Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/26"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 26 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 26 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034067.png ; $H : S ^ { 1 } \times M \rightarrow R$ ; confidence 0.975
+
1. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005041.png ; $( s , r , 1 )$ ; confidence 0.960
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034033.png ; $SH ^ { * } ( M , \omega , L , \phi ( L ) )$ ; confidence 0.981
+
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022058.png ; $\operatorname { det } ( \Delta ) = \operatorname { exp } ( - \frac { d } { d s } \zeta ( s ) | _ { s = 0 } )$ ; confidence 0.960
  
3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065026.png ; $\mathfrak { c } _ { \mu } > - \infty$ ; confidence 0.615
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019026.png ; $h \in [ H _ { 1 } , H _ { 2 } ] \subseteq [ H , 2 H ]$ ; confidence 0.960
  
4. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005027.png ; $A \equiv ( A _ { 1 } , \dots , A _ { x } )$ ; confidence 0.385
+
4. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032970/d0329708.png ; $R = 0$ ; confidence 0.960
  
5. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005084.png ; $a \equiv ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.312
+
5. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010039.png ; $B f = F ^ { - 1 } [ b ( x , t , \alpha ) \tilde { f } ]$ ; confidence 0.960
  
6. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009010.png ; $\rho _ { X } : T _ { X } \rightarrow R$ ; confidence 0.982
+
6. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005098.png ; $e ^ { s } ( T , V )$ ; confidence 0.960
  
7. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006071.png ; $E _ { atom } ^ { TF } ( N _ { j } , Z _ { j } )$ ; confidence 0.515
+
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022080.png ; $M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.960
  
8. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t1200707.png ; $17.19 .23 .29 .31 .41 .47 .59 .71$ ; confidence 0.911
+
8. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001063.png ; $n ^ { k }$ ; confidence 0.960
  
9. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013073.png ; $\tau _ { N } ( t ) = \tau _ { 0 } ( t + n w )$ ; confidence 0.864
+
9. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014041.png ; $\sum _ { k = 1 } ^ { \infty } | x _ { k } | ^ { 2 } / k = 1$ ; confidence 0.960
  
10. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014026.png ; $\| W _ { k } \| = \| F k \| _ { L } \infty$ ; confidence 0.628
+
10. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020203.png ; $G = p \circ q ^ { - 1 } : X \rightarrow K ( Y )$ ; confidence 0.960
  
11. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015012.png ; $\xi \in A \mapsto \xi ^ { \# } \in A$ ; confidence 0.985
+
11. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002059.png ; $| b ( u , v ) | ^ { 2 } \leq | b ( u , u ) | | b ( v , v ) |$ ; confidence 0.960
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015041.png ; $\xi \rightarrow \pi ( \xi ) \eta$ ; confidence 0.999
+
12. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002012.png ; $f ( z ) = \int k _ { \vartheta } ( z ) f ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.960
  
13. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408029.png ; $\pi _ { R } - 1 ( \Omega ( X ; A , * ) , * )$ ; confidence 0.462
+
13. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001010.png ; $[ f _ { \alpha } , f _ { \beta } ] = ( \beta - \alpha ) f _ { \alpha + \beta }$ ; confidence 0.960
  
14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200109.png ; $c _ { m , n } = 2 ( n / ( 8 e ( m + n ) ) ) ^ { n }$ ; confidence 0.729
+
14. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008018.png ; $D _ { \xi } = D ( \xi , R ) : = \{ z \in \Delta : \frac { | 1 - z \overline { \xi } | ^ { 2 } } { 1 - | z | ^ { 2 } } < R \}$ ; confidence 0.960
  
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020086.png ; $x \operatorname { exp } ( x + 1 ) = 1$ ; confidence 0.620
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301909.png ; $\alpha \in ( 1 / 3,2 / 3 )$ ; confidence 0.960
  
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200157.png ; $S = [ m + 1 , m + n ] \cup [ 2 m + 1,2 m + n ]$ ; confidence 0.895
+
16. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027021.png ; $\frac { \alpha } { 2 } + \frac { 1 } { 4 } \leq r < \frac { \alpha } { 2 } + \frac { 5 } { 4 }$ ; confidence 0.960
  
17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021056.png ; $\phi : E \rightarrow GF ( q ) ^ { x }$ ; confidence 0.150
+
17. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080159.png ; $( \overline { \partial } + \mu \partial + \overline { A } ) \psi = 0$ ; confidence 0.960
  
18. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006016.png ; $\partial \nmid \partial y _ { x }$ ; confidence 0.539
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180173.png ; $V _ { f }$ ; confidence 0.960
  
19. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020169.png ; $q \circ p ^ { - 1 } ( x ) \subset F ( x )$ ; confidence 0.988
+
19. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019081.png ; $3 / 20 = 0.15$ ; confidence 0.960
  
20. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007054.png ; $\theta ^ { \prime } = \theta - \pi$ ; confidence 1.000
+
20. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001017.png ; $U = \sqrt { g L \alpha \delta \theta _ { 0 } } , \quad t = \frac { U } { L }$ ; confidence 0.960
  
21. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004046.png ; $\chi _ { T } ( G ) \leq \Delta ( G ) + C$ ; confidence 0.858
+
21. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040121.png ; $F = R$ ; confidence 0.960
  
22. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004011.png ; $\chi ^ { \prime } ( G ) = \Delta ( G )$ ; confidence 1.000
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001013.png ; $T + \lambda I$ ; confidence 0.960
  
23. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004040.png ; $\chi _ { T } ( G ) \leq \Delta ( G ) + 2$ ; confidence 0.998
+
23. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013072.png ; $T _ { \lambda }$ ; confidence 0.960
  
24. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301109.png ; $x = \frac { \Gamma } { l \sqrt { 8 } }$ ; confidence 0.478
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420117.png ; $U _ { q } ( sl _ { 2 } )$ ; confidence 0.960
  
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003038.png ; $\alpha \mapsto P _ { \alpha } ( x )$ ; confidence 0.997
+
25. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002045.png ; $H ^ { 2 } = L ^ { 2 } \ominus H ^ { 2 }$ ; confidence 0.960
  
26. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030118.png ; $x ^ { * * } \in X ^ { * * } \backslash X$ ; confidence 0.728
+
26. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337011.png ; $f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.960
  
27. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003051.png ; $| f ( \gamma ) | \geq \varepsilon$ ; confidence 0.930
+
27. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230111.png ; $E ( L )$ ; confidence 0.960
  
28. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001018.png ; $\psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) =$ ; confidence 0.957
+
28. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009043.png ; $g _ { i } \in A$ ; confidence 0.960
  
29. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006032.png ; $\frac { 1 } { 2 \pi ^ { 2 } } \omega WP$ ; confidence 0.849
+
29. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002033.png ; $D ( R )$ ; confidence 0.960
  
30. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005051.png ; $A ^ { m } = R ^ { m } \oplus N ^ { m ^ { m } }$ ; confidence 0.536
+
30. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004063.png ; $r \in C ^ { 2 }$ ; confidence 0.960
  
31. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005021.png ; $W _ { k } = W ( G , K ) _ { k } = W ( G , K ) / F W$ ; confidence 0.998
+
31. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f1301307.png ; $S \cap M \neq 0$ ; confidence 0.960
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006047.png ; $J ^ { \prime \prime } 0 ( R ^ { N } , M )$ ; confidence 0.279
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018042.png ; $E \otimes \ldots \otimes E$ ; confidence 0.960
  
33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006052.png ; $\eta : T _ { A } \rightarrow T _ { B }$ ; confidence 0.997
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055044.png ; $M \ni x \mapsto d ( x , ) \in C ( M )$ ; confidence 0.960
  
34. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090110.png ; $\lambda \in \Lambda ^ { + } ( n , r )$ ; confidence 1.000
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034050.png ; $H ( M )$ ; confidence 0.960
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011082.png ; $R _ { X } ^ { Y } \times R _ { \xi } ^ { X }$ ; confidence 0.073
+
35. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090204.png ; $\mu _ { \chi } ^ { * } = \mu _ { \chi }$ ; confidence 0.960
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011074.png ; $\langle . . \rangle _ { E } ^ { * } , E$ ; confidence 0.290
+
36. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019029.png ; $\varphi ( t , x ) \notin N$ ; confidence 0.960
  
37. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008071.png ; $\mathfrak { g } = \text { Lie } ( G )$ ; confidence 0.338
+
37. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015059.png ; $C ^ { * } ( S )$ ; confidence 0.960
  
38. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080178.png ; $F B \rightarrow \overline { F B }$ ; confidence 0.668
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024010.png ; $v _ { \infty } ( f ) = - \operatorname { log } | f |$ ; confidence 0.960
  
39. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080187.png ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070242.png ; $T \cap k ( C _ { i } )$ ; confidence 0.960
  
40. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009091.png ; $I ( g ) = \int _ { 0 } ^ { 1 } g ( t ) d B ( t )$ ; confidence 0.965
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007060.png ; $u ^ { \prime } \in B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.960
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019010.png ; $R _ { p } ^ { 3 N } \times R _ { X } ^ { 3 N }$ ; confidence 0.535
+
41. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003015.png ; $( BL ( X , Y ) , BL ( Y , X ) )$ ; confidence 0.960
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019011.png ; $f _ { W } + p . \nabla f _ { W } = P f _ { W }$ ; confidence 0.596
+
42. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008052.png ; $\{ S _ { i } \}$ ; confidence 0.960
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019036.png ; $R _ { x } ^ { 3 N } \times R _ { p } ^ { 3 N }$ ; confidence 0.504
+
43. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601090.png ; $( W \cup W ^ { \prime } ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.960
  
44. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013044.png ; $\int _ { \Sigma } ( | H | ^ { 2 } + c ) d A$ ; confidence 0.968
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200305.png ; $a < b$ ; confidence 0.960
  
45. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013019.png ; $\hat { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930
+
45. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006077.png ; $( G )$ ; confidence 0.960
  
46. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004018.png ; $\operatorname { cr } ( K _ { a } , m )$ ; confidence 0.149
+
46. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006056.png ; $\omega \in C$ ; confidence 0.960
  
47. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001025.png ; $\mathfrak { e } ^ { [ p ] } - e _ { 0 } = 0$ ; confidence 0.301
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037056.png ; $L _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.960
  
48. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008044.png ; $V _ { k + l } ^ { k - 1 } ( x , y ; \alpha ) =$ ; confidence 0.427
+
48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230135.png ; $X _ { i } ( p \times n _ { i } )$ ; confidence 0.960
  
49. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011051.png ; $\{ f ( k , n ) \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.854
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011037.png ; $\frac { \partial \phi } { \partial t } = ( \frac { \partial \phi ( x , t ) } { \partial t } ) | _ { x }$ ; confidence 0.960
  
