Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/30"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 30 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 30 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029024.png ; $g ( x _ { i } ) = ( - 1 ) ^ { i } \| g \|$ ; confidence 0.985
+
1. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043830/g04383054.png ; $WF ( f )$ ; confidence 0.933
  
2. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008066.png ; $[ L ^ { H _ { i } } : K ^ { H _ { i } } ] =$ ; confidence 0.968
+
2. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u1300209.png ; $\| f \| _ { 2 } = 1$ ; confidence 0.933
  
3. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008032.png ; $F ( D _ { i z } ) \subset D _ { i z }$ ; confidence 0.091
+
3. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005090.png ; $L ( 0 ) v = n v$ ; confidence 0.933
  
4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013029.png ; $A ^ { + } = A ^ { - } + \nabla \chi$ ; confidence 0.734
+
4. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012035.png ; $g _ { j } > 0$ ; confidence 0.933
  
5. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019028.png ; $C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.996
+
5. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009018.png ; $\int _ { R ^ { 3 } } | \psi ( t , x ) | ^ { 2 } d x$ ; confidence 0.933
  
6. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020010.png ; $\sigma \geq \sigma _ { 0 } > 0$ ; confidence 0.991
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060129.png ; $90$ ; confidence 0.933
  
7. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022052.png ; $z ^ { \prime } + q + z ^ { 2 } / p = 0$ ; confidence 0.810
+
7. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k1201002.png ; $R ^ { 3 } = C _ { z } \times R _ { t }$ ; confidence 0.933
  
8. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016021.png ; $\| f _ { n } \| \downarrow \text { dist } ( f , C ( S ) + C ( T ) )$ ; confidence 0.932
  
9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023079.png ; $H = I \overline { H } \square$ ; confidence 0.098
+
9. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080110.png ; $\Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] =$ ; confidence 0.932
  
10. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028096.png ; $\phi \in A ( \overline { D } )$ ; confidence 0.997
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010102.png ; $Z \mapsto ( A Z + B ) ( C Z + D ) ^ { - 1 }$ ; confidence 0.932
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280107.png ; $\phi \operatorname { log }$ ; confidence 0.424
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008011.png ; $U \leq f ( X ) / h ( X )$ ; confidence 0.932
  
12. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029061.png ; $| x - \frac { p } { q x } | < f ( q x )$ ; confidence 0.869
+
12. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007081.png ; $= \operatorname { sup } \{ \int _ { K } M ( u ) d V : u \in \operatorname { PSH } ( \Omega ) , 0 < u < 1 \}$ ; confidence 0.932
  
13. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012041.png ; $f = ( f _ { 1 } , \ldots , f _ { M } )$ ; confidence 0.632
+
13. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302205.png ; $P _ { k - 1 } \subset P _ { K } \subset P _ { k }$ ; confidence 0.932
  
14. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012033.png ; $Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.958
+
14. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m1301104.png ; $f = f ( x ^ { 0 } , t )$ ; confidence 0.932
  
15. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020106.png ; $Y \times K \simeq Z \times K$ ; confidence 0.917
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016051.png ; $x _ { i } ^ { \prime } \neq 0$ ; confidence 0.932
  
16. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006060.png ; $J ^ { 1 } \Gamma ( \Gamma ( Y ) )$ ; confidence 0.995
+
16. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557806.png ; $\frac { f ( x _ { 0 } + ) + f ( x _ { 0 } - ) } { 2 } =$ ; confidence 0.932
  
17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070132.png ; $H ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.858
+
17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015056.png ; $G ( \Omega ) = E _ { M } ( \Omega ) / N ( \Omega )$ ; confidence 0.932
  
18. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003019.png ; $\Gamma \subset SL _ { 2 } ( Z )$ ; confidence 0.584
+
18. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
  
19. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300305.png ; $\Gamma \subset G L _ { 2 } ( Z )$ ; confidence 0.325
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
  
20. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500082.png ; $\{ \xi ( t ) \} _ { t \in [ x , b ] }$ ; confidence 0.437
+
20. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004063.png ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932
  
21. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015058.png ; $\ddot { x } + p \dot { x } + q x = 0$ ; confidence 0.963
+
21. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932
  
22. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190102.png ; $d : S \times S \rightarrow R$ ; confidence 0.585
+
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
  
23. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190161.png ; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947
+
23. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699069.png ; $B ^ { \prime }$ ; confidence 0.932
  
24. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202003.png ; $( x _ { i 1 } , \ldots , x _ { i r } )$ ; confidence 0.394
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110780/a1107803.png ; $d _ { A }$ ; confidence 0.932
  
25. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024081.png ; $H ^ { 1 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.491
+
25. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911906.png ; $V _ { I }$ ; confidence 0.932
  
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240134.png ; $\operatorname { deg } \phi$ ; confidence 0.559
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027013.png ; $Q _ { n } y \rightarrow y$ ; confidence 0.932
  
27. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240120.png ; $f : E \rightarrow Y _ { 1 } ( N )$ ; confidence 0.998
+
27. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020105.png ; $\int _ { D } | \psi ^ { ( n ) } ( \zeta ) | ^ { p } ( 1 - | \zeta | ) ^ { n p - 2 } d m _ { 2 } ( \zeta ) < \infty$ ; confidence 0.932
  
28. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024080.png ; $H ^ { 2 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.626
+
28. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017016.png ; $\lambda _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }$ ; confidence 0.932
  
29. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026023.png ; $( \mu ) \rightarrow F ( \mu )$ ; confidence 0.998
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043016.png ; $( B , \Delta , \varepsilon , S )$ ; confidence 0.932
  
30. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007018.png ; $F ( 2,4 ) = \pi _ { 1 } ( L ( 5,2 ) )$ ; confidence 0.993
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130170/a13017022.png ; $\Pi \circ B$ ; confidence 0.932
  
31. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007014.png ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120106.png ; $f \notin A ^ { * }$ ; confidence 0.932
  
32. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090106.png ; $0 < q _ { 1 } + \ldots + q _ { k } < 1$ ; confidence 0.676
+
32. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023024.png ; $[ K _ { 1 } , K _ { 2 } ]$ ; confidence 0.932
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010053.png ; $\varphi \in L _ { C } ^ { p } ( G )$ ; confidence 0.532
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040061.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.932
  
34. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100123.png ; $x \in \operatorname { sp } u$ ; confidence 0.458
+
34. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012074.png ; $0 \neq q \in Q$ ; confidence 0.932
  
35. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301006.png ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022058.png ; $\forall u \in U : M ( u , \xi ) \in D _ { \xi }$ ; confidence 0.932
  
36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010045.png ; $\varphi ( x ) = \varphi ( a x )$ ; confidence 0.307
+
36. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002070.png ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k )$ ; confidence 0.932
  
37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008096.png ; $\square ^ { t } M _ { \varphi }$ ; confidence 0.912
+
37. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011074.png ; $v = \frac { \partial } { \partial t } ( x ^ { 0 } + u ) | _ { x ^ { 0 } } = ( \frac { \partial u } { \partial t } ) | _ { x ^ { 0 } } = \frac { D u } { D t }$ ; confidence 0.932
  
38. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008046.png ; $\xi ^ { * } \overline { \eta }$ ; confidence 0.370
+
38. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370068.png ; $k [ G ]$ ; confidence 0.931
  
39. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010051.png ; $| \tau ( p ) | \leq 2 p ^ { 11 / 2 }$ ; confidence 0.991
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031062.png ; $G _ { \delta } = ( 2 / \pi ) \operatorname { sup } _ { x > 0 } \int _ { 0 } ^ { 1 } ( 1 - t ^ { 2 } ) ^ { \delta } \operatorname { sin } x t d t / t$ ; confidence 0.931
  
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f1201106.png ; $P \overline { x } ^ { \delta }$ ; confidence 0.235
+
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019024.png ; $\{ s \in S : s ^ { - 1 } t s = t \}$ ; confidence 0.931
  
41. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011036.png ; $\operatorname { tm } \zeta$ ; confidence 0.369
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280114.png ; $I \neq L ^ { 1 } ( G )$ ; confidence 0.931
  
42. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011044.png ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008060.png ; $( L ^ { H _ { i } } , w ^ { H _ { i } } )$ ; confidence 0.931
  
43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011072.png ; $Q = H _ { D ^ { n } } ( \tilde { O } )$ ; confidence 0.879
+
43. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006050.png ; $C _ { 0 } ^ { \infty }$ ; confidence 0.931
  
44. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019016.png ; $c _ { N } = c _ { - N } = 1 , c _ { j } = 2$ ; confidence 0.798
+
44. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012020.png ; $x ^ { * } x \leq y y ^ { * } + z z ^ { * }$ ; confidence 0.931
  
45. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014020.png ; $1 \leq \lambda \leq \infty$ ; confidence 0.994
+
45. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230109.png ; $u _ { 0 } = 1 = v _ { 0 }$ ; confidence 0.931
  
46. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150112.png ; $F ( x ) \in C ^ { k } ( \Omega , Y )$ ; confidence 0.989
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138063.png ; $\infty$ ; confidence 0.931
  
47. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150107.png ; $K ( x ) \in C ^ { 1 } ( \Omega , Y )$ ; confidence 0.850
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111070/b11107012.png ; $\rho ( t )$ ; confidence 0.931
  
48. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015090.png ; $\beta ( A + T ) \leq \beta ( A )$ ; confidence 1.000
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003030.png ; $y \in V ^ { - \sigma }$ ; confidence 0.931
  
49. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150194.png ; $\| x \| _ { A } = \| x \| + \| A x \|$ ; confidence 0.472
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023069.png ; $\operatorname { lim } _ { t \downarrow 0 } u ( t , x ) = f ( x ) \quad \text { for all } x \in H$ ; confidence 0.931
  
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016016.png ; $\sigma _ { \text { Ire } } ( T )$ ; confidence 0.231
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012080.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } \| f V _ { \varepsilon } \| _ { A } * = 0$ ; confidence 0.931
  
51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024022.png ; $\langle x y z \} : = \{ y , z \} x$ ; confidence 0.338
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002045.png ; $( I ^ { \alpha } f ) ( x ) = c _ { \mu , \alpha } \int _ { 0 } ^ { \infty } ( f ^ { * } \mu _ { t } ) ( x ) t ^ { \alpha - 1 } d t$ ; confidence 0.931
  
52. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023059.png ; $K \in \Omega ^ { k + 1 } ( M , T M )$ ; confidence 0.990
+
52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014084.png ; $D$ ; confidence 0.931
  
53. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230120.png ; $\omega \in \Omega ^ { 1 } ( M )$ ; confidence 0.987
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305907.png ; $\{ z ^ { j } \} _ { j = p } ^ { q }$ ; confidence 0.931
  
54. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023086.png ; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.937
+
54. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006039.png ; $u = D \alpha D$ ; confidence 0.931
  
55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023060.png ; $L \in \Omega ^ { 1 + 1 } ( M , T M )$ ; confidence 0.985
+
55. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002016.png ; $t \notin A$ ; confidence 0.931
  
56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230101.png ; $L \in \Omega ^ { 1 + 1 } ( M ; T M )$ ; confidence 0.983
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040027.png ; $\varrho : H \rightarrow F$ ; confidence 0.931
  
57. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024074.png ; $\overline { t _ { 0 } } = t _ { 0 }$ ; confidence 0.573
+
57. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011020.png ; $( d / d x ) g ( x )$ ; confidence 0.931
  
58. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290143.png ; $( f , \phi ) ^ { \rightarrow }$ ; confidence 0.554
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023670/c02367023.png ; $S _ { i }$ ; confidence 0.931
  
59. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003020.png ; $w \in E ^ { \prime } ( \Omega )$ ; confidence 0.899
+
59. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301704.png ; $( S _ { T } - K , 0 )$ ; confidence 0.931
  
60. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004013.png ; $H ^ { m } ( E \cap f ( R ^ { m } ) ) = 0$ ; confidence 0.735
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050129.png ; $\frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( t , u ) \frac { \partial u } { \partial x _ { j } } = f ( t , u )$ ; confidence 0.931
  
61. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060112.png ; $\{ r _ { 2 } ( A ) \} _ { i = 1 } ^ { n }$ ; confidence 0.630
+
61. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024024.png ; $f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.931
  
62. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060111.png ; $\{ \alpha , i \} _ { i = 1 } ^ { n }$ ; confidence 0.819
+
62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031086.png ; $| f | \operatorname { log } ^ { + } | f |$ ; confidence 0.931
  
63. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004015.png ; $C ^ { \infty _ { 0 } } ( \Omega )$ ; confidence 0.644
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023060.png ; $| q | = q 1 + \ldots + q x$ ; confidence 0.931
  
64. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g1200406.png ; $f \in C ^ { \infty } ( \Omega )$ ; confidence 0.997
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034086.png ; $< k$ ; confidence 0.931
  
65. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004061.png ; $u \in D ^ { \prime } ( \Omega )$ ; confidence 0.998
+
65. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011070.png ; $f ^ { * } ( . )$ ; confidence 0.931
  
66. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004020.png ; $D _ { s } ^ { \prime } ( \Omega )$ ; confidence 0.543
+
66. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280110.png ; $H ^ { n , n - 1 } = Z ^ { n , n - 1 } / B ^ { n , n - 1 }$ ; confidence 0.931
  
67. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004080.png ; $S _ { 1,0 } ^ { \langle x _ { 0 } }$ ; confidence 0.053
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032016.png ; $x , y , u , v \in E$ ; confidence 0.931
  
68. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337018.png ; $f ^ { \prime } ( x ) h = D f ( x , h )$ ; confidence 0.997
+
68. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v1200602.png ; $B _ { 2 n } = A _ { 2 n } - \sum _ { p - 1 | 2 n } \frac { 1 } { p }$ ; confidence 0.931
  
69. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001032.png ; $X = V \times W \rightarrow V$ ; confidence 0.994
+
69. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006010.png ; $q ( z ) = e ^ { 2 \pi i z }$ ; confidence 0.931
  
70. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300307.png ; $s _ { i } + j - 1 = ( i + j - 1 ) ^ { - 1 }$ ; confidence 0.884
+
70. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011058.png ; $x ^ { x }$ ; confidence 0.931
  
71. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020100.png ; $\psi = \overline { P - \phi }$ ; confidence 0.890
+
71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003051.png ; $| f ( \gamma ) | \geq \varepsilon$ ; confidence 0.930
  
72. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
+
72. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009073.png ; $A \times R$ ; confidence 0.930
  
73. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002051.png ; $H _ { \phi } = H _ { \phi + \psi }$ ; confidence 0.798
+
73. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202001.png ; $( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.930
  
74. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004015.png ; $\{ U _ { \xi } : \xi < \kappa \}$ ; confidence 0.996
+
74. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211039.png ; $\tilde { \theta }$ ; confidence 0.930
  
75. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006035.png ; $\sum c _ { \alpha } D \alpha D$ ; confidence 0.477
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003042.png ; $f \in b \Delta$ ; confidence 0.930
  
76. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011051.png ; $\int _ { \Lambda } f \beta = 0$ ; confidence 0.593
+
76. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023020.png ; $\phi ( T T ^ { \prime } )$ ; confidence 0.930
  
77. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012070.png ; $\operatorname { im } ( \pi )$ ; confidence 0.908
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019046.png ; $M = \sqrt { T }$ ; confidence 0.930
  
78. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012087.png ; $\epsilon : A \rightarrow R$ ; confidence 0.981
+
78. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001068.png ; $\tau \in \operatorname { Aut } ( G )$ ; confidence 0.930
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050066.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.393
+
79. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840156.png ; $[ T x , T y ] = [ x , y ]$ ; confidence 0.930
  
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001038.png ; $C ^ { * } = \overline { C ^ { T } }$ ; confidence 0.849
+
80. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001030.png ; $x ( n ) ^ { * } y ( n ) = \sum _ { j = 0 } ^ { n } x ( n - j ) y ( j ) = \sum _ { j = 0 } ^ { n } x ( n ) y ( n - j )$ ; confidence 0.930
  
81. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030167.png ; $\phi = 1 \in H ^ { 0 } ( \Gamma )$ ; confidence 0.990
+
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021030.png ; $t ( M _ { i } )$ ; confidence 0.930
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000145.png ; $\overline { \partial } u = f$ ; confidence 0.979
+
82. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038050.png ; $z = ( z _ { 1 } , z _ { 2 } ) \in G$ ; confidence 0.930
  
83. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004058.png ; $s = ( \overline { \zeta } - z )$ ; confidence 0.982
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018063.png ; $E G - F ^ { 2 } < 0$ ; confidence 0.930
  
84. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i1200501.png ; $N ( \alpha , \beta , \theta )$ ; confidence 0.998
+
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140138.png ; $T _ { \phi _ { \lambda } }$ ; confidence 0.930
  
85. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006044.png ; $\operatorname { PrSu } ( P )$ ; confidence 0.905
+
85. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034027.png ; $q ^ { - 1 } L _ { + } - q L _ { - } = z L _ { 0 }$ ; confidence 0.930
  
86. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006025.png ; $L ( x ) < \underline { Q } U ( x )$ ; confidence 0.547
+
86. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011038.png ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930
  
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060116.png ; $\{ f ( k ) , s ; 1 \leq j \leq J \}$ ; confidence 0.848
+
87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010033.png ; $\forall y ( \neg y \in x )$ ; confidence 0.930
  
88. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007030.png ; $\forall \alpha ^ { \prime }$ ; confidence 0.926
+
88. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016014.png ; $( M _ { t } f ) ( s ) = \frac { 1 } { 2 } \operatorname { sup } _ { t } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { t } f ( s , t )$ ; confidence 0.930
  
89. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080137.png ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566
+
89. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007019.png ; $S ^ { 2 } \times S ^ { 2 } \times R _ { + }$ ; confidence 0.930
  
90. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010026.png ; $f ( t ) = ( K t ^ { 2 } + A t + B ) / 2 > 0$ ; confidence 1.000
+
90. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302503.png ; $y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.930
  
91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090195.png ; $\mu _ { \chi } \in Z _ { \geq 0 }$ ; confidence 0.331
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200160.png ; $r ( \lambda ) = \lambda - \lambda ( h _ { i } ) \alpha _ { i }$ ; confidence 0.930
  
92. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001054.png ; $\operatorname { det } J F = 1$ ; confidence 0.992
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051013.png ; $f ( x _ { + } ) < f ( x _ { c } )$ ; confidence 0.930
  
93. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300203.png ; $p = \{ p _ { i } : i \in \Gamma \}$ ; confidence 0.920
+
93. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011027.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \sum _ { m = - \infty } ^ { \infty } \operatorname { log } ( z - ( z _ { 0 } - m l ) )$ ; confidence 0.930
  
94. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002024.png ; $\Delta = \sigma ( \lambda )$ ; confidence 0.560
+
94. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006066.png ; $T _ { B } \circ T _ { A }$ ; confidence 0.930
  
95. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020141.png ; $[ X _ { \infty } Y _ { \infty } ]$ ; confidence 0.955
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201601.png ; $u _ { i } ( t )$ ; confidence 0.930
  
96. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004062.png ; $\operatorname { cr } ( K )$ ; confidence 0.995
+
96. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001027.png ; $Z [ A ^ { \pm 1 } , a , b , c ]$ ; confidence 0.930
  
97. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007045.png ; $\{ z _ { n } \} \subset \Delta$ ; confidence 0.957
+
97. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064970/m0649709.png ; $m _ { \lambda }$ ; confidence 0.930
  
98. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850241.png ; $\partial \nmid \partial x$ ; confidence 0.717
+
98. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002017.png ; $u _ { 1 } \geq 0$ ; confidence 0.930
  
99. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006038.png ; $h ^ { i } ( K _ { X } \otimes L ) = 0$ ; confidence 0.975
+
99. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007034.png ; $Z \rightarrow w$ ; confidence 0.930
  
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200708.png ; $C _ { s } : R \rightarrow L ( V )$ ; confidence 0.601
+
100. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840350.png ; $Z ^ { 2 } + B _ { 1 } Z + B _ { 0 } = 0$ ; confidence 0.930
  
101. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007010.png ; $X ( s ) = 0 , X ^ { \prime } ( s ) = I$ ; confidence 0.991
+
101. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013019.png ; $\hat { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930
  
102. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005029.png ; $Kn = \alpha \frac { Ma } { Re }$ ; confidence 0.958
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027031.png ; $Q ( H )$ ; confidence 0.930
  
103. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010024.png ; $( z _ { j } ^ { \prime } , t _ { j } )$ ; confidence 0.989
+
103. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017093.png ; $( a x - x c ) + i ( b x - x d ) = 0$ ; confidence 0.930
  
104. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k1201002.png ; $R ^ { 3 } = C _ { z } \times R _ { t }$ ; confidence 0.933
+
104. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021057.png ; $B ( G ) = \{ u \in C ^ { G } : u v \in A ( G ) \text { for everyv } \in A ( G ) \}$ ; confidence 0.930
  
105. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507049.png ; $\operatorname { Ric } _ { g }$ ; confidence 0.974
+
105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004041.png ; $\varphi \circ w$ ; confidence 0.929
  
106. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003028.png ; $D \subseteq ca ( \Omega , F )$ ; confidence 0.700
+
106. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013046.png ; $S ^ { 3 } \subset R ^ { 4 }$ ; confidence 0.929
  
107. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000194.png ; $\rho : V \rightarrow D _ { A }$ ; confidence 0.997
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220123.png ; $E \otimes C$ ; confidence 0.929
  
108. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001067.png ; $\operatorname { ln } ^ { 2 } N$ ; confidence 0.983
+
108. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007057.png ; $F \in \{ \Gamma , - k , v \}$ ; confidence 0.929
  
109. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001069.png ; $\operatorname { ln } ^ { 2 } N$ ; confidence 0.804
+
109. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200106.png ; $x , y \in D ( T )$ ; confidence 0.929
  
110. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008036.png ; $c - 2 \operatorname { deg } l$ ; confidence 0.636
+
110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210132.png ; $L [ \sqrt { n } ( T _ { n } - \theta _ { n } ) | P _ { n , \theta _ { n } } ] \Rightarrow L ( \theta )$ ; confidence 0.929
  
111. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120108.png ; $V _ { \text { simp } } ( K _ { p } )$ ; confidence 0.636
+
111. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002026.png ; $A _ { sa }$ ; confidence 0.929
  
112. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120122.png ; $\phi : V \rightarrow A ^ { r }$ ; confidence 0.651
+
112. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006019.png ; $\lambda \in G _ { i } ( A )$ ; confidence 0.929
  
113. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010023.png ; $| \alpha x _ { 0 } - p | < \delta$ ; confidence 0.840
+
113. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017073.png ; $\iota \omega ( G ) = G$ ; confidence 0.929
  
