence 1.000
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029072.png ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070112.png ; $L ( x , t , D _ { x } )$ ; confidence 0.956
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007082.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) - \frac { d } { d t } A ( t ) ^ { - 1 } | _ { t = 0 } A ( 0 ) u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.704
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008076.png ; $u _ { 0 } \in D ( A )$ ; confidence 0.705
+
187. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h0479402.png ; $g : Y \rightarrow X$ ; confidence 0.703
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300705.png ; $\sigma ( n ) < 2 n$ ; confidence 0.984
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005051.png ; $P ( \square ^ { n } E ) \rightarrow P ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300704.png ; $\sigma ( n ) > 2 n$ ; confidence 0.982
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021028.png ; $x , y \in R ^ { x }$ ; confidence 0.703
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300706.png ; $\sigma ( n ) = 2 n$ ; confidence 0.997
+
190. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007056.png ; $U \in SGL _ { n } ( Z G )$ ; confidence 0.703
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a1300803.png ; $f ( x ) \leq h ( x )$ ; confidence 1.000
+
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012071.png ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { 0 b s }$ ; confidence 0.703
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010072.png ; $\partial \phi$ ; confidence 0.942
+
192. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489060.png ; $K _ { Y }$ ; confidence 0.703
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011031.png ; $T ( 1 , n ) = 2 ^ { n }$ ; confidence 0.982
+
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070131.png ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012045.png ; $R _ { \pm } ^ { 2 m }$ ; confidence 0.288
+
194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009024.png ; $U _ { n } ( x , y )$ ; confidence 0.703
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012057.png ; $\lambda ( x , y )$ ; confidence 1.000
+
195. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k05545027.png ; $| x | \rightarrow \infty$ ; confidence 0.702
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032030.png ; $\lambda \leq 0$ ; confidence 0.616
+
196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008028.png ; $P = - i \vec { \nabla }$ ; confidence 0.702
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103209.png ; $i = 2 , \ldots , s$ ; confidence 0.404
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070202.png ; $\tau \in T$ ; confidence 0.702
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013027.png ; $\theta _ { n } - 1$ ; confidence 0.745
+
198. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601091.png ; $\tau ( W \cup W ^ { \prime } , M _ { 0 } ) = \tau ( W , M _ { 0 } ) + \tau ( W ^ { \prime } , M _ { 1 } )$ ; confidence 0.702
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016092.png ; $\alpha + \beta$ ; confidence 1.000
+
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040038.png ; $G \times \ell F$ ; confidence 0.702
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160136.png ; $r _ { i } ( X _ { i } )$ ; confidence 0.418
+
200. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305909.png ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016067.png ; $c _ { 1 } \lambda$ ; confidence 0.599
+
201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018062.png ; $\lambda \neq 0$ ; confidence 1.000
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030016.png ; $S ^ { * } S ^ { \prime } \in C$ ; confidence 0.702
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018055.png ; $\lambda \neq 1$ ; confidence 1.000
+
203. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050155.png ; $\alpha : = \pi ( A )$ ; confidence 0.702
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014011.png ; $d _ { 1 } ( x , y ) = r$ ; confidence 0.999
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200170.png ; $\alpha _ { i j } = 2$ ; confidence 0.702
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180167.png ; $i , j \in \omega$ ; confidence 0.889
+
205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007043.png ; $\| u \|$ ; confidence 0.702
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180192.png ; $V \subseteq C A$ ; confidence 0.621
+
206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001015.png ; $\hat { f }$ ; confidence 0.702
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018015.png ; $\tau \in V o c$ ; confidence 0.532
+
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018010.png ; $E W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180142.png ; $< 2 ^ { ( n ^ { 2 } ) }$ ; confidence 0.432
+
208. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002053.png ; $( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020077.png ; $T \in L _ { 0 } ( X )$ ; confidence 0.997
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108106.png ; $D _ { t }$ ; confidence 0.702
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020029.png ; $p ( t ) = t ^ { N } - 1$ ; confidence 0.937
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028021.png ; $z \mapsto z ^ { \gamma }$ ; confidence 0.701
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021078.png ; $j = 1 , \ldots , n$ ; confidence 0.539
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830354.png ; $r = S$ ; confidence 0.701
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020079.png ; $S \in L _ { 0 } ( X )$ ; confidence 0.605
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201605.png ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B ($ ; confidence 0.701
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022029.png ; $\tilde { y } f = j$ ; confidence 0.283
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004023.png ; $x _ { 0 }$ ; confidence 0.701
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022024.png ; $g \tilde { h } = h$ ; confidence 0.342
+
214. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021025.png ; $\lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }$ ; confidence 0.701
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023029.png ; $1 = 1,2 , \ldots$ ; confidence 0.354
+
215. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010064.png ; $( G , c )$ ; confidence 0.701
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027093.png ; $W ( \rho ) = \pm 1$ ; confidence 1.000
+
216. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001041.png ; $R _ { V }$ ; confidence 0.700
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028071.png ; $\rho \otimes x$ ; confidence 0.627
+
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021083.png ; $= \frac { ( m _ { j } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { j } } + \ldots$ ; confidence 0.700
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021052.png ; $L = L ( \lambda )$ ; confidence 0.993
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203204.png ; $\| . \| p$ ; confidence 0.700
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021091.png ; $\alpha \in \Pi$ ; confidence 0.993
+
219. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q120050101.png ; $( x ^ { k } ) _ { k \in N }$ ; confidence 0.700
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066064.png ; $L _ { 2 } ( R ^ { x } )$ ; confidence 0.312
+
220. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s1203205.png ; $p ( x ) = 0$ ; confidence 0.700
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130180/b13018019.png ; $0 < \epsilon < 1$ ; confidence 0.997
+
221. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540032.png ; $2 ^ { m - 1 }$ ; confidence 0.700
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002041.png ; $B \in M _ { n } ( R )$ ; confidence 0.611
+
222. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005043.png ; $i ^ { \alpha }$ ; confidence 0.700
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002040.png ; $f = F ^ { \prime }$ ; confidence 0.999
+
223. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003028.png ; $D \subseteq ca ( \Omega , F )$ ; confidence 0.700
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200305.png ; $f \in L ^ { 2 } ( R )$ ; confidence 0.875
+
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210113.png ; $\operatorname { Ext } _ { a } ^ { i } ( M , N ) = \operatorname { Ker } \delta _ { i + 1 } ^ { \prime } / \operatorname { Im } \delta _ { i } ^ { \prime }$ ; confidence 0.700