50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png ; $\operatorname { dim } ( O ) = 4$ ; confidence 0.996
+
50. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014012.png ; $\Sigma _ { 11 }$ ; confidence 0.960
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013067.png ; $C [ t ] = C [ t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.593
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180123.png ; $c _ { i } ( R ) =$ ; confidence 0.960
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017041.png ; $w _ { i } \geq 0$ ; confidence 0.959
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240366.png ; $M _ { H } = Z _ { 1 } ^ { \prime } Z _ { 1 }$ ; confidence 0.707
+
53. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006027.png ; $k ^ { n } B _ { n } ( \frac { h } { k } ) = G _ { n } - \sum \frac { 1 } { p }$ ; confidence 0.959
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040653.png ; $e _ { S _ { P } } ^ { * } \mathfrak { M }$ ; confidence 0.374
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160160.png ; $P = FO ( LFP )$ ; confidence 0.959
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431
+
55. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023044.png ; $\sigma _ { t } ( x ) = ( x , y ( x ) + t z ( x ) )$ ; confidence 0.959
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040312.png ; $c \equiv d ( \Theta _ { Q } ( a , b ) )$ ; confidence 0.557
+
56. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080128.png ; $\int _ { D } B ( x , y ) u ( y ) d y = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi _ { j } ) _ { 0 } \varphi _ { j } ( x )$ ; confidence 0.959
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043070.png ; $U _ { q } ( gl _ { 2 } )$ ; confidence 0.959
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015033.png ; $( g ) = \operatorname { Der } ( g )$ ; confidence 0.631
+
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006013.png ; $V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }$ ; confidence 0.959
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012018.png ; $r \leq ( s ^ { 2 } \mu - 1 ) / ( \mu - 1 )$ ; confidence 0.997
+
59. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420294.png ; $M ( P )$ ; confidence 0.959
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940
+
60. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017010.png ; $X = A$ ; confidence 0.959
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201809.png ; $\Delta S _ { x } = S _ { x } + 1 - S _ { x }$ ; confidence 0.469
+
61. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010132.png ; $\operatorname { sup } _ { \alpha ^ { \prime } , \alpha \in S ^ { 2 } } | A _ { 1 } - A _ { 2 } | < \delta$ ; confidence 0.959
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301809.png ; $F _ { L } \subseteq Mod \times Fm$ ; confidence 0.520
+
62. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566045.png ; $p > q$ ; confidence 0.959
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180109.png ; $\varphi ( v 0 , \dots , v _ { n } - 1 )$ ; confidence 0.320
+
63. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022081.png ; $i + 1$ ; confidence 0.959
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940
+
64. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240106.png ; $T = T _ { p } ( E )$ ; confidence 0.959
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302006.png ; $( x , y , z ) \rightarrow \{ x y z \}$ ; confidence 0.751
+
65. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013034.png ; $f _ { j } ( x )$ ; confidence 0.959
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a1302507.png ; $\{ x y z \} + \{ y z x \} + \{ z x y \} = 0$ ; confidence 0.983
+
66. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003032.png ; $| f ( t ) | \leq C ( 1 + | t | ) ^ { - ( 1 + \epsilon ) }$ ; confidence 0.959
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027049.png ; $T _ { n j } ( x _ { n } ) \rightarrow g$ ; confidence 0.925
+
67. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230120.png ; $Z R - R Z ^ { * } = G J G ^ { * }$ ; confidence 0.959
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024028.png ; $d d ^ { c } g + \delta _ { Z } = \omega$ ; confidence 0.471
+
68. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003049.png ; $T ( M ^ { g } )$ ; confidence 0.959
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260117.png ; $( m , X _ { 1 } , \dots , X _ { s } ) ^ { c }$ ; confidence 0.207
+
69. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006019.png ; $\rho \rightarrow E ( \rho )$ ; confidence 0.959
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029035.png ; $Y = Y _ { 0 } \cup _ { \Sigma } Y _ { 1 }$ ; confidence 0.997
+
70. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016026.png ; $A ( q , d ) ( f )$ ; confidence 0.959
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029067.png ; $f : \Sigma \rightarrow \Sigma$ ; confidence 0.995
+
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040052.png ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210147.png ; $H ^ { i } ( \mathfrak { h } ^ { - } , L )$ ; confidence 0.855
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302706.png ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066061.png ; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290187.png ; $\operatorname { lim } A \geq 1$ ; confidence 0.959
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066058.png ; $| x ^ { \prime } - x | \leq | x - y | / 2$ ; confidence 0.813
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220231.png ; $CH ^ { i } ( X )$ ; confidence 0.959
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002037.png ; $b ( S l , v ) = \langle l , v \rangle$ ; confidence 0.887
+
75. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022069.png ; $\sum _ { k } ( z + \lambda _ { k } ) ^ { - s } , \operatorname { Re } ( s ) > \frac { 1 } { 2 } \operatorname { dim } M$ ; confidence 0.959
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010102.png ; $Z \mapsto ( A Z + B ) ( C Z + D ) ^ { - 1 }$ ; confidence 0.932
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290183.png ; $d ^ { + }$ ; confidence 0.959
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001095.png ; $G = \operatorname { Sp } ( 2 n , Q )$ ; confidence 0.321
+
77. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059031.png ; $\langle P , Q \rangle \equiv M [ P ( z ) Q ( z ) ]$ ; confidence 0.959
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001085.png ; $z \mapsto ( a z + d ) ( c z + d ) ^ { - 1 }$ ; confidence 0.851
+
78. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008031.png ; $\mu : = \operatorname { min } \{ \operatorname { dim } l , n - 1 \}$ ; confidence 0.959
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040125.png ; $\| f _ { n } \| \rightarrow \| f \|$ ; confidence 0.584
+
79. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110250/p11025046.png ; $x ^ { k + 1 }$ ; confidence 0.959
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040171.png ; $\theta = 1 - 1 / p = 1 / p ^ { \prime }$ ; confidence 0.998
+
80. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026047.png ; $( L ^ { 2 } ) ^ { + }$ ; confidence 0.959
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005053.png ; $\tilde { f } \in H _ { b } ( E ^ { * * } )$ ; confidence 0.680
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303204.png ; $X$ ; confidence 0.959
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220161.png ; $\operatorname { det } ( r _ { D } )$ ; confidence 0.974
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220163.png ; $L ( h ^ { i } ( X ) , s )$ ; confidence 0.959
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220180.png ; $R \subset H _ { M } ^ { 3 } ( X , Q ( 2 ) )$ ; confidence 0.443
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021053.png ; $s _ { i } = 1$ ; confidence 0.959
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b1102604.png ; $( - \lambda , \rho \pm i \omega )$ ; confidence 0.991
+
84. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002012.png ; $\operatorname { inf } \{ \| \phi \| _ { \infty } : \phi \in L ^ { \infty } , \hat { \phi } ( j ) = \alpha _ { j } \text { for } j \geq 0 \}$ ; confidence 0.959
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201406.png ; $\operatorname { deg } S ( z ) < 2 t$ ; confidence 0.999
+
85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011063.png ; $\int _ { 0 } ^ { \infty } ( 1 - e ^ { - \lambda } ) R ( d \lambda ) = 1$ ; confidence 0.959
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015087.png ; $\operatorname { dim } D = 2 ^ { x }$ ; confidence 0.980
+
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210133.png ; $L ( \theta ) = N ( 0 , \Gamma ^ { - 1 } ( \theta ) ^ { * } L _ { 2 } ( \theta ) )$ ; confidence 0.959
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011020.png ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220108.png ; $R _ { 1 }$ ; confidence 0.959
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016065.png ; $x _ { 1 } ^ { \prime } = x _ { 1 } ( s + v )$ ; confidence 0.910
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c0250209.png ; $( C , \alpha )$ ; confidence 0.959
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017027.png ; $( 1 + | \xi | ^ { 2 } ) ^ { - \alpha / 2 }$ ; confidence 1.000
+
89. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011024.png ; $\operatorname { Im } z \in \Gamma _ { j }$ ; confidence 0.959
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012022.png ; $\sum _ { k } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.948
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b130020105.png ; $M ( A )$ ; confidence 0.959
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030044.png ; $\psi ( ; \eta ) \text { is } ( \eta$ ; confidence 0.852
+
91. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012012.png ; $Q ( \theta ^ { ( t + 1 ) } | \theta ^ { ( t ) } ) \geq Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.959
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032067.png ; $= \| r x + s y + t z \| = F ( F ( r , s ) , t )$ ; confidence 0.315
+
92. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300409.png ; $H ^ { * } = H \cup P ^ { 1 } ( Q ) \subset P ^ { 1 } ( C )$ ; confidence 0.959
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572
+
93. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004039.png ; $| x | ^ { \lambda } \operatorname { exp } ( - A | x | ^ { - \alpha } )$ ; confidence 0.959
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019078.png ; $\beta > 89 / 570 = 0.1561 \ldots$ ; confidence 0.850
+
94. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011014.png ; $\xi ( s ) = \xi ( 0 ) \prod _ { \rho } ( 1 - \frac { s } { \rho } ) e ^ { s / \rho }$ ; confidence 0.959
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200104.png ; $a \in \mathfrak { g } ^ { \alpha }$ ; confidence 0.225
+
95. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004026.png ; $U _ { \xi } \cap V _ { \eta } = * \emptyset$ ; confidence 0.959
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400116.png ; $\varrho : B \rightarrow C ^ { * }$ ; confidence 0.922
+
96. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013095.png ; $H$ ; confidence 0.959
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040048.png ; $\varrho : H \rightarrow C ^ { * }$ ; confidence 0.924
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012042.png ; $( I - A ) ^ { - 1 } v$ ; confidence 0.959
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400120.png ; $p \in h _ { R } ^ { * } \subset h ^ { * }$ ; confidence 0.568
+
98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029096.png ; $h _ { 0 } = 0$ ; confidence 0.958
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420118.png ; $( b _ { i } - q ) ( b _ { i } + q ^ { - 1 } ) = 0$ ; confidence 0.994
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026079.png ; $m ^ { c } A ^ { x }$ ; confidence 0.958
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042087.png ; $V = \oplus _ { i = 0 } ^ { n - 1 } V _ { i }$ ; confidence 0.484
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015065.png ; $\sum _ { j = 1 } ^ { n } x _ { j }$ ; confidence 0.958
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204306.png ; $\varepsilon : B \rightarrow 1$ ; confidence 0.907
+
101. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021180/c02118075.png ; $k - 2$ ; confidence 0.958
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050012.png ; $W ^ { + } : = \{ | W _ { t } | : t \geq 0 \}$ ; confidence 0.999
+
102. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200106.png ; $\varphi _ { i } ( f )$ ; confidence 0.958
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050039.png ; $\tau : = \{ \tau _ { X } : x \geq 0 \}$ ; confidence 0.963
+
103. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110127.png ; $M _ { i k }$ ; confidence 0.958
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290200.png ; $\{ t _ { i } \} _ { 0 } \leq i \leq d - 1$ ; confidence 0.548
+
104. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008015.png ; $x = r \operatorname { cos } \theta$ ; confidence 0.958
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290104.png ; $R ( I ) = \oplus _ { n } \geq 0 I ^ { n }$ ; confidence 0.336
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040148.png ; $\square \psi \rightarrow \varphi \in T$ ; confidence 0.958
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029091.png ; $\{ h _ { i } \} _ { 0 \leq i \leq d - 1 }$ ; confidence 0.677
+
106. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007010.png ; $\tau \circ \Delta h = R ( \Delta h ) R ^ { - 1 } , \forall h \in H$ ; confidence 0.958
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029081.png ; $s = \operatorname { dim } _ { A } M$ ; confidence 0.995
+
107. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002030.png ; $\operatorname { cat } ( X ) = - 1 +$ ; confidence 0.958
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029094.png ; $1 _ { A } ( H _ { m } ^ { i } ( A ) ) = h _ { i }$ ; confidence 0.710
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005054.png ; $u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.958
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300103.png ; $A _ { 1 } ^ { n } , \dots , A _ { 2 } ^ { n }$ ; confidence 0.296
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027044.png ; $A \rightarrow B ( H )$ ; confidence 0.958
  