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170106.png ; $K ^ { 2 } \times I \searrow pt$ ; confidence 0.433
+
114. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240122.png ; $\overline { f } = f \otimes \overline { Q }$ ; confidence 0.929
  
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003052.png ; $\varepsilon ^ { * } ( T ) = 1 / 2$ ; confidence 0.980
+
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003070.png ; $\vec { \theta }$ ; confidence 0.929
  
116. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100139.png ; $\Lambda \cong \pi _ { 1 } ( M )$ ; confidence 0.987
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302101.png ; $( N , B )$ ; confidence 0.929
  
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011051.png ; $H * ( \overline { M } ) = H * ( F )$ ; confidence 0.353
+
117. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003058.png ; $\sigma = k ^ { 2 } ( \pi - A - B - C )$ ; confidence 0.929
  
118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013058.png ; $L ^ { - } = D ^ { - } - A ^ { \prime }$ ; confidence 0.999
+
118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025039.png ; $7$ ; confidence 0.929
  
119. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013059.png ; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943
+
119. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010038.png ; $A _ { 2 } ( G ) \subset A _ { p } ( G )$ ; confidence 0.929
  
120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014036.png ; $r _ { 1 } / r _ { 2 } \notin H _ { r }$ ; confidence 0.269
+
120. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200607.png ; $x < p y$ ; confidence 0.929
  
121. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011023.png ; $\Gamma ( 1 - \alpha _ { j } + s )$ ; confidence 0.688
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009061.png ; $O _ { \{ 0 \} } ^ { \prime } = B _ { \{ 0 \} }$ ; confidence 0.929
  
122. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020045.png ; $x \in M , X \in \mathfrak { g }$ ; confidence 0.430
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327018.png ; $( \overline { A } = A )$ ; confidence 0.929
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022066.png ; $Q _ { N } ( T _ { g } ( z ) ) - q ^ { - x }$ ; confidence 0.440
+
123. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010018.png ; $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ ; confidence 0.929
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023034.png ; $\xi \in \partial _ { c } g ( x )$ ; confidence 0.935
+
124. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015029.png ; $P ( ( X , Y ) \in A ) = \int \int _ { A } f _ { X , Y } d X d Y$ ; confidence 0.929
  
125. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023079.png ; $u _ { t } + u u _ { X } = \mu u _ { X X }$ ; confidence 0.797
+
125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510144.png ; $L _ { 1 } , L _ { 2 } \subset Z ^ { 0 }$ ; confidence 0.929
  
126. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023053.png ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004012.png ; $n = 2$ ; confidence 0.929
  
127. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230144.png ; $\phi : X _ { n } \rightarrow Y$ ; confidence 0.973
+
127. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005020.png ; $\| f \| = \operatorname { inf } \{ \epsilon > 0 : I ( f / \epsilon ) \leq 1 \}$ ; confidence 0.929
  
128. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023045.png ; $v \in \overline { N E } ( X / S )$ ; confidence 0.466
+
128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100105.png ; $e < 0$ ; confidence 0.929
  
129. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023050.png ; $v = v ^ { \prime } + \sum j r j v j$ ; confidence 0.747
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202208.png ; $| x | | \leq 1$ ; confidence 0.929
  
130. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202404.png ; $\psi \rightarrow \psi [ 1 ]$ ; confidence 0.970
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929
  
131. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202401.png ; $\psi _ { X y } + u ( x , y ) \psi = 0$ ; confidence 0.496
+
131. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
  
132. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027014.png ; $\langle w , f \rangle \neq 0$ ; confidence 0.937
+
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011058.png ; $\Delta _ { k }$ ; confidence 0.929
  
133. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027013.png ; $w \in C ^ { ( 1 ) } ( \partial D )$ ; confidence 0.984
+
133. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010139.png ; $P = S ^ { 1 }$ ; confidence 0.929
  
134. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025029.png ; $f \in C ^ { \infty } ( \Omega )$ ; confidence 0.992
+
134. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008055.png ; $d \mu _ { X } ( u )$ ; confidence 0.929
  
135. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026036.png ; $x \lambda ( y ) = \rho ( x ) y$ ; confidence 0.966
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051054.png ; $N = \cup _ { n \in O } N _ { n }$ ; confidence 0.929
  
136. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002033.png ; $f : X \times Y \rightarrow R$ ; confidence 0.799
+
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052043.png ; $b _ { n + 1 } = \frac { f ( x _ { n } + 1 ) - f ( x _ { n } ) } { x _ { n } + 1 - x _ { n } }$ ; confidence 0.929
  
137. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047980/h04798014.png ; $f : X \times Y \rightarrow Z$ ; confidence 0.997
+
137. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002019.png ; $F _ { 1 } ( q , \dot { q } ) = C _ { 1 } ( q , \dot { q } ) \dot { q } + g _ { 1 } ( q ) + f _ { 1 } ( \dot { q } )$ ; confidence 0.929
  
138. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003032.png ; $t : A \times C \rightarrow C$ ; confidence 0.999
+
138. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010151.png ; $\chi ( x ) : = \chi _ { D } ( x )$ ; confidence 0.929
  
139. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200309.png ; $f : N \times A \rightarrow B$ ; confidence 0.997
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016044.png ; $f | _ { K } \in A | _ { K } : = \{ f | _ { K } : f \in A \}$ ; confidence 0.929
  
140. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006031.png ; $\mu _ { k } \leq \lambda _ { k }$ ; confidence 0.988
+
140. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020146.png ; $\Gamma _ { \phi }$ ; confidence 0.929
  
141. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011072.png ; $f ^ { * } : M \rightarrow F ( R )$ ; confidence 0.962
+
141. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011079.png ; $x \rightarrow \overline { f } _ { \alpha } ( x )$ ; confidence 0.929
  
142. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011054.png ; $\psi : R ^ { N } \rightarrow R$ ; confidence 0.371
+
142. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n1201003.png ; $f : R \times C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.929
  
143. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520235.png ; $R ( S A S ^ { - 1 } , S B ) = S R ( A , B )$ ; confidence 0.993
+
143. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003022.png ; $P _ { 0 } \psi / p _ { 0 }$ ; confidence 0.929
  
144. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520298.png ; $H = \sum \oplus H _ { \alpha }$ ; confidence 0.997
+
144. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009020.png ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu }$ ; confidence 0.929
  
145. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520299.png ; $A = \sum \oplus A _ { \alpha }$ ; confidence 0.999
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240374.png ; $F = Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.929
  
146. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520328.png ; $\{ f _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.533
+
146. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013040.png ; $N * = K$ ; confidence 0.929
  
147. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520230.png ; $( A , B ) \sim ( S A S ^ { - 1 } , S B )$ ; confidence 0.999
+
147. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003025.png ; $p \equiv 1$ ; confidence 0.929
  
148. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001039.png ; $\alpha ^ { \prime } , \alpha$ ; confidence 0.914
+
148. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008023.png ; $A \in C ^ { m \times n }$ ; confidence 0.929
  
149. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003045.png ; $X = \sum _ { j = 1 } ^ { S } X _ { j } e$ ; confidence 0.283
+
149. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004024.png ; $\xi < \kappa$ ; confidence 0.929
  
150. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300408.png ; $\phi : [ 0 , T ] \rightarrow M$ ; confidence 0.998
+
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005030.png ; $\operatorname { dist } ( B , U ^ { c } ) > 0$ ; confidence 0.929
  
151. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006051.png ; $\gamma = \gamma ^ { \prime }$ ; confidence 0.995
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003056.png ; $V _ { y } ^ { \sigma }$ ; confidence 0.928
  
152. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006088.png ; $\Phi ^ { ( 2 ) } = \Phi ^ { ( 1 ) } U$ ; confidence 0.925
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032050.png ; $\sigma ^ { 2 } = .25$ ; confidence 0.928
  
153. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100150.png ; $f \in H ^ { \infty } ( \Delta )$ ; confidence 0.995
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012072.png ; $( A , I )$ ; confidence 0.928
  
154. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070149.png ; $( f , g ) _ { H } = ( L F , L G ) _ { H } =$ ; confidence 0.985
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011025.png ; $T ( 0 , n ) = 2 n$ ; confidence 0.928
  
155. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070125.png ; $\{ h ( t , x ) \} \forall x \in E$ ; confidence 0.972
+
155. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001016.png ; $= z ^ { n + m } ( f ( D + m ) g ( D ) - f ( D ) g ( D + n ) ) +$ ; confidence 0.928
  
156. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070145.png ; $= \int _ { T } d m ( t ) F ( t ) G ( t )$ ; confidence 0.997
+
156. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090111.png ; $e _ { n } = \lambda _ { p } ( K / k ) n + \mu _ { p } ( K / k ) p ^ { n } + \nu _ { p } ( K / k )$ ; confidence 0.928
  
157. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r1301307.png ; $\sigma \subset \sigma ( A )$ ; confidence 0.999
+
157. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004044.png ; $8 _ { 17 }$ ; confidence 0.928
  
158. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040104.png ; $ch : R \rightarrow \Lambda$ ; confidence 0.802
+
158. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190200.png ; $W _ { 2 } ^ { + }$ ; confidence 0.928
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050106.png ; $S ( z ) = B ( z ) ^ { - 1 } S _ { 0 } ( z )$ ; confidence 0.989
+
159. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584042.png ; $J ^ { 2 } = I$ ; confidence 0.928
  
160. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303602.png ; $R ^ { 1 } = ( - \infty , \infty )$ ; confidence 0.983
+
160. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012040.png ; $P \subset N P$ ; confidence 0.928
  
161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150109.png ; $\hat { U } \rightarrow G ( x )$ ; confidence 0.531
+
161. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040128.png ; $v = \pm 1$ ; confidence 0.928
  
162. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017093.png ; $S = ( S _ { 1 } , \ldots , S _ { m } )$ ; confidence 0.274
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001015.png ; $x$ ; confidence 0.928
  
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018043.png ; $\{ e _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.664
+
163. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840117.png ; $x , y \in K$ ; confidence 0.928
  
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022020.png ; $\partial M \neq \emptyset$ ; confidence 0.971
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040106.png ; $\operatorname { ch } ( \chi ) = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } p _ { \mu }$ ; confidence 0.928
  
165. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049048.png ; $r ( p _ { 0 } ) + r ( p _ { k } ) = r ( P )$ ; confidence 0.719
+
165. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013022.png ; $L = [ k _ { j } ] = M M ^ { T }$ ; confidence 0.928
  
166. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054064.png ; $\{ a , b \} = d a / a \wedge d b / b$ ; confidence 0.386
+
166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007011.png ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928
  
167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025045.png ; $( a , b ) = ( - \infty , \infty )$ ; confidence 0.693
+
167. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230102.png ; $[ L _ { K } , i _ { L } ] = i ( [ K , L ] ) - ( - 1 ) ^ { k ] } L ( i _ { L } K )$ ; confidence 0.928
  
168. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202601.png ; $( S ^ { \prime } ( R ) , B , d \mu )$ ; confidence 0.834
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050280.png ; $N _ { G } ^ { \# } ( x ) = \sum _ { n \leq x } G ^ { \# } ( n )$ ; confidence 0.928
  
169. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026057.png ; $\partial _ { s + } \phi ( s ) = 0$ ; confidence 0.955
+
169. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840309.png ; $\Theta ( z ) = U _ { 22 } + z U _ { 21 } ( I - z U _ { 11 } ) ^ { - 1 } U _ { 12 } \quad ( z \in D )$ ; confidence 0.928
  
170. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620149.png ; $q ( x ) = q _ { 1 } ( x ) + q _ { 2 } ( x )$ ; confidence 0.993
+
170. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090104.png ; $0 < q _ { j } < 1$ ; confidence 0.928
  
171. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062038.png ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982
+
171. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052180/i05218048.png ; $S _ { N }$ ; confidence 0.928
  
172. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s12030010.png ; $X ^ { G } \rightarrow X ^ { h G }$ ; confidence 0.514
+
172. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006044.png ; $D \beta D = \coprod _ { \beta ^ { \prime } \in A } D \beta ^ { \prime }$ ; confidence 0.928
  
173. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032030.png ; $a \otimes b \rightarrow a b$ ; confidence 0.463
+
173. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n12006033.png ; $T ^ { * } T$ ; confidence 0.928
  
174. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033061.png ; $D = ( G , \{ D g : g \in G \} , \in )$ ; confidence 0.802
+
174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051022.png ; $d ^ { T } \nabla f ( x _ { c } ) < 0$ ; confidence 0.928
  
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002010.png ; $P = \prod _ { x \in Z } \mu _ { x }$ ; confidence 0.242
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200140.png ; $- ( a | \omega ( a ) ) > 0$ ; confidence 0.928
  
176. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007044.png ; $| \rho ^ { \prime } | \rho | < 1$ ; confidence 0.964
+
176. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601042.png ; $( W ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.928
  
177. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006019.png ; $\rho \rightarrow E ( \rho )$ ; confidence 0.959
+
177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110104.png ; $P * ( K ) ^ { \prime }$ ; confidence 0.927
  
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006077.png ; $R _ { j } \rightarrow IR _ { j }$ ; confidence 0.311
+
178. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011030.png ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927
  
179. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070150.png ; $\dot { y } = 1 / q + a _ { 1 } ( g ) q +$ ; confidence 0.387
+
179. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200207.png ; $T \in \operatorname { Mat } ( n ) \otimes A$ ; confidence 0.927
  
180. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008049.png ; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525
+
180. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013033.png ; $SP ^ { + } ( n )$ ; confidence 0.927
  
181. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130112.png ; $T \in K ^ { b } ( P _ { \Lambda } )$ ; confidence 0.723
+
181. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033012.png ; $\lambda ( v - 1 ) = k ( k - 1 )$ ; confidence 0.927
  
182. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130102.png ; $pd _ { \Lambda } T = n < \infty$ ; confidence 0.509
+
182. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008016.png ; $S _ { i } = - 1$ ; confidence 0.927
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022031.png ; $\{ e _ { 1 } , \ldots , e _ { x } \}$ ; confidence 0.340
+
183. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372072.png ; $k > 2$ ; confidence 0.927
  
184. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140105.png ; $z , j = | L \cap e _ { j } | e _ { i } |$ ; confidence 0.398
+
184. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012020.png ; $D ( \phi ) = d \gamma \phi + \phi d \gamma$ ; confidence 0.927
  
185. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013078.png ; $\dot { x } _ { i } = x _ { i } y _ { i }$ ; confidence 0.910
+
185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023020.png ; $L : E ^ { 1 } \rightarrow R$ ; confidence 0.927
  
186. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013059.png ; $L _ { 1 } ^ { p } = L _ { 2 } ^ { p } = : L$ ; confidence 0.976
+
186. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019014.png ; $( c , d )$ ; confidence 0.927
  
187. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140132.png ; $\phi , \psi \in L ^ { \infty }$ ; confidence 0.993
+
187. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001011.png ; $Q _ { D } ( v , z ) \in Z [ v ^ { \pm 1 } , z ^ { 2 } ]$ ; confidence 0.927
  
188. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201403.png ; $\{ \gamma _ { j } \} _ { j \in Z }$ ; confidence 0.914
+
188. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080109.png ; $\chi ( \chi \propto ( T / T _ { c } - 1 ) ^ { - \gamma } \text { with } \gamma = 1 )$ ; confidence 0.927
  
189. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015046.png ; $\xi \in A ^ { \prime \prime }$ ; confidence 0.937
+
189. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060103.png ; $z ^ { - 1 / 3 }$ ; confidence 0.927
  
190. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356046.png ; $\mathfrak { N } _ { f } / N _ { f }$ ; confidence 0.952
+
190. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200170.png ; $\operatorname { Re } G _ { 2 } ( r ) \leq - A$ ; confidence 0.927
  
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200172.png ; $r \in [ m + 1 , m + n ( 3 + \pi / k ) ]$ ; confidence 0.592
+
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021027.png ; $\sigma : E \rightarrow E$ ; confidence 0.927
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540047.png ; $Z _ { 1 } , \dots , Z _ { \infty }$ ; confidence 0.230
+
192. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050138.png ; $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ ; confidence 0.927
  
193. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v1200304.png ; $\mu : \Sigma \rightarrow X$ ; confidence 0.831
+
193. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002028.png ; $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$ ; confidence 0.927
  
194. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004064.png ; $\Delta ( G ) = \omega ( L ( G ) )$ ; confidence 0.986
+
194. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011070.png ; $\Phi = E \oplus E ^ { * }$ ; confidence 0.927
  
195. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900147.png ; $L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.996
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026014.png ; $\zeta ( 3 )$ ; confidence 0.927
  
196. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006011.png ; $D _ { 2 x } = \prod _ { p - 1 | 2 x } p$ ; confidence 0.599
+
196. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014022.png ; $x = u + 1 / u = 2 \operatorname { cos } \alpha$ ; confidence 0.927
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022570/c0225703.png ; $x _ { \aleph } \rightarrow x$ ; confidence 0.333
+
197. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014016.png ; $( x ^ { 2 } - 4 a ) y ^ { \prime \prime } + x y ^ { \prime } - n ^ { 2 } y = 0$ ; confidence 0.927
  
198. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001015.png ; $[ z ^ { n } f ( D ) , z ^ { m } g ( D ) ] =$ ; confidence 0.485
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084024.png ; $M ^ { * }$ ; confidence 0.927
  
199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300506.png ; $\wedge \mathfrak { g } ^ { * }$ ; confidence 0.965
+
199. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r08259030.png ; $\alpha ^ { * * } = \alpha$ ; confidence 0.927
  
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010020.png ; $\square ^ { \prime } \Gamma$ ; confidence 0.915
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018025.png ; $J _ { E } = I _ { E }$ ; confidence 0.927
  
201. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070108.png ; $r ^ { 2 } = \sum \| A _ { j } | ^ { 2 }$ ; confidence 0.166
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200159.png ; $\alpha _ { i } \in \Pi ^ { re }$ ; confidence 0.927
  
202. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008010.png ; $f ( q , p ) \in L ^ { 2 } ( R ^ { 2 x } )$ ; confidence 0.400
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031026.png ; $\| f \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { \infty }$ ; confidence 0.927
  
203. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090105.png ; $K \mathfrak { S } _ { \gamma }$ ; confidence 0.475
+
203. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002031.png ; $\delta ( I _ { \delta } ) \subseteq R$ ; confidence 0.927
  
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011022.png ; $( Op ( J ^ { t } \alpha ) u ) ( x ) =$ ; confidence 0.557
+
204. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230156.png ; $= \int _ { M } \sigma ^ { k ^ { * } } L _ { Z ^ { k } } ( L \Delta )$ ; confidence 0.927
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110126.png ; $Op ( a ) Op ( b ) = Op ( a \circ b )$ ; confidence 0.564
+
205. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003018.png ; $f ( a t + a k )$ ; confidence 0.927
  
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110116.png ; $M = \tau _ { X _ { 0 } } , \xi _ { 0 }$ ; confidence 0.765
+
206. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013028.png ; $\frac { d N } { d t } = \frac { d n } { d t } = f ( N ) =$ ; confidence 0.927
  
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011036.png ; $a \in S ^ { \prime } ( R ^ { 2 n } )$ ; confidence 0.393
+
207. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004028.png ; $31$ ; confidence 0.927
  
208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110140.png ; $a b + \frac { 1 } { 2 c } \{ a , b \}$ ; confidence 0.439
+
208. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003025.png ; $j > n$ ; confidence 0.927
  
209. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566021.png ; $\Omega \times R ^ { \gamma }$ ; confidence 0.527
+
209. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202002.png ; $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ ; confidence 0.926
  
210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110121.png ; $\sigma _ { X _ { 0 } , \xi _ { 0 } }$ ; confidence 0.586
+
210. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026055.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s$ ; confidence 0.926
  
211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110177.png ; $b = b _ { m } + b _ { m } - 1 + \ldots$ ; confidence 0.268
+
211. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007090.png ; $m _ { i } , n _ { i } \leq P$ ; confidence 0.926
  
212. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017014.png ; $\{ \omega _ { \alpha } ( G ) \}$ ; confidence 0.992
+
212. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010017.png ; $\{ t = t _ { j } \} \subset R ^ { 3 }$ ; confidence 0.926
  
213. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011031.png ; $S _ { \alpha } ( y ) = y + \alpha$ ; confidence 0.868
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302207.png ; $W _ { 2 } ^ { 1 }$ ; confidence 0.926
  
214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018050.png ; $\{ X ( t ) : t \in \partial D \}$ ; confidence 0.994
+
214. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003066.png ; $M ( E )$ ; confidence 0.926
  
215. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006011.png ; $\overline { B } ( t , \omega )$ ; confidence 0.998
+
215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202303.png ; $\Omega ( M , T M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Omega ^ { k } ( M , T M )$ ; confidence 0.926
  
216. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021027.png ; $M , N \in \{ A ; \} _ { l = 1 } ^ { k }$ ; confidence 0.843
+
216. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023060.png ; $D = \frac { \partial } { \partial x } + y ^ { \prime } \frac { \partial } { \partial y } + y ^ { \prime \prime } \frac { \partial } { \partial y ^ { \prime } }$ ; confidence 0.926
  
217. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w1301303.png ; $W = \int _ { \Sigma } H ^ { 2 } d A$ ; confidence 0.998
+
217. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005079.png ; $h = F \circ f ^ { - 1 }$ ; confidence 0.926
  
218. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001019.png ; $B = \tau _ { V , V } ^ { \prime } R$ ; confidence 0.744
+
218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240107.png ; $Y _ { 1 } ( N )$ ; confidence 0.926
  
219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003049.png ; $( Z f ) ( t , w ) = - ( Z f ) ( - t , - w )$ ; confidence 0.993
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245028.png ; $S ^ { 1 } \times S ^ { 3 }$ ; confidence 0.926
  
220. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z1200208.png ; $1,2,3,5,8,13,21 , \ldots$ ; confidence 0.541
+
220. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003029.png ; $P Q = a$ ; confidence 0.926
  
221. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
+
221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180166.png ; $\mu ( M ) = \mu ( M \backslash a ) - \mu ( M / a )$ ; confidence 0.926
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240516.png ; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007073.png ; $n ^ { \prime }$ ; confidence 0.926
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
+
223. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023024.png ; $y : M \rightarrow F$ ; confidence 0.926
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982
+
224. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016040.png ; $j - \operatorname { Spec } ( R )$ ; confidence 0.926
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240497.png ; $\beta _ { 11 } = \beta _ { 21 }$ ; confidence 0.923
+
225. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062062.png ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$ ; confidence 0.926
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040533.png ; $C : P ( A ) \rightarrow P ( A )$ ; confidence 0.971
+
226. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005045.png ; $\frac { d } { d \alpha } f ( x ^ { k } + \alpha d ^ { k } ) | _ { \alpha = 0 } = D f ( x ^ { k } ) d ^ { k } =$ ; confidence 0.926
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040412.png ; $Mod ^ { * } L D = S P Mod ^ { * } L D$ ; confidence 0.144
+
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007030.png ; $\forall \alpha ^ { \prime }$ ; confidence 0.926
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040635.png ; $F _ { S _ { P } } \mathfrak { M }$ ; confidence 0.264
+
228. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002037.png ; $\frac { d T _ { 1 } } { d s } = [ T _ { 2 } , T _ { 3 } ] , \frac { d T _ { 2 } } { d s } = [ T _ { 3 } , T _ { 1 } ] , \frac { d T _ { 3 } } { d s } = [ T _ { 1 } , T _ { 2 } ]$ ; confidence 0.926
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050246.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.985
+
229. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200164.png ; $\phi ( z ) = z ^ { k } + \alpha _ { 1 } z ^ { k - 1 } + \ldots + \alpha _ { k } \neq 0$ ; confidence 0.926
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005023.png ; $0 \leq s \leq r \leq t \leq T$ ; confidence 0.988
+
230. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005018.png ; $F W = F ^ { 2 ( k + 1 ) } W ( G , K ) \subseteq W ( G , K )$ ; confidence 0.926
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945
+
231. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190103.png ; $S = X$ ; confidence 0.926
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006025.png ; $X = [ L ^ { 2 } ( \Omega ) ] ^ { p }$ ; confidence 0.996
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740250.png ; $> 0$ ; confidence 0.926
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908
+
233. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001067.png ; $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$ ; confidence 0.926
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007050.png ; $f \in L ^ { \infty } ( 0 , T ; X )$ ; confidence 0.995
+
234. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d1102209.png ; $c > a$ ; confidence 0.926
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903
+
235. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024021.png ; $f ( r - 2 ) ( x _ { 0 } )$ ; confidence 0.926
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007051.png ; $\omega ( a ) + \omega ( b ) < k$ ; confidence 0.733
+
236. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230106.png ; $A = \operatorname { diag } \{ a _ { i } \}$ ; confidence 0.926
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070104.png ; $\sigma ^ { * } ( n ) > \alpha n$ ; confidence 0.957
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110135.png ; $f = \sum _ { k } f _ { \Delta _ { k } }$ ; confidence 0.926
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007080.png ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.996
+
238. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002015.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) < 0$ ; confidence 0.926
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007042.png ; $\sigma ( n ) / n \geq \alpha$ ; confidence 0.961
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050131.png ; $R \times R ^ { m }$ ; confidence 0.926
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070105.png ; $\sigma ^ { * } ( d ) < \alpha d$ ; confidence 0.991
+
240. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013071.png ; $D ^ { b } ( \Lambda )$ ; confidence 0.926
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032024.png ; $\lambda _ { j } ^ { ( l ) } \in R$ ; confidence 0.477
+
241. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010046.png ; $L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } ( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } ) ^ { \gamma + 1 / 2 }$ ; confidence 0.926
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015049.png ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876
+
242. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540188.png ; $s > 0$ ; confidence 0.926
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015039.png ; $g \subset \text { End } ( V )$ ; confidence 0.155
+
243. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006011.png ; $\Delta _ { \delta } ( \alpha ) : = \{ z \in C : | z - \alpha | \leq \delta \}$ ; confidence 0.926
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018022.png ; $\Delta H \mathscr { \phi }$ ; confidence 0.093
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015570/b01557024.png ; $k \leq n$ ; confidence 0.926
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018040.png ; $\operatorname { mod } e l s$ ; confidence 0.333
+
245. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747087.png ; $( K , L )$ ; confidence 0.926
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a01414019.png ; $A$ ; confidence 0.926
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020057.png ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564
+
247. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002054.png ; $( \hat { \phi } ( - j - k - 1 ) ) j > 0 , k \geq 0$ ; confidence 0.925
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023019.png ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027049.png ; $T _ { n j } ( x _ { n } ) \rightarrow g$ ; confidence 0.925
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023059.png ; $q = ( q _ { 1 } , \dots , q _ { n } )$ ; confidence 0.615
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302709.png ; $K ( H )$ ; confidence 0.925
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290123.png ; $H _ { m } ^ { i } ( A ) = ( 0 )$ ; confidence 0.925
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024046.png ; $\operatorname { div } ( s )$ ; confidence 0.996
+
251. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013055.png ; $\nu ^ { 3 }$ ; confidence 0.925
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026037.png ; $Y = ( Y _ { 1 } , \dots , Y _ { s } )$ ; confidence 0.827
+
252. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012032.png ; $C _ { G } ( A )$ ; confidence 0.925
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260116.png ; $y _ { i } \cong \hat { y } _ { i }$ ; confidence 0.537
+
253. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010057.png ; $( 2 / \pi ) \operatorname { sin } ^ { 2 } \phi d \phi$ ; confidence 0.925
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260111.png ; $y = ( y _ { 1 } , \dots , y _ { n } )$ ; confidence 0.778
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028073.png ; $A \in L _ { w } ( X , Y )$ ; confidence 0.925
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028098.png ; $t \mapsto V _ { t } ^ { * } \rho$ ; confidence 0.983
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052059.png ; $B + u v ^ { T }$ ; confidence 0.925
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076031.png ; $t \rightarrow \pm \infty$ ; confidence 0.991
+
256. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016016.png ; $| \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } ( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) )$ ; confidence 0.925
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029048.png ; $HF _ { x } ^ { symp } ( M , \phi )$ ; confidence 0.373
+
257. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001099.png ; $\mathfrak { h } = \{ X \in \mathfrak { g } : \tau ( X ) = X \}$ ; confidence 0.925
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029074.png ; $Q _ { f } \rightarrow Y _ { f }$ ; confidence 0.786
+
258. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016012.png ; $\Phi > 0$ ; confidence 0.925
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030043.png ; $T _ { X _ { N } } \rightarrow y$ ; confidence 0.600
+
259. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008074.png ; $K ( p , q )$ ; confidence 0.925
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030047.png ; $\mathfrak { S } ( T ) = \{ 0 \}$ ; confidence 0.962
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004062.png ; $E = X$ ; confidence 0.925
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032054.png ; $\beta = P _ { q } ( S _ { N } = - J )$ ; confidence 0.811
+
261. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011056.png ; $\pi _ { 1 } ( \overline { M } )$ ; confidence 0.925
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032053.png ; $\alpha = P _ { p } ( S _ { N } = K )$ ; confidence 0.719
+
262. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014058.png ; $\int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) )$ ; confidence 0.925
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501011.png ; $\xi ^ { * } : X \rightarrow B$ ; confidence 0.688
+
263. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011011.png ; $- \otimes _ { B } T$ ; confidence 0.925
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010049.png ; $U ( t ) = e ^ { A } S ( - t ) e ^ { - A }$ ; confidence 0.816
+
264. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005029.png ; $L ( a ) = \infty$ ; confidence 0.925
  
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210133.png ; $\dot { u } _ { 1 } v _ { 1 } v _ { 2 }$ ; confidence 0.064
+
265. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005022.png ; $r _ { \pm } ( - k ) = \overline { r _ { \pm } ( k ) }$ ; confidence 0.925
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021072.png ; $r = \operatorname { dim } n$ ; confidence 0.455
+
266. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005082.png ; $m , n \in Z$ ; confidence 0.925
  
267. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066026.png ; $\operatorname { log } | P |$ ; confidence 0.777
+
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018065.png ; $WB ( L )$ ; confidence 0.925
  
268. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300304.png ; $( x , y , z ) \mapsto \{ x y z \}$ ; confidence 0.989
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460143.png ; $Q _ { 1 }$ ; confidence 0.925
  
269. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006059.png ; $| \mu - b _ { i i } | \leq \| E \|$ ; confidence 0.603
+
269. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300907.png ; $U _ { n + 1 } ( x ) U _ { n - 1 } ( x ) - U _ { n } ^ { 2 } ( x ) = ( - 1 ) ^ { n }$ ; confidence 0.925
  
270. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006012.png ; $| | x | _ { 1 } | = \sum _ { i } | x |$ ; confidence 0.161
+
270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080163.png ; $\psi ( z _ { 0 } , z _ { 0 } ) = I$ ; confidence 0.925
  
271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009086.png ; $\varphi ( z ) \in B ( \beta )$ ; confidence 0.998
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022014.png ; $h ( X ) = h ^ { 0 } ( X ) \oplus \ldots \oplus h ^ { 2 n } ( X )$ ; confidence 0.925
  
272. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220100.png ; $H _ { P } ^ { 2 } ( X _ { C } , A ( j ) )$ ; confidence 0.368
+
272. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006040.png ; $v = D \beta D$ ; confidence 0.925
  
273. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220212.png ; $H _ { D } ^ { i + 1 } ( X / R , R ( j ) )$ ; confidence 0.724
+
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002035.png ; $P , Q \in K [ X ]$ ; confidence 0.925
  
274. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009030.png ; $M u _ { t } + u _ { x } + u u _ { x } = 0$ ; confidence 0.670
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150121.png ; $\Omega = ( N \cup \{ 0 \} ) ^ { m }$ ; confidence 0.925
  
275. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010065.png ; $z \rightarrow \partial D$ ; confidence 0.999
+
275. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201107.png ; $\frac { \partial } { \partial t _ { j } } L = [ ( L ^ { j } ) _ { + } , L ]$ ; confidence 0.925
  
276. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010021.png ; $T ( z ) = \{ T k _ { z } , k _ { z } \}$ ; confidence 0.823
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020014.png ; $x , y , z , u , v , w \in V$ ; confidence 0.925
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010055.png ; $\varphi \in L ^ { 1 } ( D , d A )$ ; confidence 0.997
+
277. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013035.png ; $f ^ { \prime } ( N * ) > 0$ ; confidence 0.925
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015015.png ; $P = \{ P _ { p } : p \in [ 0,1 ] \}$ ; confidence 0.531
+
278. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002072.png ; $A ^ { * } = \operatorname { sup } _ { t \geq 0 } | A _ { t } | \leq \frac { 1 } { P [ T < \infty ] }$ ; confidence 0.925
  
279. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150149.png ; $p p _ { i } + ( 1 - p ) ( 1 - p _ { i } )$ ; confidence 0.999
+
279. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200204.png ; $L ( ; 0 ) = f ( . )$ ; confidence 0.925
  
280. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150124.png ; $P = \{ P _ { N } ^ { m } : n \in N \}$ ; confidence 0.293
+
280. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006088.png ; $\Phi ^ { ( 2 ) } = \Phi ^ { ( 1 ) } U$ ; confidence 0.925
  
281. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016043.png ; $\{ f _ { i } \} _ { 1 } ^ { n _ { 1 } }$ ; confidence 0.342
+
281. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190145.png ; $S ( f ( m ) , \rho )$ ; confidence 0.924
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b1201707.png ; $- \infty < \alpha < \infty$ ; confidence 0.991
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380123.png ; $T ( G )$ ; confidence 0.924
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018037.png ; $( \tau \backslash \{ P \} )$ ; confidence 0.998
+
283. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301909.png ; $x _ { j } = \pi j / N$ ; confidence 0.924
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022066.png ; $f : \Xi \rightarrow R ^ { p }$ ; confidence 0.554
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301001.png ; $( X , A )$ ; confidence 0.924
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024018.png ; $f : T \rightarrow GL ( n , C )$ ; confidence 0.420
+
285. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584022.png ; $K$ ; confidence 0.924
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029049.png ; $x \in V \subset U \subset X$ ; confidence 0.255
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201106.png ; $\{ x ; \}$ ; confidence 0.924
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030041.png ; $\lambda = \lambda ( \eta )$ ; confidence 1.000
+
287. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008045.png ; $= \frac { ( - 1 ) ^ { k + l } } { ( \alpha + 1 ) _ { k + l } } ( 1 - z z ) ^ { - \alpha } ( \frac { \partial } { \partial z } ) ^ { l } ( \frac { \partial } { \partial z } ) ^ { k } ( 1 - z z ) ^ { k + l + \alpha }$ ; confidence 0.924
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031070.png ; $\delta > ( n - 1 ) | 1 / 2 - 1 / p |$ ; confidence 0.933
+
288. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002030.png ; $11$ ; confidence 0.924
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031095.png ; $L = ( \Delta / 2 ) - x . \nabla$ ; confidence 0.914
+
289. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014018.png ; $H ( x ) = 0$ ; confidence 0.924
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034073.png ; $\| f g \| \leq \| f \| . \| g \|$ ; confidence 0.315
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030093.png ; $\omega \{ K _ { i } \}$ ; confidence 0.924
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019034.png ; $f ( M _ { 2 } ) - f ( M _ { 1 } ) \ll T$ ; confidence 0.982
+
291. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001014.png ; $( \alpha > 0 ) \& ( \alpha \preceq b ) \Rightarrow ( \alpha \alpha \preceq \alpha c )$ ; confidence 0.924
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019048.png ; $f ^ { \prime \prime } ( x ) / 2$ ; confidence 0.999
+
292. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002034.png ; $G ( n , p )$ ; confidence 0.924
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a0115305.png ; $f ( x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.540
+
293. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003010.png ; $\tau ( \varphi ) = \text { trace } \nabla d \varphi$ ; confidence 0.924
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037091.png ; $( \operatorname { log } n )$ ; confidence 0.996
+
294. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021037.png ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; C )$ ; confidence 0.924
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020067.png ; $\hat { \mathfrak { g } } ( A )$ ; confidence 0.886
+
295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011078.png ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi } ^ { * } , \Phi ^ { \prime }$ ; confidence 0.924
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200106.png ; $[ a , b ] = ( a | b ) x _ { \alpha }$ ; confidence 0.684
+
296. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035500/e03550078.png ; $\Omega$ ; confidence 0.924
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200159.png ; $\alpha _ { i } \in \Pi ^ { re }$ ; confidence 0.927
+
297. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002081.png ; $N ( q , r )$ ; confidence 0.924
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020083.png ; $\mathfrak { g } ^ { \alpha }$ ; confidence 0.393
+
298. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021045.png ; $( p _ { m } ( x ) ) _ { m \geq 1 }$ ; confidence 0.924
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200191.png ; $\alpha _ { i } \in \Pi ^ { im }$ ; confidence 0.619
+
299. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021028.png ; $\{ u \in B ( G ) : \| u \| _ { B ( G ) } = 1 \}$ ; confidence 0.924
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040027.png ; $\varrho : H \rightarrow F$ ; confidence 0.931
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040751.png ; $r \in R$ ; confidence 0.924

Revision as of 00:10, 13 February 2020

List

1. g04383054.png ; $WF ( f )$ ; confidence 0.933

2. u1300209.png ; $\| f \| _ { 2 } = 1$ ; confidence 0.933

3. v13005090.png ; $L ( 0 ) v = n v$ ; confidence 0.933

4. e12012035.png ; $g _ { j } > 0$ ; confidence 0.933

5. m13009018.png ; $\int _ { R ^ { 3 } } | \psi ( t , x ) | ^ { 2 } d x$ ; confidence 0.933

6. a130060129.png ; $90$ ; confidence 0.933

7. k1201002.png ; $R ^ { 3 } = C _ { z } \times R _ { t }$ ; confidence 0.933

8. d12016021.png ; $\| f _ { n } \| \downarrow \text { dist } ( f , C ( S ) + C ( T ) )$ ; confidence 0.932

9. c120080110.png ; $\Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] =$ ; confidence 0.932

10. b130010102.png ; $Z \mapsto ( A Z + B ) ( C Z + D ) ^ { - 1 }$ ; confidence 0.932

11. a13008011.png ; $U \leq f ( X ) / h ( X )$ ; confidence 0.932

12. p13007081.png ; $= \operatorname { sup } \{ \int _ { K } M ( u ) d V : u \in \operatorname { PSH } ( \Omega ) , 0 < u < 1 \}$ ; confidence 0.932

13. b1302205.png ; $P _ { k - 1 } \subset P _ { K } \subset P _ { k }$ ; confidence 0.932

14. m1301104.png ; $f = f ( x ^ { 0 } , t )$ ; confidence 0.932

15. b12016051.png ; $x _ { i } ^ { \prime } \neq 0$ ; confidence 0.932

16. k0557806.png ; $\frac { f ( x _ { 0 } + ) + f ( x _ { 0 } - ) } { 2 } =$ ; confidence 0.932

17. c13015056.png ; $G ( \Omega ) = E _ { M } ( \Omega ) / N ( \Omega )$ ; confidence 0.932

18. t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932

19. a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932

20. r13004063.png ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932

21. r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932

22. t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932

23. b01699069.png ; $B ^ { \prime }$ ; confidence 0.932

24. a1107803.png ; $d _ { A }$ ; confidence 0.932

25. s0911906.png ; $V _ { I }$ ; confidence 0.932

26. a13027013.png ; $Q _ { n } y \rightarrow y$ ; confidence 0.932

27. h120020105.png ; $\int _ { D } | \psi ^ { ( n ) } ( \zeta ) | ^ { p } ( 1 - | \zeta | ) ^ { n p - 2 } d m _ { 2 } ( \zeta ) < \infty$ ; confidence 0.932

28. d13017016.png ; $\lambda _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }$ ; confidence 0.932

29. b12043016.png ; $( B , \Delta , \varepsilon , S )$ ; confidence 0.932

30. a13017022.png ; $\Pi \circ B$ ; confidence 0.932

31. b130120106.png ; $f \notin A ^ { * }$ ; confidence 0.932

32. f12023024.png ; $[ K _ { 1 } , K _ { 2 } ]$ ; confidence 0.932

33. b12040061.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.932

34. m12012074.png ; $0 \neq q \in Q$ ; confidence 0.932

35. b12022058.png ; $\forall u \in U : M ( u , \xi ) \in D _ { \xi }$ ; confidence 0.932

36. v12002070.png ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k )$ ; confidence 0.932

37. m13011074.png ; $v = \frac { \partial } { \partial t } ( x ^ { 0 } + u ) | _ { x ^ { 0 } } = ( \frac { \partial u } { \partial t } ) | _ { x ^ { 0 } } = \frac { D u } { D t }$ ; confidence 0.932

38. p07370068.png ; $k [ G ]$ ; confidence 0.931

39. b12031062.png ; $G _ { \delta } = ( 2 / \pi ) \operatorname { sup } _ { x > 0 } \int _ { 0 } ^ { 1 } ( 1 - t ^ { 2 } ) ^ { \delta } \operatorname { sin } x t d t / t$ ; confidence 0.931

40. f12019024.png ; $\{ s \in S : s ^ { - 1 } t s = t \}$ ; confidence 0.931

41. a120280114.png ; $I \neq L ^ { 1 } ( G )$ ; confidence 0.931

42. d11008060.png ; $( L ^ { H _ { i } } , w ^ { H _ { i } } )$ ; confidence 0.931

43. o12006050.png ; $C _ { 0 } ^ { \infty }$ ; confidence 0.931

44. r13012020.png ; $x ^ { * } x \leq y y ^ { * } + z z ^ { * }$ ; confidence 0.931

45. d120230109.png ; $u _ { 0 } = 1 = v _ { 0 }$ ; confidence 0.931

46. a01138063.png ; $\infty$ ; confidence 0.931

47. b11107012.png ; $\rho ( t )$ ; confidence 0.931

48. b13003030.png ; $y \in V ^ { - \sigma }$ ; confidence 0.931

49. m12023069.png ; $\operatorname { lim } _ { t \downarrow 0 } u ( t , x ) = f ( x ) \quad \text { for all } x \in H$ ; confidence 0.931

50. b13012080.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } \| f V _ { \varepsilon } \| _ { A } * = 0$ ; confidence 0.931

51. c12002045.png ; $( I ^ { \alpha } f ) ( x ) = c _ { \mu , \alpha } \int _ { 0 } ^ { \infty } ( f ^ { * } \mu _ { t } ) ( x ) t ^ { \alpha - 1 } d t$ ; confidence 0.931

52. m13014084.png ; $D$ ; confidence 0.931

53. s1305907.png ; $\{ z ^ { j } \} _ { j = p } ^ { q }$ ; confidence 0.931

54. h13006039.png ; $u = D \alpha D$ ; confidence 0.931

55. h13002016.png ; $t \notin A$ ; confidence 0.931

56. b12040027.png ; $\varrho : H \rightarrow F$ ; confidence 0.931

57. n12011020.png ; $( d / d x ) g ( x )$ ; confidence 0.931

58. c02367023.png ; $S _ { i }$ ; confidence 0.931

59. b1301704.png ; $( S _ { T } - K , 0 )$ ; confidence 0.931

60. a120050129.png ; $\frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( t , u ) \frac { \partial u } { \partial x _ { j } } = f ( t , u )$ ; confidence 0.931

61. d03024024.png ; $f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.931

62. b12031086.png ; $| f | \operatorname { log } ^ { + } | f |$ ; confidence 0.931

63. a12023060.png ; $| q | = q 1 + \ldots + q x$ ; confidence 0.931

64. f04034086.png ; $< k$ ; confidence 0.931

65. n12011070.png ; $f ^ { * } ( . )$ ; confidence 0.931

66. d120280110.png ; $H ^ { n , n - 1 } = Z ^ { n , n - 1 } / B ^ { n , n - 1 }$ ; confidence 0.931

67. b12032016.png ; $x , y , u , v \in E$ ; confidence 0.931

68. v1200602.png ; $B _ { 2 n } = A _ { 2 n } - \sum _ { p - 1 | 2 n } \frac { 1 } { p }$ ; confidence 0.931

69. h13006010.png ; $q ( z ) = e ^ { 2 \pi i z }$ ; confidence 0.931

70. n12011058.png ; $x ^ { x }$ ; confidence 0.931

71. w12003051.png ; $| f ( \gamma ) | \geq \varepsilon$ ; confidence 0.930

72. l12009073.png ; $A \times R$ ; confidence 0.930

73. c1202001.png ; $( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.930

74. c02211039.png ; $\tilde { \theta }$ ; confidence 0.930

75. d12003042.png ; $f \in b \Delta$ ; confidence 0.930

76. s12023020.png ; $\phi ( T T ^ { \prime } )$ ; confidence 0.930

77. b13019046.png ; $M = \sqrt { T }$ ; confidence 0.930

78. q12001068.png ; $\tau \in \operatorname { Aut } ( G )$ ; confidence 0.930

79. k055840156.png ; $[ T x , T y ] = [ x , y ]$ ; confidence 0.930

80. z13001030.png ; $x ( n ) ^ { * } y ( n ) = \sum _ { j = 0 } ^ { n } x ( n - j ) y ( j ) = \sum _ { j = 0 } ^ { n } x ( n ) y ( n - j )$ ; confidence 0.930