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003029.png ; $g \in L ^ { 2 } ( R )$ ; confidence 0.779
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406079.png ; $B ^ { * }$ ; confidence 0.700
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003037.png ; $x z = \{ x y z \} / 2$ ; confidence 0.987
+
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009025.png ; $F ^ { \mu \nu , \nu } = F ^ { \mu \nu } , , \nu = S ^ { \mu }$ ; confidence 0.700
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206014.png ; $I _ { \uparrow }$ ; confidence 0.204
+
227. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001024.png ; $\operatorname { exp } ( - \sum _ { p \leq x } \frac { 1 } { p } \cdot ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i \alpha _ { 0 } } ) ) )$ ; confidence 0.700
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040202.png ; $( 1 < p < \infty )$ ; confidence 1.000
+
228. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300606.png ; $\tau \in H$ ; confidence 0.700
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004022.png ; $e \wedge | x | = 0$ ; confidence 0.908
+
229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301404.png ; $x = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005052.png ; $f \in H _ { b } ( E )$ ; confidence 0.967
+
230. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180322.png ; $W ( g ) = R ( g ) - g A ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.700
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007031.png ; $| m | , | n | \neq 1$ ; confidence 0.997
+
231. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050102.png ; $O \rceil$ ; confidence 0.700
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007044.png ; $a ^ { - 1 } b ^ { k } a$ ; confidence 0.760
+
232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202007.png ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007046.png ; $a b ^ { k } a ^ { - 1 }$ ; confidence 0.419
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080112.png ; $\| \varphi \| _ { S } : = \| M$ ; confidence 0.700
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009079.png ; $f \in B ( \beta )$ ; confidence 0.991
+
234. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011078.png ; $v _ { i } = \frac { D u _ { i } } { D t }$ ; confidence 0.700
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956
+
235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006064.png ; $S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009072.png ; $g ( z ) \in S ^ { * }$ ; confidence 0.551
+
236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054033.png ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022025.png ; $H _ { B } ^ { i } ( X )$ ; confidence 0.557
+
237. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005043.png ; $\partial ^ { - 1 } x$ ; confidence 0.699
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022031.png ; $\Lambda ( M , s )$ ; confidence 0.996
+
238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016034.png ; $\operatorname { Re } ( E ) \nabla ^ { 2 } E = \nabla E \cdot \nabla E$ ; confidence 0.699
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022019.png ; $H _ { l } ^ { i } ( X )$ ; confidence 0.412
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005039.png ; $\phi : A \rightarrow C$ ; confidence 0.699
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220102.png ; $( X _ { C } , A ( j ) )$ ; confidence 0.951
+
240. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w \prime } ) } , \quad z \in C$ ; confidence 0.699
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022017.png ; $0 \leq i \leq 2 n$ ; confidence 0.983
+
241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120260/m12026013.png ; $f _ { j } = \sum _ { i } c _ { i } g _ { j }$ ; confidence 0.699
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b1102207.png ; $i = 0,1 , \ldots$ ; confidence 0.577
+
242. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200303.png ; $L : A \rightarrow \operatorname { Fun } _ { A } ( G ) \otimes A$ ; confidence 0.699
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009020.png ; $H ^ { 1 } ( R _ { X } )$ ; confidence 0.622
+
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040115.png ; $X ^ { * }$ ; confidence 0.699
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013036.png ; $C \backslash G$ ; confidence 0.537
+
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005091.png ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130118.png ; $A _ { y , \alpha }$ ; confidence 0.654
+
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007035.png ; $\{ H ^ { n } ( C , - ) : n \geq 0 \}$ ; confidence 0.699
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013024.png ; $f \in L ^ { p } ( G )$ ; confidence 0.995
+
246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150151.png ; $p _ { i } \neq 1 / 2$ ; confidence 0.985
+
247. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302803.png ; $A x < b$ ; confidence 0.699
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b1201503.png ; $( \Omega , A , P )$ ; confidence 0.997
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263080.png ; $\| x \|$ ; confidence 0.699
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016062.png ; $\Delta ^ { x - 1 }$ ; confidence 0.542
+
249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021065.png ; $( \frac { \partial } { \partial \lambda } ) ^ { ( n _ { i } - 1 ) } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) ^ { n _ { i } - 1 } z ^ { \lambda _ { i } } +$ ; confidence 0.699
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016028.png ; $p ^ { \prime } = p$ ; confidence 0.998
+
250. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745207.png ; $B \subset P$ ; confidence 0.699
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016041.png ; $f ^ { \prime } = f$ ; confidence 1.000
+
251. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019014.png ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016059.png ; $x _ { i } + x _ { i k }$ ; confidence 0.450
+
252. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700087.png ; $F c _ { k _ { 1 } } c _ { k _ { 2 } } = c _ { f } ( k _ { 1 } , k _ { 2 } )$ ; confidence 0.698
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016029.png ; $q ^ { \prime } = q$ ; confidence 0.911
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c02285052.png ; $d ( . , . )$ ; confidence 0.698
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120106.png ; $f \notin A ^ { * }$ ; confidence 0.932
+
254. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011095.png ; $\operatorname { exp } ( i \pi \langle S x , x \rangle )$ ; confidence 0.698
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022031.png ; $Q ( f ) = M _ { f } - f$ ; confidence 0.976
+
255. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023056.png ; $v _ { j } \in \Sigma$ ; confidence 0.698
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016072.png ; $f ( x ) \neq f ( y )$ ; confidence 1.000
+
256. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001031.png ; $F _ { q ^ { i } }$ ; confidence 0.698
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027077.png ; $h \downarrow 0$ ; confidence 0.167
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022036.png ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027028.png ; $h \nmid E X _ { 1 }$ ; confidence 0.408
+
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009011.png ; $\nabla x$ ; confidence 0.698
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212032.png ; $\overline { C }$ ; confidence 0.574
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002028.png ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x$ ; confidence 0.698
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203001.png ; $\eta \in R ^ { N }$ ; confidence 0.999
+
260. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202501.png ; $U \subseteq R ^ { x }$ ; confidence 0.698
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030077.png ; $L ^ { 2 } ( R ^ { N } )$ ; confidence 0.997
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031014.png ; $L ^ { p } ( R ^ { n } )$ ; confidence 0.485
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051039.png ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.698
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031075.png ; $f \in C ( T ^ { n } )$ ; confidence 0.543
+
263. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004056.png ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031035.png ; $( 1 / p , \delta )$ ; confidence 0.996
+
264. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005083.png ; $\overline { C } _ { + }$ ; confidence 0.698
  