110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001045.png ; $E \subset C ^ { n } \subset P ^ { n }$ ; confidence 0.910
+
110. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002039.png ; $2 \sqrt [ 4 ] { 3 }$ ; confidence 0.958
  
111. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001090.png ; $E = \{ z \in C ^ { n } : \rho ( z ) < 0 \}$ ; confidence 0.650
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023081.png ; $L _ { K } = [ i _ { K } , d ]$ ; confidence 0.958
  
112. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001026.png ; $f _ { 0 } ^ { \prime \prime } ( c ) > 0$ ; confidence 0.882
+
112. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958
  
113. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001029.png ; $f _ { 0 } ^ { \prime \prime } ( c ) < 0$ ; confidence 0.889
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240330.png ; $( p \times p _ { 1 } )$ ; confidence 0.958
  
114. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002074.png ; $\lambda ( x ^ { \prime \prime } )$ ; confidence 0.772
+
114. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
  
115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004044.png ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571
+
115. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958
  
116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
+
116. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005029.png ; $Kn = \alpha \frac { Ma } { Re }$ ; confidence 0.958
  
117. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007068.png ; $\operatorname { gcd } ( e , d ) = 1$ ; confidence 0.998
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029014.png ; $A ^ { \pm }$ ; confidence 0.958
  
118. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009029.png ; $C _ { j } ( x _ { i } ) = \delta _ { i , j }$ ; confidence 0.980
+
118. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001029.png ; $\overline { d } _ { \chi } ^ { G }$ ; confidence 0.958
  
119. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211012.png ; $\lambda _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.840
+
119. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110300/c11030034.png ; $\sigma = \pm 1$ ; confidence 0.958
  
120. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211051.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } )$ ; confidence 0.915
+
120. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006090.png ; $( u _ { i } , u _ { i } + 1 )$ ; confidence 0.958
  
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c1301301.png ; $Q = A K ^ { \alpha } L ^ { 1 - \alpha }$ ; confidence 0.996
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004079.png ; $T : L _ { 1 } \rightarrow L _ { 1 }$ ; confidence 0.958
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png ; $\mathfrak { q } \notin \vec { A }$ ; confidence 0.172
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040742.png ; $\square$ ; confidence 0.958
  
123. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232709.png ; $\vec { A \cup B } = \vec { A \cup B }$ ; confidence 0.425
+
123. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200203.png ; $L : R ^ { N } \times R \rightarrow R$ ; confidence 0.958
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201701.png ; $\gamma \equiv \gamma ^ { ( 2 n ) }$ ; confidence 0.971
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240365.png ; $( p \times p )$ ; confidence 0.958
  
125. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180150.png ; $X \otimes Y \in \otimes ^ { 2 } E *$ ; confidence 0.621
+
125. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008030.png ; $K f = 0$ ; confidence 0.958
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180343.png ; $\Phi \{ M , g \} \in S ^ { 1 } ( = R / Z )$ ; confidence 0.977
+
126. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100127.png ; $u _ { j } = ( - \Delta + m ^ { 2 } ) ^ { - 1 / 2 } f _ { j }$ ; confidence 0.958
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180314.png ; $R ( g ) = ( R ( \nabla ) \otimes 1 ) g$ ; confidence 0.998
+
127. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004053.png ; $G \in X$ ; confidence 0.958
  
128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180469.png ; $\pi _ { 0 } : N _ { 0 } \rightarrow N$ ; confidence 0.643
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040126.png ; $0 \leq f _ { n } \uparrow f \in X$ ; confidence 0.958
  
129. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180327.png ; $S ^ { 2 } E \subset \otimes ^ { 2 } E$ ; confidence 0.404
+
129. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001045.png ; $\omega < 2.376$ ; confidence 0.958
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180268.png ; $S ^ { 2 } E \subset \otimes ^ { * } E$ ; confidence 0.237
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535075.png ; $A \subset B$ ; confidence 0.958
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180183.png ; $A ^ { 2 } E \subset \otimes ^ { 2 } E$ ; confidence 0.351
+
131. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200208.png ; $g ( x ; t ) = \frac { 1 } { ( 2 \pi t ) ^ { N / 2 } } \operatorname { exp } ( - \frac { x _ { 1 } ^ { 2 } + \ldots + x _ { N } ^ { 2 } } { 2 t } )$ ; confidence 0.958
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c1201805.png ; $\lambda : M \rightarrow R ^ { + }$ ; confidence 0.994
+
132. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003058.png ; $u _ { j } | _ { K } \equiv 0$ ; confidence 0.958
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180157.png ; $g ^ { - 1 } \in S ^ { 2 } \varepsilon$ ; confidence 0.619
+
133. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060168.png ; $| \frac { \partial A ( x , y ) } { \partial x } + \frac { 1 } { 4 } q ( \frac { x + y } { 2 } ) | \leq c \sigma ( x ) \sigma ( \frac { x + y } { 2 } ) , | \frac { \partial A ( x , y ) } { \partial y } + \frac { 1 } { 4 } q ( \frac { x + y } { 2 } ) | \leq c \sigma ( x ) \sigma ( \frac { x + y } { 2 } )$ ; confidence 0.958
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019064.png ; $( B ^ { k } / S ^ { k - 1 } , [ S ^ { k - 1 } ] )$ ; confidence 0.994
+
134. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070168.png ; $f ( x ) = ( F ( t ) , h ( t , x ) ) _ { H } , ( f ( x ) , h ( s , x ) ) _ { H } = F ( s )$ ; confidence 0.958
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029044.png ; $\partial : C ( w ) \rightarrow P$ ; confidence 0.998
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053052.png ; $F _ { q }$ ; confidence 0.958
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029016.png ; $F \rightarrow E \rightarrow B$ ; confidence 0.935
+
136. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023047.png ; $d f _ { t } ( x )$ ; confidence 0.958
  
137. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020233.png ; $g ( \overline { u } _ { 1 } ) = v _ { N }$ ; confidence 0.289
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610215.png ; $G = SU ( 2 )$ ; confidence 0.958
  
138. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002034.png ; $\sum _ { k \in P } \lambda _ { k } = 1$ ; confidence 0.998
+
138. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026024.png ; $\Gamma ^ { + }$ ; confidence 0.958
  
139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006026.png ; $H ^ { ( 1 ) } Q ^ { + } = Q ^ { + } H ^ { ( 0 ) }$ ; confidence 0.962
+
139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012033.png ; $Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.958
  
140. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302407.png ; $\beta _ { 0 } , \dots , \beta _ { r }$ ; confidence 0.528
+
140. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024038.png ; $\alpha > r$ ; confidence 0.958
  
141. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008062.png ; $( K ^ { H _ { i } } , v _ { i } ^ { H _ { i } } )$ ; confidence 0.736
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018079.png ; $g = \lambda \mu ( d u \otimes d u - d v \otimes d v )$ ; confidence 0.958
  
142. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006011.png ; $m : 2 ^ { \Xi } \rightarrow [ 0,1 ]$ ; confidence 0.984
+
142. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012052.png ; $r \in ( 0,4 ]$ ; confidence 0.958
  
143. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300607.png ; $\operatorname { Bel } ( \Xi ) = 1$ ; confidence 0.733
+
143. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015070.png ; $x ( A ) < \infty$ ; confidence 0.957
  
144. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006049.png ; $X _ { j _ { 1 } } , \dots , X _ { j _ { k } }$ ; confidence 0.738
+
144. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008052.png ; $\operatorname { Jac } ( \Sigma _ { g } )$ ; confidence 0.957
  
145. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008012.png ; $\{ F ^ { n } \} _ { n = 1 } ^ { \infty } 1$ ; confidence 0.603
+
145. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008095.png ; $H \rightarrow 0$ ; confidence 0.957
  
146. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080145.png ; $R \in \operatorname { Hol } ( D )$ ; confidence 0.553
+
146. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222016.png ; $C _ { 1 } ^ { 2 }$ ; confidence 0.957
  
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008073.png ; $F \in \operatorname { Hol } ( B )$ ; confidence 0.506
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002043.png ; $A ( X )$ ; confidence 0.957
  
148. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201103.png ; $f : S \rightarrow [ 0 , + \infty )$ ; confidence 0.560
+
148. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007045.png ; $\{ z _ { n } \} \subset \Delta$ ; confidence 0.957
  
149. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202607.png ; $E \xi _ { k } ^ { 2 } = \sigma ^ { 2 } > 0$ ; confidence 0.741
+
149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007044.png ; $Z A$ ; confidence 0.957
  
150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001048.png ; $( \text { Epi } , \text { Mono } ) =$ ; confidence 0.592
+
150. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020224.png ; $S = \{ r e ^ { i \vartheta } : 1 - h \leq r < 1 , | \vartheta - \vartheta _ { 0 } | \leq h \}$ ; confidence 0.957
  
151. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012016.png ; $Y _ { com } = ( Y _ { obs } , Y _ { mis } )$ ; confidence 0.539
+
151. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004018.png ; $\{ u _ { j } \} \subset A$ ; confidence 0.957
  
152. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002089.png ; $Y \rightarrow \Omega \Sigma Y$ ; confidence 0.717
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400123.png ; $V$ ; confidence 0.957
  
153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002030.png ; $\operatorname { cat } ( X ) = - 1 +$ ; confidence 0.958
+
153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011027.png ; $\langle f , \varphi \rangle = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) \varphi ( z ) d z$ ; confidence 0.957
  
154. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006063.png ; $J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.995
+
154. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021071.png ; $M _ { H }$ ; confidence 0.957
  
155. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006040.png ; $\Gamma : Y \rightarrow J ^ { 1 } Y$ ; confidence 0.993
+
155. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070141.png ; $( h ( s , x ) , h ( t , x ) ) _ { H } = \delta _ { m } ( t - s )$ ; confidence 0.957
  
156. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011032.png ; $c ^ { - 1 } \partial D / \partial t$ ; confidence 0.990
+
156. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023094.png ; $[ [ L _ { K } , L _ { L } ] , d ] = 0$ ; confidence 0.957
  
157. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000138.png ; $\{ T x : \| x \| \leq 1 \} \subset H$ ; confidence 0.861
+
157. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200185.png ; $G _ { 2 } ( r )$ ; confidence 0.957
  
158. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500062.png ; $B ( x _ { i } , \epsilon ) \subset C$ ; confidence 0.974
+
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022047.png ; $\int M ( u , \xi ) d \xi = u + k$ ; confidence 0.957
  
159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015070.png ; $\lambda _ { 1 } = \lambda _ { 2 }$ ; confidence 1.000
+
159. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817010.png ; $Z _ { n } ( t ) = \sqrt { n } ( F _ { n } ( t ) - t )$ ; confidence 0.957
  
160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021047.png ; $( p _ { m } ^ { \prime } ( x ) ) _ { m > 1 }$ ; confidence 0.537
+
160. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007032.png ; $k _ { 0 } > 0$ ; confidence 0.957
  
161. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006088.png ; $( A + E ) x = \mu x = ( \mu I ) x \Rightarrow$ ; confidence 0.957
  
162. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230135.png ; $\pi ^ { k } : E ^ { k } \rightarrow M$ ; confidence 0.978
+
162. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006095.png ; $k > r$ ; confidence 0.957
  
163. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240125.png ; $\phi : X _ { 0 } ( N ) \rightarrow E$ ; confidence 0.986
+
163. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170239.png ; $x _ { 1 } = 1$ ; confidence 0.957
  
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024094.png ; $C H ^ { * } ( X \otimes _ { K } K _ { n } )$ ; confidence 0.324
+
164. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301305.png ; $( x _ { 1 } , x _ { 2 } , x _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.957
  
165. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006068.png ; $q ^ { - 1 } b \rightarrow r ^ { - 1 } b$ ; confidence 0.940
+
165. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010138.png ; $f \in C ^ { 2 , \lambda }$ ; confidence 0.957
  
166. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001034.png ; $\operatorname { inf } ( x , y ) = 0$ ; confidence 0.969
+
166. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702070.png ; $b _ { i } ( X ; l )$ ; confidence 0.957
  
167. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001022.png ; $\hat { R } ^ { 0 } ( \pi _ { 1 } ( X , * ) )$ ; confidence 0.338
+
167. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010119.png ; $( e , B ) \in E$ ; confidence 0.957
  
168. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001027.png ; $\operatorname { deg } f _ { i } > i$ ; confidence 0.998
+
168. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c023110101.png ; $Z G$ ; confidence 0.957
  
169. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100153.png ; $\operatorname { Res } _ { H } v = u$ ; confidence 0.865
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165079.png ; $H$ ; confidence 0.957
  
170. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049061.png ; $z = ( \operatorname { log } F ) / 2$ ; confidence 0.999
+
170. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202105.png ; $| z | < r$ ; confidence 0.957
  
171. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012031.png ; $h ( G ) \leq h ( C _ { G } ( A ) ) + 2 l ( A )$ ; confidence 0.934
+
171. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050114.png ; $1 _ { n } ( w ) = 0$ ; confidence 0.957
  
172. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008059.png ; $\varphi = ( \xi , \eta ) \in B ( G )$ ; confidence 0.999
+
172. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005042.png ; $\frac { \partial u } { \partial t } = - 2 \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } ) + 6 u ^ { 2 } \frac { \partial } { \partial y } [ u ^ { - 1 } \partial ^ { - 1 } x \frac { \partial } { \partial y } ( \frac { 1 } { \sqrt { u } } ) ]$ ; confidence 0.957
  
173. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110159.png ; $[ F f ] ( \xi ) = G ( \xi - i \Gamma 0 )$ ; confidence 0.992
+
173. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200408.png ; $B \backslash A$ ; confidence 0.957
  
174. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015053.png ; $A ^ { n } \in \Phi ( X ) = \Phi ( X , X )$ ; confidence 0.956
+
174. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076330/q07633028.png ; $B ( H )$ ; confidence 0.957
  
175. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150101.png ; $F ^ { \prime } ( x ) \in \Phi ( X , Y )$ ; confidence 0.967
+
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045036.png ; $( x _ { 2 } , y _ { 2 } )$ ; confidence 0.957
  
176. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016027.png ; $C \backslash \sigma _ { TE } ( T )$ ; confidence 0.206
+
176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001018.png ; $\psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) =$ ; confidence 0.957
  
177. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023072.png ; $\delta _ { P } = [ P , . ] ^ { \wedge }$ ; confidence 0.366
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110750/b1107507.png ; $R ^ { - 1 }$ ; confidence 0.957
  
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023066.png ; $P \in L ^ { 2 } \text { skew } ( V ; V )$ ; confidence 0.954
+
178. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690022.png ; $Z = A \cap A ^ { \prime }$ ; confidence 0.957
  
179. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029089.png ; $T \circ f ^ { \leftarrow } \geq S$ ; confidence 0.694
+
179. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000148.png ; $\Gamma \cup \{ x : \sigma \} \vdash M : \tau$ ; confidence 0.957
  
180. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g12001014.png ; $\{ G _ { b } ^ { \alpha } f : b \in R \}$ ; confidence 0.670
+
180. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009095.png ; $f _ { i } ( T )$ ; confidence 0.957
  
181. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003068.png ; $\varepsilon \rightarrow 0 \}$ ; confidence 0.997
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070104.png ; $\sigma ^ { * } ( n ) > \alpha n$ ; confidence 0.957
  
182. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040194.png ; $a \in \operatorname { spt } \nu$ ; confidence 0.390
+
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230121.png ; $\gamma : M \rightarrow R$ ; confidence 0.957
  
183. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007029.png ; $\operatorname { lif } ( R ^ { M } )$ ; confidence 0.185
+
183. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140108.png ; $1 f$ ; confidence 0.957
  
184. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601097.png ; $( 2 W ; M _ { 0 } , M _ { 0 } ^ { \prime } )$ ; confidence 0.956
+
184. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002033.png ; $( X )$ ; confidence 0.957
  
185. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602064.png ; $\| W ( 1 - P C ) ^ { - 1 } \| _ { \infty }$ ; confidence 0.978
+
185. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005015.png ; $r = r ( k , d )$ ; confidence 0.957
  
186. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002044.png ; $1 , \dots , \alpha _ { q } \in F ( S )$ ; confidence 0.401
+
186. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011055.png ; $g ( \xi ) = F [ f ] = \sum _ { k = 1 } ^ { M } G _ { k } ( \xi + i \Delta _ { k } 0 )$ ; confidence 0.957
  
187. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020104.png ; $P _ { - } \phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.963
+
187. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090186.png ; $L _ { p } ( 1 - s , \chi ) = G _ { \chi } ( u ^ { s } - 1 )$ ; confidence 0.957
  
188. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002040.png ; $( \alpha _ { j } + k ) _ { j , k } \geq 0$ ; confidence 0.190
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012024.png ; $r \geq k + \lambda$ ; confidence 0.957
  
189. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012024.png ; $( x _ { - } \overline { y } Y , \phi )$ ; confidence 0.067
+
189. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008022.png ; $\sum _ { p = 1 } ^ { P } \rho _ { p } E [ W _ { p } ] = \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) }$ ; confidence 0.956
  
190. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120134.png ; $f \cup g = m ( f \otimes g ) \Delta$ ; confidence 0.999
+
190. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016083.png ; $\overline { f } \in A$ ; confidence 0.956
  
191. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013049.png ; $\omega ( 0 ) = \omega ( 1 ) = x _ { 0 }$ ; confidence 0.994
+
191. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304508.png ; $= 1 - \frac { 6 \sum _ { i = 1 } ^ { n } ( R _ { i } - S _ { i } ) ^ { 2 } } { n ( n ^ { 2 } - 1 ) }$ ; confidence 0.956
  
192. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001039.png ; $\sigma _ { 1 } \prec \sigma _ { 2 }$ ; confidence 0.980
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022013.png ; $g s = 1 d$ ; confidence 0.956
  
193. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001031.png ; $\sigma _ { 2 } \sigma _ { 1 } ^ { - 1 }$ ; confidence 0.965
+
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009021.png ; $S ( n , 1 )$ ; confidence 0.956
  
194. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002049.png ; $x = ( x _ { 1 } , \dots , x _ { m } ) ^ { T }$ ; confidence 0.583
+
194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001011.png ; $S [ i ]$ ; confidence 0.956
  
195. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002050.png ; $y = ( y _ { 1 } , \dots , y _ { m } ) ^ { T }$ ; confidence 0.445
+
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201507.png ; $( \xi \eta _ { 1 } | \eta _ { 2 } ) = ( \eta _ { 1 } | \xi ^ { \# } \eta _ { 2 } )$ ; confidence 0.956
  
196. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030111.png ; $D : = \sum c ( e _ { i } ) \nabla _ { e }$ ; confidence 0.459
+
196. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167010.png ; $\zeta : \xi | \rightarrow \eta | _ { A }$ ; confidence 0.956
  
197. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005044.png ; $\dot { \alpha } ( i k _ { j } ) \neq 0$ ; confidence 0.736
+
197. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008062.png ; $\kappa _ { p } ( f )$ ; confidence 0.956
  
198. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060148.png ; $q ( x ) \in C _ { 0 } ^ { \infty } ( R + )$ ; confidence 0.883
+
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180305.png ; $R ( \nabla ) \otimes 1 : S ^ { 2 } E \rightarrow \otimes ^ { 4 } E$ ; confidence 0.956
  
199. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007083.png ; $A ( \alpha ^ { \prime } , \alpha )$ ; confidence 0.999
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023050.png ; $K \in C ^ { \infty } ( \wedge ^ { k + 1 } T ^ { * } M \otimes T M ) = \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.956
  
200. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090127.png ; $\mu _ { p } ( K / \dot { k } ) = \mu ( X )$ ; confidence 0.517
+
200. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200507.png ; $I ( \lambda f ) : = \int _ { 0 } ^ { \infty } \varphi ( \lambda f ^ { * } ( s ) ) w ( s ) d s < \infty$ ; confidence 0.956
  
201. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090204.png ; $\mu _ { \chi } ^ { * } = \mu _ { \chi }$ ; confidence 0.960
+
201. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300402.png ; $X ( . )$ ; confidence 0.956
  
202. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003037.png ; $( a , b ) \mapsto a \square b ^ { * }$ ; confidence 0.922
+
202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011036.png ; $v = w ( r , s )$ ; confidence 0.956
  
203. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040131.png ; $( v , z ) = ( \pm i , \pm i \sqrt { 2 } )$ ; confidence 0.997
+
203. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230142.png ; $L : E ^ { k } \rightarrow R$ ; confidence 0.956
  
204. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004052.png ; $m = 1 - \operatorname { com } ( L )$ ; confidence 0.997
+
204. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050025.png ; $| A |$ ; confidence 0.956
  
205. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005030.png ; $- \sum _ { k = 1 } ^ { s } e _ { k } D _ { k }$ ; confidence 0.439
+
205. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049020.png ; $d ( P )$ ; confidence 0.956
  
206. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300408.png ; $\sum \mathfrak { c } _ { i } x _ { i }$ ; confidence 0.363
+
206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022045.png ; $( g , h ) \in M \times M$ ; confidence 0.956
  
207. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201204.png ; $\alpha _ { k } = \int x ^ { k } d F ( x )$ ; confidence 0.938
+
207. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021083.png ; $M L$ ; confidence 0.956
  
208. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390157.png ; $\alpha _ { 1 } , \alpha _ { 2 } \in C$ ; confidence 0.962
+
208. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170217.png ; $K = L - e$ ; confidence 0.956
  
209. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840184.png ; $A | _ { E _ { \lambda } ^ { \prime } }$ ; confidence 0.613
+
209. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006064.png ; $- \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } )$ ; confidence 0.956
  
210. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584040.png ; $[ x , y ] = ( J x , y ) , \quad x , y \in K$ ; confidence 0.979
+
210. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043800/g043800137.png ; $H \times H$ ; confidence 0.956
  
211. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840161.png ; $U = ( A - z _ { 0 } ) ( A - z _ { 0 } ) ^ { - 1 }$ ; confidence 0.682
+
211. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508018.png ; $\overline { w } \square _ { 0 } ^ { T } ( h _ { \mu \nu } ) w _ { 0 } > 0$ ; confidence 0.956
  
212. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013013.png ; $k = 0 , \ldots , 2 ^ { i - 1 } ( n + 1 ) - 1$ ; confidence 0.601
+
212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026025.png ; $| \tau _ { j } ^ { n + 1 } | \leq C ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.956
  
213. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007052.png ; $BS ( 2,4 )$ ; confidence 0.956
  
214. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003017.png ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 _ { C 2 } ( S )$ ; confidence 0.319
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010153.png ; $s _ { 1 } ( \zeta ) d \zeta _ { 1 } + \ldots + s _ { n } ( \zeta ) d \zeta _ { n }$ ; confidence 0.956
  
215. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507069.png ; $\operatorname { Ric } _ { g } = k g$ ; confidence 0.854
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070112.png ; $L ( x , t , D _ { x } )$ ; confidence 0.956
  
216. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550708.png ; $H ^ { p , q } ( M ) \cong H ^ { q , p } ( M )$ ; confidence 0.617
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702031.png ; $T _ { l } ( A ) = ( A _ { j } n ) _ { n \in N }$ ; confidence 0.429
+
217. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003048.png ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956
  
218. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004026.png ; $x ( y \wedge z ) t = x y t \wedge x z t$ ; confidence 0.996
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002085.png ; $x \preceq y$ ; confidence 0.956
  
219. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700071.png ; $W \equiv \lambda x \cdot F ( x x )$ ; confidence 0.521
+
219. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010034.png ; $D _ { n }$ ; confidence 0.956
  
220. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004014.png ; $t = t ^ { 0 } , \dots , t ^ { n } , \dots$ ; confidence 0.436
+
220. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956
  
221. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004063.png ; $f _ { l } ^ { n } = \alpha u _ { l } ^ { n }$ ; confidence 0.290
+
221. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200603.png ; $E ( N )$ ; confidence 0.956
  
222. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004057.png ; $u _ { t } + 1 / 2 ( x , ( 1 / 2 ) \Delta t )$ ; confidence 0.283
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041039.png ; $( \mu _ { 0 } , \mu _ { 1 } )$ ; confidence 0.956
  
223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004016.png ; $\Delta t ^ { n } = t ^ { n + 1 } - t ^ { n }$ ; confidence 0.291
+
223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003087.png ; $\tau : R ^ { * } \rightarrow H ^ { * } B E$ ; confidence 0.956
  
224. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005027.png ; $\| f ^ { * } g \| \leq \| f \| g \| g \|$ ; confidence 0.390
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010016.png ; $S ( t ) x = e ^ { - t A _ { x } }$ ; confidence 0.956
  
225. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006034.png ; $h ( z ) ( \phi , G ( z ) \phi ) \equiv$ ; confidence 0.996
+
225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002018.png ; $\overline { u } _ { 1 } = u _ { 1 } ^ { * }$ ; confidence 0.956
  
226. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006096.png ; $| ( \phi , e ^ { - i H t } \phi ) | ^ { 2 }$ ; confidence 0.850
+
226. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202004.png ; $\lambda = ( \lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0 )$ ; confidence 0.956
  
227. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090114.png ; $\mu : A _ { 1 } \rightarrow A _ { 2 }$ ; confidence 0.991
+
227. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300108.png ; $L ^ { ( 1 ) }$ ; confidence 0.956
  
228. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009031.png ; $P ^ { H } : T ^ { * } M \rightarrow T M$ ; confidence 0.453
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070251.png ; $\nu _ { 1 } + \nu _ { 2 } + 2 \gamma g$ ; confidence 0.956
  
229. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010081.png ; $\int _ { R ^ { n N } } | \Phi | ^ { 2 } = 1$ ; confidence 0.986
+
229. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601097.png ; $( 2 W ; M _ { 0 } , M _ { 0 } ^ { \prime } )$ ; confidence 0.956
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013048.png ; $( f _ { 1 } ( X ) , \dots , f _ { m } ( X ) )$ ; confidence 0.378
+
230. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011038.png ; $e ^ { - i x \zeta }$ ; confidence 0.956
  
231. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014022.png ; $T = \{ x \in X : T x = 0 \} \neq \{ 0 \}$ ; confidence 0.471
+
231. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007066.png ; $L _ { E } ^ { * } \equiv \infty$ ; confidence 0.956
  
232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l1201504.png ; $[ . . ] : A \times A \rightarrow A$ ; confidence 0.390
+
232. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005039.png ; $\operatorname { Im } A = K J K ^ { * }$ ; confidence 0.956
  
233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016028.png ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015053.png ; $A ^ { n } \in \Phi ( X ) = \Phi ( X , X )$ ; confidence 0.956
  
234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170115.png ; $K ^ { 2 } \stackrel { 3 } { N } L ^ { 2 }$ ; confidence 0.132
+
234. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301208.png ; $A _ { \lambda } \in CL ( X )$ ; confidence 0.956
  
235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170124.png ; $K ^ { 2 } \times I \searrow L ^ { 2 }$ ; confidence 0.353
+
235. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700096.png ; $B X Y$ ; confidence 0.956
  
236. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003020.png ; $T _ { R } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164
+
236. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017420/b01742013.png ; $A ( U )$ ; confidence 0.956
  
237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007015.png ; $M ( P ) \leq L ( P ) \leq 2 ^ { d } M ( P )$ ; confidence 0.995
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030063.png ; $I ( T )$ ; confidence 0.956
  
238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007055.png ; $\theta _ { 0 } = 1.3247 \ldots > 1$ ; confidence 0.951
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b1300707.png ; $m | = | n | = 1$ ; confidence 0.956
  
239. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013061.png ; $\delta ( 2 ) > K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.282
+
239. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020131.png ; $( f , h ) \mapsto \int _ { \partial D } u ( e ^ { i \vartheta } ) h ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.956
  
240. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013060.png ; $\delta ( 1 ) > K _ { ( 1 ) } / K _ { ( 2 ) }$ ; confidence 0.414
+
240. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019060.png ; $b ( m ) = \# \{ n \in Z : n ^ { 2 } = m \}$ ; confidence 0.956
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153014.png ; $\alpha 1 , \ldots , \alpha _ { x }$ ; confidence 0.154
+
241. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018030.png ; $W ( v )$ ; confidence 0.956
  
242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013051.png ; $\tau ( K _ { \nu } ) = \nu ^ { \nu - 2 }$ ; confidence 0.984
+
242. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024063.png ; $\dot { x } ( t ) = f ( t , x _ { t } , \dot { x } _ { t } )$ ; confidence 0.956
  
243. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140124.png ; $D _ { 1 } = D _ { j , k } ^ { p } ( \alpha )$ ; confidence 0.607
+
243. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017062.png ; $\leq l + 1$ ; confidence 0.956
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220076.png ; $\alpha \in C ^ { \prime \prime }$ ; confidence 0.154
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051059.png ; $H _ { + } = H _ { c } + \frac { y y ^ { T } } { y ^ { T } s } - \frac { ( H _ { c } s ) ( H _ { c } s ) ^ { T } } { s ^ { T } H _ { c } s }$ ; confidence 0.956
  
245. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377013.png ; $\dot { x } = A x , \quad x \in R ^ { x }$ ; confidence 0.188
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102205.png ; $p \geq 1$ ; confidence 0.956
  
246. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021038.png ; $\psi ( K + L ) = \psi ( K ) + \psi ( L )$ ; confidence 0.999
+
246. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006034.png ; $L _ { \Phi } ( \Omega )$ ; confidence 0.956
  
247. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021034.png ; $\phi ( K + L ) = \phi ( K ) + \phi ( L )$ ; confidence 0.999
+
247. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008054.png ; $W ( f ) = \int _ { X } f ( u ) \Omega ( u ) d \mu _ { X } ( u )$ ; confidence 0.956
  
248. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020011.png ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015038.png ; $E _ { M } ( \Omega )$ ; confidence 0.956
  
249. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023052.png ; $- f _ { t } + ( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001079.png ; $V ^ { * }$ ; confidence 0.955
  