81. t12021030.png ; $t ( M _ { i } )$ ; confidence 0.930

82. s13038050.png ; $z = ( z _ { 1 } , z _ { 2 } ) \in G$ ; confidence 0.930

83. c12018063.png ; $E G - F ^ { 2 } < 0$ ; confidence 0.930

84. t120140138.png ; $T _ { \phi _ { \lambda } }$ ; confidence 0.930

85. s13034027.png ; $q ^ { - 1 } L _ { + } - q L _ { - } = z L _ { 0 }$ ; confidence 0.930

86. m11011038.png ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930

87. z13010033.png ; $\forall y ( \neg y \in x )$ ; confidence 0.930

88. d12016014.png ; $( M _ { t } f ) ( s ) = \frac { 1 } { 2 } \operatorname { sup } _ { t } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { t } f ( s , t )$ ; confidence 0.930

89. i13007019.png ; $S ^ { 2 } \times S ^ { 2 } \times R _ { + }$ ; confidence 0.930

90. d0302503.png ; $y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.930

91. b130200160.png ; $r ( \lambda ) = \lambda - \lambda ( h _ { i } ) \alpha _ { i }$ ; confidence 0.930

92. b12051013.png ; $f ( x _ { + } ) < f ( x _ { c } )$ ; confidence 0.930

93. v13011027.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \sum _ { m = - \infty } ^ { \infty } \operatorname { log } ( z - ( z _ { 0 } - m l ) )$ ; confidence 0.930

94. w12006066.png ; $T _ { B } \circ T _ { A }$ ; confidence 0.930

95. a1201601.png ; $u _ { i } ( t )$ ; confidence 0.930

96. k13001027.png ; $Z [ A ^ { \pm 1 } , a , b , c ]$ ; confidence 0.930

97. m0649709.png ; $m _ { \lambda }$ ; confidence 0.930

98. d12002017.png ; $u _ { 1 } \geq 0$ ; confidence 0.930

99. v13007034.png ; $Z \rightarrow w$ ; confidence 0.930

100. k055840350.png ; $Z ^ { 2 } + B _ { 1 } Z + B _ { 0 } = 0$ ; confidence 0.930

101. w13013019.png ; $\hat { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930

102. b13027031.png ; $Q ( H )$ ; confidence 0.930

103. p12017093.png ; $( a x - x c ) + i ( b x - x d ) = 0$ ; confidence 0.930

104. f13021057.png ; $B ( G ) = \{ u \in C ^ { G } : u v \in A ( G ) \text { for everyv } \in A ( G ) \}$ ; confidence 0.930

105. q13004041.png ; $\varphi \circ w$ ; confidence 0.929

106. w13013046.png ; $S ^ { 3 } \subset R ^ { 4 }$ ; confidence 0.929

107. b110220123.png ; $E \otimes C$ ; confidence 0.929

108. e12007057.png ; $F \in \{ \Gamma , - k , v \}$ ; confidence 0.929

109. m1200106.png ; $x , y \in D ( T )$ ; confidence 0.929

110. c120210132.png ; $L [ \sqrt { n } ( T _ { n } - \theta _ { n } ) | P _ { n , \theta _ { n } } ] \Rightarrow L ( \theta )$ ; confidence 0.929

111. b13002026.png ; $A _ { sa }$ ; confidence 0.929

112. g13006019.png ; $\lambda \in G _ { i } ( A )$ ; confidence 0.929

113. w12017073.png ; $\iota \omega ( G ) = G$ ; confidence 0.929

114. e120240122.png ; $\overline { f } = f \otimes \overline { Q }$ ; confidence 0.929

115. m12003070.png ; $\vec { \theta }$ ; confidence 0.929

116. b1302101.png ; $( N , B )$ ; confidence 0.929

117. l06003058.png ; $\sigma = k ^ { 2 } ( \pi - A - B - C )$ ; confidence 0.929

118. m13025039.png ; $7$ ; confidence 0.929

119. f13010038.png ; $A _ { 2 } ( G ) \subset A _ { p } ( G )$ ; confidence 0.929

120. i1200607.png ; $x < p y$ ; confidence 0.929

121. f12009061.png ; $O _ { \{ 0 \} } ^ { \prime } = B _ { \{ 0 \} }$ ; confidence 0.929

122. c02327018.png ; $( \overline { A } = A )$ ; confidence 0.929

123. r13010018.png ; $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ ; confidence 0.929

124. m12015029.png ; $P ( ( X , Y ) \in A ) = \int \int _ { A } f _ { X , Y } d X d Y$ ; confidence 0.929

125. s130510144.png ; $L _ { 1 } , L _ { 2 } \subset Z ^ { 0 }$ ; confidence 0.929

126. a13004012.png ; $n = 2$ ; confidence 0.929

127. o12005020.png ; $\| f \| = \operatorname { inf } \{ \epsilon > 0 : I ( f / \epsilon ) \leq 1 \}$ ; confidence 0.929

128. l120100105.png ; $e < 0$ ; confidence 0.929

129. a1202208.png ; $| x | | \leq 1$ ; confidence 0.929

130. a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929

131. w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929

132. f12011058.png ; $\Delta _ { k }$ ; confidence 0.929

133. h046010139.png ; $P = S ^ { 1 }$ ; confidence 0.929

134. w12008055.png ; $d \mu _ { X } ( u )$ ; confidence 0.929

135. s13051054.png ; $N = \cup _ { n \in O } N _ { n }$ ; confidence 0.929

136. b12052043.png ; $b _ { n + 1 } = \frac { f ( x _ { n } + 1 ) - f ( x _ { n } ) } { x _ { n } + 1 - x _ { n } }$ ; confidence 0.929

137. r12002019.png ; $F _ { 1 } ( q , \dot { q } ) = C _ { 1 } ( q , \dot { q } ) \dot { q } + g _ { 1 } ( q ) + f _ { 1 } ( \dot { q } )$ ; confidence 0.929

138. o130010151.png ; $\chi ( x ) : = \chi _ { D } ( x )$ ; confidence 0.929

139. b13016044.png ; $f | _ { K } \in A | _ { K } : = \{ f | _ { K } : f \in A \}$ ; confidence 0.929

140. h120020146.png ; $\Gamma _ { \phi }$ ; confidence 0.929

141. n12011079.png ; $x \rightarrow \overline { f } _ { \alpha } ( x )$ ; confidence 0.929

142. n1201003.png ; $f : R \times C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.929

143. q13003022.png ; $P _ { 0 } \psi / p _ { 0 }$ ; confidence 0.929

144. e12009020.png ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu }$ ; confidence 0.929

145. a130240374.png ; $F = Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.929

146. m12013040.png ; $N * = K$ ; confidence 0.929

147. g12003025.png ; $p \equiv 1$ ; confidence 0.929

148. c12008023.png ; $A \in C ^ { m \times n }$ ; confidence 0.929

149. h12004024.png ; $\xi < \kappa$ ; confidence 0.929

150. b12005030.png ; $\operatorname { dist } ( B , U ^ { c } ) > 0$ ; confidence 0.929

151. b13003056.png ; $V _ { y } ^ { \sigma }$ ; confidence 0.928

152. a13032050.png ; $\sigma ^ { 2 } = .25$ ; confidence 0.928

153. a12012072.png ; $( A , I )$ ; confidence 0.928

154. a12011025.png ; $T ( 0 , n ) = 2 n$ ; confidence 0.928

155. w12001016.png ; $= z ^ { n + m } ( f ( D + m ) g ( D ) - f ( D ) g ( D + n ) ) +$ ; confidence 0.928

156. i130090111.png ; $e _ { n } = \lambda _ { p } ( K / k ) n + \mu _ { p } ( K / k ) p ^ { n } + \nu _ { p } ( K / k )$ ; confidence 0.928

157. j13004044.png ; $8 _ { 17 }$ ; confidence 0.928

158. e120190200.png ; $W _ { 2 } ^ { + }$ ; confidence 0.928

159. k05584042.png ; $J ^ { 2 } = I$ ; confidence 0.928

160. n12012040.png ; $P \subset N P$ ; confidence 0.928

161. j130040128.png ; $v = \pm 1$ ; confidence 0.928

162. a11001015.png ; $x$ ; confidence 0.928

163. k055840117.png ; $x , y \in K$ ; confidence 0.928

164. s120040106.png ; $\operatorname { ch } ( \chi ) = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } p _ { \mu }$ ; confidence 0.928

165. m13013022.png ; $L = [ k _ { j } ] = M M ^ { T }$ ; confidence 0.928

166. m12007011.png ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928

167. f120230102.png ; $[ L _ { K } , i _ { L } ] = i ( [ K , L ] ) - ( - 1 ) ^ { k ] } L ( i _ { L } K )$ ; confidence 0.928

168. a130050280.png ; $N _ { G } ^ { \# } ( x ) = \sum _ { n \leq x } G ^ { \# } ( n )$ ; confidence 0.928

169. k055840309.png ; $\Theta ( z ) = U _ { 22 } + z U _ { 21 } ( I - z U _ { 11 } ) ^ { - 1 } U _ { 12 } \quad ( z \in D )$ ; confidence 0.928

170. f130090104.png ; $0 < q _ { j } < 1$ ; confidence 0.928

171. i05218048.png ; $S _ { N }$ ; confidence 0.928

172. h13006044.png ; $D \beta D = \coprod _ { \beta ^ { \prime } \in A } D \beta ^ { \prime }$ ; confidence 0.928

173. n12006033.png ; $T ^ { * } T$ ; confidence 0.928

174. b12051022.png ; $d ^ { T } \nabla f ( x _ { c } ) < 0$ ; confidence 0.928

175. b130200140.png ; $- ( a | \omega ( a ) ) > 0$ ; confidence 0.928

176. h04601042.png ; $( W ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.928

177. f120110104.png ; $P * ( K ) ^ { \prime }$ ; confidence 0.927

178. n12011030.png ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927

179. q1200207.png ; $T \in \operatorname { Mat } ( n ) \otimes A$ ; confidence 0.927

180. p13013033.png ; $SP ^ { + } ( n )$ ; confidence 0.927

181. s12033012.png ; $\lambda ( v - 1 ) = k ( k - 1 )$ ; confidence 0.927

182. i12008016.png ; $S _ { i } = - 1$ ; confidence 0.927

183. d03372072.png ; $k > 2$ ; confidence 0.927

184. h12012020.png ; $D ( \phi ) = d \gamma \phi + \phi d \gamma$ ; confidence 0.927

185. e12023020.png ; $L : E ^ { 1 } \rightarrow R$ ; confidence 0.927

186. e12019014.png ; $( c , d )$ ; confidence 0.927

187. j13001011.png ; $Q _ { D } ( v , z ) \in Z [ v ^ { \pm 1 } , z ^ { 2 } ]$ ; confidence 0.927

188. i120080109.png ; $\chi ( \chi \propto ( T / T _ { c } - 1 ) ^ { - \gamma } \text { with } \gamma = 1 )$ ; confidence 0.927

189. t120060103.png ; $z ^ { - 1 / 3 }$ ; confidence 0.927

190. t120200170.png ; $\operatorname { Re } G _ { 2 } ( r ) \leq - A$ ; confidence 0.927

191. e12021027.png ; $\sigma : E \rightarrow E$ ; confidence 0.927

192. t130050138.png ; $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ ; confidence 0.927