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031090.png ; $\{ \phi _ { k } \}$ ; confidence 0.902
+
265. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008068.png ; $D ( \alpha , R )$ ; confidence 0.698
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032071.png ; $\alpha _ { 1 } = 1$ ; confidence 0.528
+
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051086.png ; $\sigma ( u ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698
  
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032077.png ; $\alpha _ { 2 } = 1$ ; confidence 0.636
+
267. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010110.png ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698
  
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036023.png ; $p _ { z } + d p _ { z }$ ; confidence 0.997
+
268. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170113.png ; $( A + i B ) x = 0 \Leftrightarrow A x = 0 = B x$ ; confidence 0.698
  
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036019.png ; $p _ { x } + d p _ { x }$ ; confidence 0.718
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002012.png ; $\Gamma _ { n } ^ { - 1 } ( t ) = 2 t - \Gamma _ { n } ( t ) + o ( n ^ { - 1 / 2 } )$ ; confidence 0.698
  
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036021.png ; $p _ { y } + d p _ { y }$ ; confidence 0.986
+
270. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074020/p07402071.png ; $1 , \ldots , r$ ; confidence 0.698
  
271. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301906.png ; $F ( x ) = f ( M x )$ ; confidence 1.000
+
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010162.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k } \rangle ) ^ { n } }$ ; confidence 0.698
  
272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914
+
272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026085.png ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697
  
273. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037086.png ; $k \leq n ^ { 1 / 4 }$ ; confidence 0.979
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m06533023.png ; $A _ { 1 } , \dots , A _ { k }$ ; confidence 0.697
  
274. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200127.png ; $G _ { i } < \infty$ ; confidence 0.952
+
274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007012.png ; $F ( a ) \neq 0$ ; confidence 0.697
  
275. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200204.png ; $O _ { s } + 2,2 ( R )$ ; confidence 0.498
+
275. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022053.png ; $\int _ { \alpha } ^ { \phi } ( p y ^ { \prime 2 } - q y ^ { 2 } )$ ; confidence 0.697
  
276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040082.png ; $C ^ { - } = - C ^ { + }$ ; confidence 0.837
+
276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024061.png ; $\psi : J _ { t } \rightarrow R ^ { x }$ ; confidence 0.697
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400101.png ; $G \times ^ { R } V$ ; confidence 0.492
+
277. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202309.png ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } ) , \quad x \in H$ ; confidence 0.697
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040038.png ; $G \times \ell F$ ; confidence 0.702
+
278. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003050.png ; $b \in D$ ; confidence 0.697
  
279. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021038.png ; $\gamma _ { 112 }$ ; confidence 0.062
+
279. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020017.png ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697
  
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420121.png ; $\square _ { H } M$ ; confidence 0.811
+
280. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840297.png ; $\tilde { K } \supset K$ ; confidence 0.697
  
281. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043082.png ; $U _ { q } ( n _ { + } )$ ; confidence 0.871
+
281. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020011.png ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430165.png ; $\partial _ { q }$ ; confidence 0.551
+
282. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000211.png ; $( \lambda x , x x ) ( \lambda x , x x )$ ; confidence 0.697
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022049.png ; $W _ { p } ^ { m } ( T )$ ; confidence 0.974
+
283. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002014.png ; $e ^ { \beta z }$ ; confidence 0.697
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022042.png ; $l = 1 , \ldots , N$ ; confidence 0.539
+
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026020.png ; $F = F ( \mu ) = \{ P ( \theta , \mu ) : \theta \in \Theta ( \mu ) \}$ ; confidence 0.697
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022039.png ; $\gamma _ { l } = m$ ; confidence 0.995
+
285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005065.png ; $GL ( A )$ ; confidence 0.697
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022063.png ; $\rho = \rho ( T )$ ; confidence 1.000
+
286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008044.png ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H$ ; confidence 0.981
+
287. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070117.png ; $\epsilon \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.697
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025018.png ; $\omega = \pi / 6$ ; confidence 0.943
+
288. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012037.png ; $C _ { 36 }$ ; confidence 0.697
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025046.png ; $C ^ { \prime } C A$ ; confidence 0.619
+
289. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004049.png ; $P _ { L } ( v , z ) = \sum _ { i = m } ^ { N } P _ { i } ( v ) z ^ { i }$ ; confidence 0.697
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025047.png ; $C ^ { \prime } A B$ ; confidence 0.657
+
290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008065.png ; $E ( a , R )$ ; confidence 0.696
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025041.png ; $C ^ { \prime } B C$ ; confidence 0.408
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022068.png ; $C \times ( C \backslash ( - \infty , 0 ) )$ ; confidence 0.696
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049030.png ; $A , B \in \Sigma$ ; confidence 1.000
+
292. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008064.png ; $C _ { 0 } ( G )$ ; confidence 0.696
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026033.png ; $[ f , \Omega , y ]$ ; confidence 0.997
+
293. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l0570209.png ; $F _ { N } + 1 \rightarrow F _ { N }$ ; confidence 0.696
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026098.png ; $H _ { N } ( S ^ { x } )$ ; confidence 0.237
+
294. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520468.png ; $\vec { A }$ ; confidence 0.696
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026092.png ; $[ f , \Omega , 0 ]$ ; confidence 0.997
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004011.png ; $( 40 \lambda \varphi _ { 1 } )$ ; confidence 0.696
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027057.png ; $K _ { I } ^ { S } ( X )$ ; confidence 0.288
+
296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001040.png ; $\operatorname { per } ( A ) \geq \operatorname { per } ( B ) \operatorname { per } ( D ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }$ ; confidence 0.696
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028017.png ; $x _ { x } \in G ( n )$ ; confidence 0.537
+
297. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302805.png ; $A x < b + \varepsilon$ ; confidence 0.696
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051084.png ; $H _ { x } - 1 _ { d } d$ ; confidence 0.264
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z }$ ; confidence 0.696
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058047.png ; $\partial f ( x )$ ; confidence 0.999
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020081.png ; $\{ S ^ { \lambda } : \lambda \text { a partition of } n$ ; confidence 0.696
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290194.png ; $H _ { m } ^ { i } ( R )$ ; confidence 0.316
+
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011030.png ; $f ( T ^ { x } x )$ ; confidence 0.696

Revision as of 00:10, 13 February 2020

List

1. i130060146.png ; $\int _ { 0 } ^ { \infty } x ^ { n } | q ( x ) | d x = o ( n ^ { b x } )$ ; confidence 0.714

2. d1101301.png ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714

3. b12005059.png ; $M ( H _ { \phi } ( E ) )$ ; confidence 0.714

4. b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714

5. f120150143.png ; $S \in F ( X , Y )$ ; confidence 0.714

6. b01574017.png ; $\operatorname { Lip } \alpha$ ; confidence 0.714

7. c120180464.png ; $N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714

8. b12029012.png ; $\varepsilon _ { X } ^ { A }$ ; confidence 0.714

9. a12018045.png ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ \alpha , b ]$ ; confidence 0.713

10. q12008064.png ; $+ \frac { R ( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in G , L } \rho _ { p } ^ { 2 } ) } { 2 ( 1 - \rho ) }$ ; confidence 0.713

11. a12002036.png ; $8$ ; confidence 0.713

12. c120010101.png ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713

13. g13007017.png ; $F ( \alpha ) \in \sigma ( \alpha )$ ; confidence 0.713

14. d13013082.png ; $\hbar \nmid 2 e$ ; confidence 0.713

15. w13006025.png ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega WP$ ; confidence 0.713

16. p1201405.png ; $0 < a _ { 0 } < \alpha _ { 1 }$ ; confidence 0.713

17. a12028051.png ; $\{ . . \}$ ; confidence 0.713

18. f04049031.png ; $x ^ { 2 }$ ; confidence 0.713

19. s13038021.png ; $\operatorname { ln } t _ { \rho } A$ ; confidence 0.713

20. a01209048.png ; $x ^ { x } = 0$ ; confidence 0.713

21. o13004020.png ; $M = R ^ { d }$ ; confidence 0.713

22. a13007071.png ; $Q ( x )$ ; confidence 0.713

23. y12001077.png ; $\square _ { A } ^ { A } c$ ; confidence 0.713

24. f120080198.png ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713

25. b12022090.png ; $a ( \xi ) = v$ ; confidence 0.713

26. n120020116.png ; $m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713

27. b12043038.png ; $k [ x$ ; confidence 0.713

28. c13004021.png ; $\operatorname { Re } s > 1 , a \in C \backslash Z _ { 0 }$ ; confidence 0.713

29. j12002052.png ; $M ^ { p }$ ; confidence 0.712

30. q12001065.png ; $J ^ { 2 } = id$ ; confidence 0.712

31. t12020097.png ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712

32. d12002040.png ; $( S )$ ; confidence 0.712

33. o130060140.png ; $E ( \mu )$ ; confidence 0.712

34. a12007073.png ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ]$ ; confidence 0.712

35. t1201308.png ; $M = S _ { 1 } ^ { - 1 } S _ { 2 }$ ; confidence 0.712

36. t12019018.png ; $\operatorname { lim } _ { r \rightarrow \infty } r t ( r + 1 , r ) = \infty$ ; confidence 0.712

37. j130040119.png ; $a , j$ ; confidence 0.712

38. e12019074.png ; $b _ { 3 }$ ; confidence 0.712

39. l05700074.png ; $M ^ { 0 } N \equiv N$ ; confidence 0.712

40. a01021033.png ; $31$ ; confidence 0.712

41. w13017016.png ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j }$ ; confidence 0.712

42. w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712

43. d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in R$ ; confidence 0.712

44. d03006018.png ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \}$ ; confidence 0.712

45. s12034051.png ; $c _ { 1 } \in H ^ { 2 } ( M ; Z )$ ; confidence 0.712

46. b130290202.png ; $t _ { i } \leq t + 1 + 1$ ; confidence 0.712

47. e12024045.png ; $\square ( E / Q )$ ; confidence 0.712

48. a12016065.png ; $\mu _ { k }$ ; confidence 0.712

49. n1200104.png ; $( M , g ) = ( R ^ { 2 } \backslash \{ 0 \} , 2 / ( u ^ { 2 } + v ^ { 2 } ) d u d v )$ ; confidence 0.712

50. k13007023.png ; $1 ^ { 2 }$ ; confidence 0.712

51. l06119027.png ; $x \in R ^ { 3 }$ ; confidence 0.712

52. b120040128.png ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712

53. n12003029.png ; $o _ { A } : 1 \rightarrow L A$ ; confidence 0.712

54. w12003083.png ; $X ^ { * * * }$ ; confidence 0.711

55. m0622208.png ; $\Omega ^ { j }$ ; confidence 0.711

56. b12016046.png ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 }$ ; confidence 0.711

57. a120160167.png ; $k j$ ; confidence 0.711

58. w12005032.png ; $A = R .1 \oplus N$ ; confidence 0.711

59. a130240349.png ; $23$ ; confidence 0.711

60. a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711

61. a13024039.png ; $p \times p$ ; confidence 0.711

62. d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711

63. l1202006.png ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711

64. d12029037.png ; $( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.711

65. k05584035.png ; $K _ { + }$ ; confidence 0.711

66. c12028018.png ; $\pi ( B C ) \cong C$ ; confidence 0.711

67. n067520385.png ; $\Lambda \neq 0$ ; confidence 0.711

68. j12002031.png ; $\tilde { \varphi }$ ; confidence 0.711

69. c12028066.png ; $K \times L$ ; confidence 0.711

70. s13036035.png ; $n ( x )$ ; confidence 0.711

71. c12003019.png ; $f : I \times G \rightarrow R ^ { m }$ ; confidence 0.711

72. f11016031.png ; $b _ { 1 } , \dots , b _ { t }$ ; confidence 0.710

73. e1201807.png ; $| a _ { n } | \rightarrow \infty$ ; confidence 0.710

74. s13013019.png ; $L | F$ ; confidence 0.710

75. j120020215.png ; $I \backslash \cup I$ ; confidence 0.710

76. a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710

77. c02007038.png ; $L ^ { 2 } ( R ^ { n } )$ ; confidence 0.710

78. a12012091.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c t \leq y 0$ ; confidence 0.710

79. b12034025.png ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710

80. a130240362.png ; $22$ ; confidence 0.710

81. t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710

82. b12042020.png ; $W \otimes V$ ; confidence 0.710

83. i12006028.png ; $x \in X _ { F }$ ; confidence 0.710

84. b13029094.png ; $1 _ { A } ( H _ { m } ^ { i } ( A ) ) = h _ { i }$ ; confidence 0.710

85. s13047019.png ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710

86. g043270124.png ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709

87. f12019065.png ; $H = \{ u \in G : \omega ^ { \lambda } = \omega \}$ ; confidence 0.709

88. s13045052.png ; $- 3 P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ]$ ; confidence 0.709

89. q13005015.png ; $h \in QS ( R )$ ; confidence 0.709

90. t12006065.png ; $N = Z$ ; confidence 0.709

91. a11030033.png ; $[ \theta ( d v _ { \alpha } ) ] = K _ { n _ { \alpha } } [ f _ { \alpha } ]$ ; confidence 0.709

92. a13032024.png ; $E ( Y ) = \theta$ ; confidence 0.709

93. c1202208.png ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709

94. a13024094.png ; $m$ ; confidence 0.709

95. a1201509.png ; $( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709

96. b13003043.png ; $\operatorname { Ker } ( y ) = \{ x \in V ^ { \sigma } : Q _ { y } x = 0 \}$ ; confidence 0.709

97. l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709

98. s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709

99. a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709

100. j13007026.png ; $f \in \operatorname { Hol } ( \Delta , C )$ ; confidence 0.709

101. e12005042.png ; $v , g ( w ) , g ^ { 2 } ( w )$ ; confidence 0.709

102. e13007088.png ; $\sum _ { i = 1 } ^ { k } m _ { i } ^ { k } = \sum _ { i = 1 } ^ { k } n _ { i } ^ { k }$ ; confidence 0.709

103. m13002064.png ; $\hat { M } _ { k }$ ; confidence 0.709

104. b12046049.png ; $\chi ( h ) = \chi _ { e } ( h ) + \chi f ( h )$ ; confidence 0.709

105. j13007032.png ; $z \in \Delta$ ; confidence 0.709

106. g12004057.png ; $x \xi : = x _ { 1 } \xi _ { 1 } + \ldots + x _ { n } \xi _ { n }$ ; confidence 0.708

107. c02253010.png ; $t = b$ ; confidence 0.708

108. f12008018.png ; $M ( \hat { G } )$ ; confidence 0.708

109. q13003017.png ; $P _ { 0 } | 0 \rangle = | 0 \rangle$ ; confidence 0.708

110. i13005020.png ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708

111. f13001068.png ; $F _ { 2 }$ ; confidence 0.708

112. m1201101.png ; $h : F \rightarrow F$ ; confidence 0.708

113. f13028024.png ; $A x \in \hat { B }$ ; confidence 0.708

114. s12004074.png ; $s _ { \lambda } = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } ^ { \lambda } p _ { \mu }$ ; confidence 0.708