193. h12002028.png ; $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$ ; confidence 0.927

194. w12011070.png ; $\Phi = E \oplus E ^ { * }$ ; confidence 0.927

195. a13026014.png ; $\zeta ( 3 )$ ; confidence 0.927

196. d12014022.png ; $x = u + 1 / u = 2 \operatorname { cos } \alpha$ ; confidence 0.927

197. d12014016.png ; $( x ^ { 2 } - 4 a ) y ^ { \prime \prime } + x y ^ { \prime } - n ^ { 2 } y = 0$ ; confidence 0.927

198. a01084024.png ; $M ^ { * }$ ; confidence 0.927

199. r08259030.png ; $\alpha ^ { * * } = \alpha$ ; confidence 0.927

200. d13018025.png ; $J _ { E } = I _ { E }$ ; confidence 0.927

201. b130200159.png ; $\alpha _ { i } \in \Pi ^ { re }$ ; confidence 0.927

202. c12031026.png ; $\| f \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { \infty }$ ; confidence 0.927

203. x12002031.png ; $\delta ( I _ { \delta } ) \subseteq R$ ; confidence 0.927

204. e120230156.png ; $= \int _ { M } \sigma ^ { k ^ { * } } L _ { Z ^ { k } } ( L \Delta )$ ; confidence 0.927

205. z13003018.png ; $f ( a t + a k )$ ; confidence 0.927

206. m12013028.png ; $\frac { d N } { d t } = \frac { d n } { d t } = f ( N ) =$ ; confidence 0.927

207. j13004028.png ; $31$ ; confidence 0.927

208. h13003025.png ; $j > n$ ; confidence 0.927

209. w1202002.png ; $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ ; confidence 0.926

210. s12026055.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s$ ; confidence 0.926

211. e13007090.png ; $m _ { i } , n _ { i } \leq P$ ; confidence 0.926

212. k12010017.png ; $\{ t = t _ { j } \} \subset R ^ { 3 }$ ; confidence 0.926

213. b1302207.png ; $W _ { 2 } ^ { 1 }$ ; confidence 0.926

214. l11003066.png ; $M ( E )$ ; confidence 0.926

215. f1202303.png ; $\Omega ( M , T M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Omega ^ { k } ( M , T M )$ ; confidence 0.926

216. e12023060.png ; $D = \frac { \partial } { \partial x } + y ^ { \prime } \frac { \partial } { \partial y } + y ^ { \prime \prime } \frac { \partial } { \partial y ^ { \prime } }$ ; confidence 0.926

217. q13005079.png ; $h = F \circ f ^ { - 1 }$ ; confidence 0.926

218. e120240107.png ; $Y _ { 1 } ( N )$ ; confidence 0.926

219. a01245028.png ; $S ^ { 1 } \times S ^ { 3 }$ ; confidence 0.926

220. l06003029.png ; $P Q = a$ ; confidence 0.926

221. m130180166.png ; $\mu ( M ) = \mu ( M \backslash a ) - \mu ( M / a )$ ; confidence 0.926

222. a13007073.png ; $n ^ { \prime }$ ; confidence 0.926

223. e12023024.png ; $y : M \rightarrow F$ ; confidence 0.926

224. f13016040.png ; $j - \operatorname { Spec } ( R )$ ; confidence 0.926

225. s13062062.png ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$ ; confidence 0.926

226. q12005045.png ; $\frac { d } { d \alpha } f ( x ^ { k } + \alpha d ^ { k } ) | _ { \alpha = 0 } = D f ( x ^ { k } ) d ^ { k } =$ ; confidence 0.926

227. i13007030.png ; $\forall \alpha ^ { \prime }$ ; confidence 0.926

228. m13002037.png ; $\frac { d T _ { 1 } } { d s } = [ T _ { 2 } , T _ { 3 } ] , \frac { d T _ { 2 } } { d s } = [ T _ { 3 } , T _ { 1 } ] , \frac { d T _ { 3 } } { d s } = [ T _ { 1 } , T _ { 2 } ]$ ; confidence 0.926

229. t120200164.png ; $\phi ( z ) = z ^ { k } + \alpha _ { 1 } z ^ { k - 1 } + \ldots + \alpha _ { k } \neq 0$ ; confidence 0.926

230. w13005018.png ; $F W = F ^ { 2 ( k + 1 ) } W ( G , K ) \subseteq W ( G , K )$ ; confidence 0.926

231. e120190103.png ; $S = X$ ; confidence 0.926

232. c020740250.png ; $> 0$ ; confidence 0.926

233. o13001067.png ; $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$ ; confidence 0.926

234. d1102209.png ; $c > a$ ; confidence 0.926

235. d03024021.png ; $f ( r - 2 ) ( x _ { 0 } )$ ; confidence 0.926

236. d120230106.png ; $A = \operatorname { diag } \{ a _ { i } \}$ ; confidence 0.926

237. f120110135.png ; $f = \sum _ { k } f _ { \Delta _ { k } }$ ; confidence 0.926

238. k13002015.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) < 0$ ; confidence 0.926

239. a120050131.png ; $R \times R ^ { m }$ ; confidence 0.926

240. t13013071.png ; $D ^ { b } ( \Lambda )$ ; confidence 0.926

241. l12010046.png ; $L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } ( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } ) ^ { \gamma + 1 / 2 }$ ; confidence 0.926

242. c020540188.png ; $s > 0$ ; confidence 0.926

243. g13006011.png ; $\Delta _ { \delta } ( \alpha ) : = \{ z \in C : | z - \alpha | \leq \delta \}$ ; confidence 0.926

244. b01557024.png ; $k \leq n$ ; confidence 0.926

245. c02747087.png ; $( K , L )$ ; confidence 0.926

246. a01414019.png ; $A$ ; confidence 0.926

247. h12002054.png ; $( \hat { \phi } ( - j - k - 1 ) ) j > 0 , k \geq 0$ ; confidence 0.925

248. a13027049.png ; $T _ { n j } ( x _ { n } ) \rightarrow g$ ; confidence 0.925

249. b1302709.png ; $K ( H )$ ; confidence 0.925

250. b130290123.png ; $H _ { m } ^ { i } ( A ) = ( 0 )$ ; confidence 0.925

251. m13013055.png ; $\nu ^ { 3 }$ ; confidence 0.925

252. f13012032.png ; $C _ { G } ( A )$ ; confidence 0.925

253. f12010057.png ; $( 2 / \pi ) \operatorname { sin } ^ { 2 } \phi d \phi$ ; confidence 0.925

254. a12028073.png ; $A \in L _ { w } ( X , Y )$ ; confidence 0.925

255. b12052059.png ; $B + u v ^ { T }$ ; confidence 0.925

256. m12016016.png ; $| \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } ( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) )$ ; confidence 0.925

257. q12001099.png ; $\mathfrak { h } = \{ X \in \mathfrak { g } : \tau ( X ) = X \}$ ; confidence 0.925

258. m12016012.png ; $\Phi > 0$ ; confidence 0.925

259. r13008074.png ; $K ( p , q )$ ; confidence 0.925

260. b13004062.png ; $E = X$ ; confidence 0.925

261. m12011056.png ; $\pi _ { 1 } ( \overline { M } )$ ; confidence 0.925

262. m13014058.png ; $\int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) )$ ; confidence 0.925

263. t13011011.png ; $- \otimes _ { B } T$ ; confidence 0.925

264. l13005029.png ; $L ( a ) = \infty$ ; confidence 0.925

265. i13005022.png ; $r _ { \pm } ( - k ) = \overline { r _ { \pm } ( k ) }$ ; confidence 0.925

266. v13005082.png ; $m , n \in Z$ ; confidence 0.925

267. b12018065.png ; $WB ( L )$ ; confidence 0.925

268. a012460143.png ; $Q _ { 1 }$ ; confidence 0.925

269. f1300907.png ; $U _ { n + 1 } ( x ) U _ { n - 1 } ( x ) - U _ { n } ^ { 2 } ( x ) = ( - 1 ) ^ { n }$ ; confidence 0.925

270. w130080163.png ; $\psi ( z _ { 0 } , z _ { 0 } ) = I$ ; confidence 0.925

271. b11022014.png ; $h ( X ) = h ^ { 0 } ( X ) \oplus \ldots \oplus h ^ { 2 n } ( X )$ ; confidence 0.925

272. h13006040.png ; $v = D \beta D$ ; confidence 0.925

273. f12002035.png ; $P , Q \in K [ X ]$ ; confidence 0.925

274. b120150121.png ; $\Omega = ( N \cup \{ 0 \} ) ^ { m }$ ; confidence 0.925

275. k1201107.png ; $\frac { \partial } { \partial t _ { j } } L = [ ( L ^ { j } ) _ { + } , L ]$ ; confidence 0.925

276. a13020014.png ; $x , y , z , u , v , w \in V$ ; confidence 0.925

277. m12013035.png ; $f ^ { \prime } ( N * ) > 0$ ; confidence 0.925

278. j12002072.png ; $A ^ { * } = \operatorname { sup } _ { t \geq 0 } | A _ { t } | \leq \frac { 1 } { P [ T < \infty ] }$ ; confidence 0.925

279. s1200204.png ; $L ( ; 0 ) = f ( . )$ ; confidence 0.925

280. o13006088.png ; $\Phi ^ { ( 2 ) } = \Phi ^ { ( 1 ) } U$ ; confidence 0.925

281. e120190145.png ; $S ( f ( m ) , \rho )$ ; confidence 0.924

282. b110380123.png ; $T ( G )$ ; confidence 0.924

283. f1301909.png ; $x _ { j } = \pi j / N$ ; confidence 0.924

284. c1301001.png ; $( X , A )$ ; confidence 0.924

285. k05584022.png ; $K$ ; confidence 0.924

286. d1201106.png ; $\{ x ; \}$ ; confidence 0.924

287. z13008045.png ; $= \frac { ( - 1 ) ^ { k + l } } { ( \alpha + 1 ) _ { k + l } } ( 1 - z z ) ^ { - \alpha } ( \frac { \partial } { \partial z } ) ^ { l } ( \frac { \partial } { \partial z } ) ^ { k } ( 1 - z z ) ^ { k + l + \alpha }$ ; confidence 0.924

288. n13002030.png ; $11$ ; confidence 0.924

289. w13014018.png ; $H ( x ) = 0$ ; confidence 0.924

290. c12030093.png ; $\omega \{ K _ { i } \}$ ; confidence 0.924

291. l11001014.png ; $( \alpha > 0 ) \& ( \alpha \preceq b ) \Rightarrow ( \alpha \alpha \preceq \alpha c )$ ; confidence 0.924

292. j13002034.png ; $G ( n , p )$ ; confidence 0.924

293. h12003010.png ; $\tau ( \varphi ) = \text { trace } \nabla d \varphi$ ; confidence 0.924

294. f13021037.png ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; C )$ ; confidence 0.924

295. w12011078.png ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi } ^ { * } , \Phi ^ { \prime }$ ; confidence 0.924

296. e03550078.png ; $\Omega$ ; confidence 0.924

297. h13002081.png ; $N ( q , r )$ ; confidence 0.924

298. e12021045.png ; $( p _ { m } ( x ) ) _ { m \geq 1 }$ ; confidence 0.924

299. f13021028.png ; $\{ u \in B ( G ) : \| u \| _ { B ( G ) } = 1 \}$ ; confidence 0.924

300. a130040751.png ; $r \in R$ ; confidence 0.924

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/30. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/30&oldid=44440