115. a120160171.png ; $x _ { j t }$ ; confidence 0.708

116. w120030105.png ; $x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$ ; confidence 0.708

117. g13001087.png ; $\omega ^ { c } + \omega ^ { d } = \omega ^ { c } ( 1 + \omega ^ { d - c } )$ ; confidence 0.708

118. t13011023.png ; $X ( T _ { A } ) = \{ N _ { B } : N \otimes _ { B } T = 0 \}$ ; confidence 0.708

119. h12002053.png ; $H _ { d }$ ; confidence 0.708

120. s13041041.png ; $\sum _ { j = n - k } ^ { n + 1 } b _ { n , j } P _ { j } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \beta _ { n + 1 , j } Q _ { j } ( x )$ ; confidence 0.708

121. c130070231.png ; $T \in \Re ( C )$ ; confidence 0.707

122. d13003020.png ; $a \in R ^ { + }$ ; confidence 0.707

123. a130240366.png ; $M _ { H } = Z _ { 1 } ^ { \prime } Z _ { 1 }$ ; confidence 0.707

124. i1200805.png ; $H = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.707

125. d130080104.png ; $a \in \partial D$ ; confidence 0.707

126. k055840104.png ; $K _ { C }$ ; confidence 0.707

127. a011300133.png ; $N$ ; confidence 0.707

128. c12001028.png ; $E \subset C ^ { x }$ ; confidence 0.707

129. e13004050.png ; $\vec { x } \cdot \vec { v } > 0$ ; confidence 0.707

130. w12021043.png ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707

131. d13017068.png ; $\alpha = 0.6197$ ; confidence 0.707

132. a11001013.png ; $A \in R ^ { n \times n }$ ; confidence 0.707

133. c020540283.png ; $K = R$ ; confidence 0.707

134. n06663040.png ; $\Omega \neq \emptyset$ ; confidence 0.707

135. l13010062.png ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t$ ; confidence 0.706

136. b13009029.png ; $\Omega \subset R ^ { x }$ ; confidence 0.706

137. d0300905.png ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706

138. h12005011.png ; $u ( x ; 0 ) = \Phi ( x ) , u _ { m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0$ ; confidence 0.706

139. f13019022.png ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.706

140. i12008025.png ; $F = - \frac { k _ { B } T \operatorname { ln } Z } { N } , \quad Z = \operatorname { Tr } \operatorname { exp } ( - \frac { H } { k _ { B } T } )$ ; confidence 0.706

141. b12022019.png ; $u \in R ^ { N }$ ; confidence 0.706

142. d12005033.png ; $D = Dbx _ { f }$ ; confidence 0.706

143. m12001057.png ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706

144. c13021014.png ; $a _ { 1 } = 1 , a _ { 2 } = 2$ ; confidence 0.706

145. t12005048.png ; $\operatorname { dim } ( \Gamma _ { x } \cap ( R ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706

146. i13004016.png ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) | \Delta ^ { 2 } \alpha _ { k } | < \infty$ ; confidence 0.706

147. x12002019.png ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706

148. a1302309.png ; $f \in H$ ; confidence 0.705

149. b13028050.png ; $D \times H \times \Omega ^ { \infty } X$ ; confidence 0.705

150. q12008013.png ; $E [ T _ { p } ] = E [ W _ { p } ] + b _ { p }$ ; confidence 0.705

151. t13014069.png ; $M _ { i j } ^ { \beta } \in M _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705

152. a12008076.png ; $u _ { 0 } \in D ( A )$ ; confidence 0.705

153. f120230129.png ; $[ K , L ]$ ; confidence 0.705

154. a13027012.png ; $P _ { N } x \rightarrow x$ ; confidence 0.705

155. i12008065.png ; $T _ { c } > 0$ ; confidence 0.705

156. a13032013.png ; $E _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } P _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705

157. l13009010.png ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705

158. a130040352.png ; $CPC$ ; confidence 0.705

159. i13001047.png ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705

160. s13050031.png ; $X \in F$ ; confidence 0.705

161. m12019012.png ; $\times \Gamma ( \frac { 1 } { 2 } - k - i \tau ) \int _ { 1 } ^ { \infty } P _ { i \tau } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau } ^ { ( k ) } - 1 / 2 ( x ) F ( \tau ) d \tau$ ; confidence 0.705

162. t13007031.png ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705

163. w1200303.png ; $K = \{ x _ { n } / n : n \in N \} \cup \{ 0 \}$ ; confidence 0.705

164. e12016050.png ; $J ^ { \prime } \mapsto M ^ { \prime t } J ^ { \prime } M ^ { \prime }$ ; confidence 0.705

165. l120100101.png ; $V = - V _ { - }$ ; confidence 0.705

166. k05584072.png ; $f , g \in L _ { 2 , r }$ ; confidence 0.705

167. a13032020.png ; $E ( Y ) E ( N ) = E ( S _ { N } )$ ; confidence 0.705

168. b12009044.png ; $- \frac { 1 + \alpha ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705

169. e120070100.png ; $p _ { h } \in P ( k )$ ; confidence 0.705

170. l12010083.png ; $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ ; confidence 0.704

171. a110680168.png ; $x \in S$ ; confidence 0.704

172. c02094072.png ; $C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.704

173. h13005044.png ; $\int _ { X } ^ { \infty } d s$ ; confidence 0.704

174. l12004024.png ; $f _ { i + 1 / 2 }$ ; confidence 0.704

175. z130100119.png ; $V _ { 0 } = \emptyset ; V _ { \alpha } = \cup _ { \beta < \alpha } P ( V _ { \beta + 1 } ) ; \text { and } V = \cup _ { \alpha } V _ { \alpha }$ ; confidence 0.704

176. t120140167.png ; $B f = \Psi _ { 2 } ^ { - 1 } P _ { + } \overline { \Lambda } P _ { + } \overline { \Psi } _ { \square } ^ { - 1 } f$ ; confidence 0.704

177. y120010131.png ; $Z \subseteq X \times X$ ; confidence 0.704

178. l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704

179. n06663082.png ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704

180. f120230117.png ; $- ( - 1 ) ^ { ( q + k _ { 1 } ) k _ { 2 } } L ( K _ { 2 } ) \omega \wedge K _ { 1 } +$ ; confidence 0.704

181. b13001080.png ; $G = SL ( 2 , Q )$ ; confidence 0.704

182. a12031019.png ; $M _ { sa }$ ; confidence 0.704

183. o0680806.png ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z }$ ; confidence 0.704

184. k12005062.png ; $p$ ; confidence 0.704

185. a13029072.png ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704

186. a12007082.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) - \frac { d } { d t } A ( t ) ^ { - 1 } | _ { t = 0 } A ( 0 ) u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.704

187. h0479402.png ; $g : Y \rightarrow X$ ; confidence 0.703

188. b12005051.png ; $P ( \square ^ { n } E ) \rightarrow P ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703

189. b11021028.png ; $x , y \in R ^ { x }$ ; confidence 0.703

190. z13007056.png ; $U \in SGL _ { n } ( Z G )$ ; confidence 0.703

191. e12012071.png ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { 0 b s }$ ; confidence 0.703

192. c02489060.png ; $K _ { Y }$ ; confidence 0.703

193. t120070131.png ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703

194. f13009024.png ; $U _ { n } ( x , y )$ ; confidence 0.703

195. k05545027.png ; $| x | \rightarrow \infty$ ; confidence 0.702

196. w12008028.png ; $P = - i \vec { \nabla }$ ; confidence 0.702

197. c130070202.png ; $\tau \in T$ ; confidence 0.702

198. h04601091.png ; $\tau ( W \cup W ^ { \prime } , M _ { 0 } ) = \tau ( W , M _ { 0 } ) + \tau ( W ^ { \prime } , M _ { 1 } )$ ; confidence 0.702

199. b12040038.png ; $G \times \ell F$ ; confidence 0.702

200. s1305909.png ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702

201. t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702

202. c12030016.png ; $S ^ { * } S ^ { \prime } \in C$ ; confidence 0.702

203. t130050155.png ; $\alpha : = \pi ( A )$ ; confidence 0.702

204. b130200170.png ; $\alpha _ { i j } = 2$ ; confidence 0.702

205. k13007043.png ; $\| u \|$ ; confidence 0.702

206. m13001015.png ; $\hat { f }$ ; confidence 0.702

207. w12018010.png ; $E W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702

208. e12002053.png ; $( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702

209. b1108106.png ; $D _ { t }$ ; confidence 0.702

210. a12028021.png ; $z \mapsto z ^ { \gamma }$ ; confidence 0.701

211. d031830354.png ; $r = S$ ; confidence 0.701

212. a1201605.png ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B ($ ; confidence 0.701

213. a12004023.png ; $x _ { 0 }$ ; confidence 0.701

214. f12021025.png ; $\lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }$ ; confidence 0.701

215. m12010064.png ; $( G , c )$ ; confidence 0.701

216. y12001041.png ; $R _ { V }$ ; confidence 0.700

217. f12021083.png ; $= \frac { ( m _ { j } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { j } } + \ldots$ ; confidence 0.700

218. b1203204.png ; $\| . \| p$ ; confidence 0.700

219. q120050101.png ; $( x ^ { k } ) _ { k \in N }$ ; confidence 0.700

220. s1203205.png ; $p ( x ) = 0$ ; confidence 0.700

221. e03540032.png ; $2 ^ { m - 1 }$ ; confidence 0.700

222. o12005043.png ; $i ^ { \alpha }$ ; confidence 0.700

223. l11003028.png ; $D \subseteq ca ( \Omega , F )$ ; confidence 0.700

224. b120210113.png ; $\operatorname { Ext } _ { a } ^ { i } ( M , N ) = \operatorname { Ker } \delta _ { i + 1 } ^ { \prime } / \operatorname { Im } \delta _ { i } ^ { \prime }$ ; confidence 0.700

225. a01406079.png ; $B ^ { * }$ ; confidence 0.700

226. e12009025.png ; $F ^ { \mu \nu , \nu } = F ^ { \mu \nu } , , \nu = S ^ { \mu }$ ; confidence 0.700

227. h11001024.png ; $\operatorname { exp } ( - \sum _ { p \leq x } \frac { 1 } { p } \cdot ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i \alpha _ { 0 } } ) ) )$ ; confidence 0.700

228. h1300606.png ; $\tau \in H$ ; confidence 0.700

229. s1301404.png ; $x = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700

230. c120180322.png ; $W ( g ) = R ( g ) - g A ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.700

231. t130050102.png ; $O \rceil$ ; confidence 0.700

232. f1202007.png ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700

233. f120080112.png ; $\| \varphi \| _ { S } : = \| M$ ; confidence 0.700

234. m13011078.png ; $v _ { i } = \frac { D u _ { i } } { D t }$ ; confidence 0.700

235. i13006064.png ; $S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700

236. s13054033.png ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699

237. h13005043.png ; $\partial ^ { - 1 } x$ ; confidence 0.699

238. e12016034.png ; $\operatorname { Re } ( E ) \nabla ^ { 2 } E = \nabla E \cdot \nabla E$ ; confidence 0.699

239. b12005039.png ; $\phi : A \rightarrow C$ ; confidence 0.699

240. e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w \prime } ) } , \quad z \in C$ ; confidence 0.699

241. m12026013.png ; $f _ { j } = \sum _ { i } c _ { i } g _ { j }$ ; confidence 0.699

242. q1200303.png ; $L : A \rightarrow \operatorname { Fun } _ { A } ( G ) \otimes A$ ; confidence 0.699

243. b120040115.png ; $X ^ { * }$ ; confidence 0.699

244. t12005091.png ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699

245. c12007035.png ; $\{ H ^ { n } ( C , - ) : n \geq 0 \}$ ; confidence 0.699

246. t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699

247. f1302803.png ; $A x < b$ ; confidence 0.699

248. d03263080.png ; $\| x \|$ ; confidence 0.699

249. f12021065.png ; $( \frac { \partial } { \partial \lambda } ) ^ { ( n _ { i } - 1 ) } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) ^ { n _ { i } - 1 } z ^ { \lambda _ { i } } +$ ; confidence 0.699

250. p0745207.png ; $B \subset P$ ; confidence 0.699

251. f13019014.png ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699

252. l05700087.png ; $F c _ { k _ { 1 } } c _ { k _ { 2 } } = c _ { f } ( k _ { 1 } , k _ { 2 } )$ ; confidence 0.698

253. c02285052.png ; $d ( . , . )$ ; confidence 0.698

254. w12011095.png ; $\operatorname { exp } ( i \pi \langle S x , x \rangle )$ ; confidence 0.698

255. m13023056.png ; $v _ { j } \in \Sigma$ ; confidence 0.698

256. f13001031.png ; $F _ { q ^ { i } }$ ; confidence 0.698

257. b12022036.png ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698

258. e12009011.png ; $\nabla x$ ; confidence 0.698

259. s13002028.png ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x$ ; confidence 0.698

260. d1202501.png ; $U \subseteq R ^ { x }$ ; confidence 0.698

261. a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698

262. b12051039.png ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.698

263. v12004056.png ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698

264. i13005083.png ; $\overline { C } _ { + }$ ; confidence 0.698

265. d13008068.png ; $D ( \alpha , R )$ ; confidence 0.698

266. s13051086.png ; $\sigma ( u ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698

267. h046010110.png ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698

268. p120170113.png ; $( A + i B ) x = 0 \Leftrightarrow A x = 0 = B x$ ; confidence 0.698

269. b12002012.png ; $\Gamma _ { n } ^ { - 1 } ( t ) = 2 t - \Gamma _ { n } ( t ) + o ( n ^ { - 1 / 2 } )$ ; confidence 0.698

270. p07402071.png ; $1 , \ldots , r$ ; confidence 0.698

271. c120010162.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k } \rangle ) ^ { n } }$ ; confidence 0.698

272. e12026085.png ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697

273. m06533023.png ; $A _ { 1 } , \dots , A _ { k }$ ; confidence 0.697

274. g13007012.png ; $F ( a ) \neq 0$ ; confidence 0.697

275. d11022053.png ; $\int _ { \alpha } ^ { \phi } ( p y ^ { \prime 2 } - q y ^ { 2 } )$ ; confidence 0.697

276. f12024061.png ; $\psi : J _ { t } \rightarrow R ^ { x }$ ; confidence 0.697

277. m1202309.png ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } ) , \quad x \in H$ ; confidence 0.697

278. o11003050.png ; $b \in D$ ; confidence 0.697

279. m13020017.png ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697

280. k055840297.png ; $\tilde { K } \supset K$ ; confidence 0.697

281. m13020011.png ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697

282. l057000211.png ; $( \lambda x , x x ) ( \lambda x , x x )$ ; confidence 0.697

283. g13002014.png ; $e ^ { \beta z }$ ; confidence 0.697

284. e12026020.png ; $F = F ( \mu ) = \{ P ( \theta , \mu ) : \theta \in \Theta ( \mu ) \}$ ; confidence 0.697

285. w12005065.png ; $GL ( A )$ ; confidence 0.697

286. t12008044.png ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697

287. q120070117.png ; $\epsilon \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.697

288. p12012037.png ; $C _ { 36 }$ ; confidence 0.697

289. j13004049.png ; $P _ { L } ( v , z ) = \sum _ { i = m } ^ { N } P _ { i } ( v ) z ^ { i }$ ; confidence 0.697

290. d13008065.png ; $E ( a , R )$ ; confidence 0.696

291. s12022068.png ; $C \times ( C \backslash ( - \infty , 0 ) )$ ; confidence 0.696

292. f12008064.png ; $C _ { 0 } ( G )$ ; confidence 0.696

293. l0570209.png ; $F _ { N } + 1 \rightarrow F _ { N }$ ; confidence 0.696

294. n067520468.png ; $\vec { A }$ ; confidence 0.696

295. a13004011.png ; $( 40 \lambda \varphi _ { 1 } )$ ; confidence 0.696

296. i13001040.png ; $\operatorname { per } ( A ) \geq \operatorname { per } ( B ) \operatorname { per } ( D ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }$ ; confidence 0.696

297. f1302805.png ; $A x < b + \varepsilon$ ; confidence 0.696

298. a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z }$ ; confidence 0.696

299. s12020081.png ; $\{ S ^ { \lambda } : \lambda \text { a partition of } n$ ; confidence 0.696

300. w13011030.png ; $f ( T ^ { x } x )$ ; confidence 0.696

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/46. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/46&oldid=44456