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023054.png ; $v \in \Sigma \backslash \{ 0 \}$ ; confidence 0.539
+
250. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001029.png ; $C ^ { \prime } = - 2 C$ ; confidence 0.955
  
251. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230131.png ; $K _ { X ^ { \prime } } + B ^ { \prime }$ ; confidence 0.990
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003032.png ; $B Z / p Z$ ; confidence 0.955
  
252. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696013.png ; $X _ { 1 } ^ { 2 } + \ldots X _ { n } ^ { 2 }$ ; confidence 0.458
+
252. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300403.png ; $\frac { a 0 } { 2 } + \sum _ { k = 1 } ^ { \infty } a _ { k } \operatorname { cos } k x$ ; confidence 0.955
  
253. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520453.png ; $f = \sum _ { i = 1 } ^ { n } v _ { i } ^ { 2 }$ ; confidence 0.992
+
253. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200306.png ; $s : N \rightarrow N$ ; confidence 0.955
  
254. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520498.png ; $i ( P , \Omega ) + ( Q , \Lambda ) = 0$ ; confidence 0.999
+
254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006041.png ; $( x ) = \{ y : y < p x \}$ ; confidence 0.955
  
255. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010159.png ; $A ( \theta ^ { \prime } , \alpha )$ ; confidence 1.000
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201405.png ; $S ( z )$ ; confidence 0.955
  
256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003035.png ; $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ; confidence 0.543
+
256. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601085.png ; $u > t$ ; confidence 0.955
  
257. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200203.png ; $\square _ { 2 } F _ { 1 } ( a , b ; c ; z )$ ; confidence 0.896
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200506.png ; $S _ { 0 } ( z ) = S ( z )$ ; confidence 0.955
  
258. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006040.png ; $A _ { 1 } , A _ { 2 } : H \rightarrow H$ ; confidence 0.879
+
258. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090201.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 )$ ; confidence 0.955
  
259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060110.png ; $\xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 }$ ; confidence 0.998
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040098.png ; $G / B \times V$ ; confidence 0.955
  
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006038.png ; $( E , \sigma _ { 1 } , \sigma _ { 2 } )$ ; confidence 0.998
+
260. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013036.png ; $\{ T _ { \lambda } : \lambda \in SP ^ { + } ( n ) \} \cup \{ T _ { \lambda } , T _ { \lambda } ^ { \prime } = \operatorname { sgn } . T _ { \lambda } : \lambda \in SP ^ { - } ( n ) \}$ ; confidence 0.955
  
261. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005017.png ; $d f ( t ) = m ( \{ s > 0 : | f ( s ) | > t \} )$ ; confidence 0.893
+
261. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006014.png ; $U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }$ ; confidence 0.955
  
262. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006070.png ; $\eta ( x , y ) = | y - x | ^ { 2 - n } d x d y$ ; confidence 0.848
+
262. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001060.png ; $P = \{ x \in A : x \succeq 0 \}$ ; confidence 0.955
  
263. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014051.png ; $E ( a _ { 0 } , c _ { 1 } + a _ { 0 } ^ { 2 } m )$ ; confidence 0.807
+
263. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045077.png ; $f _ { S }$ ; confidence 0.955
  
264. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201409.png ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a01107010.png ; $M _ { 0 }$ ; confidence 0.955
  
265. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014010.png ; $a _ { 1 } > a _ { 0 } + 2 \sqrt { a _ { 0 } }$ ; confidence 0.616
+
265. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001031.png ; $\omega \in E$ ; confidence 0.955
  
266. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007047.png ; $( z _ { 1 } , z _ { 2 } ) \in \partial D$ ; confidence 0.998
+
266. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005015.png ; $f ^ { * } ( t ) = \operatorname { inf } \{ s > 0 : d f ( s ) \leq t \}$ ; confidence 0.955
  
267. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015026.png ; $K = \{ B _ { r _ { 1 } } , B _ { r _ { 2 } } \}$ ; confidence 0.879
+
267. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001015.png ; $C ^ { 0 , \sigma ( t ) } ( \Omega )$ ; confidence 0.955
  
268. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002044.png ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447
+
268. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759011.png ; $I = \operatorname { ind } _ { k } ( D )$ ; confidence 0.955
  
269. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001064.png ; $J : H ( \pi ) \rightarrow H ( \pi )$ ; confidence 0.995
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400108.png ; $H ^ { 0 } ( G / B , G \times ^ { R } V )$ ; confidence 0.955
  
270. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001080.png ; $S ( C ) = H \operatorname { exp } C$ ; confidence 0.938
+
270. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010082.png ; $\int _ { R ^ { n N } } | \nabla \Phi | ^ { 2 } \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.955
  
271. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001052.png ; $f _ { 1 } , \dots , f _ { n } \in D _ { + }$ ; confidence 0.720
+
271. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583056.png ; $\sigma ( T )$ ; confidence 0.955
  
272. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952
+
272. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040013.png ; $x \preceq h y$ ; confidence 0.955
  
273. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003024.png ; $1 - p _ { 0 } = \| P _ { 1 } \psi \| ^ { 2 }$ ; confidence 0.836
+
273. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190199.png ; $W _ { 1 } ^ { + }$ ; confidence 0.955
  
274. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005022.png ; $d ^ { k } = - H _ { k } D ^ { T } f ( x ^ { k } )$ ; confidence 0.985
+
274. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016034.png ; $q < p$ ; confidence 0.955
  
275. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070142.png ; $G _ { q } , U _ { q } ( \mathfrak { g } )$ ; confidence 0.518
+
275. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d03260098.png ; $\mu _ { 1 } = 0$ ; confidence 0.955
  
276. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200809.png ; $\rho _ { p } = \lambda _ { p } b _ { p }$ ; confidence 0.984
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601040.png ; $s < t$ ; confidence 0.955
  
277. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007090.png ; $0 = ( f , K ( x , y ) ) _ { H _ { 1 } } = f ( y )$ ; confidence 0.991
+
277. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170141.png ; $p , q \in P ( n )$ ; confidence 0.955
  
278. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008056.png ; $f ^ { \prime } ( z _ { 0 } , z _ { 0 } ) = 1$ ; confidence 0.739
+
278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090122.png ; $\Lambda = Z _ { p } [ [ T ] ]$ ; confidence 0.955
  
279. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008064.png ; $L : L ^ { 2 } ( T , d m ) \rightarrow F$ ; confidence 0.981
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310111.png ; $T ^ { - 1 }$ ; confidence 0.955
  
280. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008086.png ; $( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \|$ ; confidence 0.994
+
280. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030048.png ; $n < \infty$ ; confidence 0.955
  
281. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008069.png ; $\{ p _ { 1 } , \dots , p _ { n } \} \in E$ ; confidence 0.865
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026057.png ; $\partial _ { s + } \phi ( s ) = 0$ ; confidence 0.955
  
282. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011021.png ; $x ^ { n } \in P \Rightarrow x \in P$ ; confidence 0.964
+
282. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120060/m1200603.png ; $\frac { \partial \vec { B } } { \partial t } = \operatorname { rot } [ \vec { v } \times \vec { B } ] , \frac { \partial \rho } { \partial t } + \operatorname { div } \rho \vec { v } = 0$ ; confidence 0.955
  
283. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011042.png ; $\forall x _ { 1 } , \ldots , x _ { y }$ ; confidence 0.305
+
283. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020141.png ; $[ X _ { \infty } Y _ { \infty } ]$ ; confidence 0.955
  
284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202307.png ; $f ^ { \prime } ( \theta ) \in A _ { 0 }$ ; confidence 0.955
  
285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300701.png ; $\phi ( f ( x ) ) = \lambda \phi ( x )$ ; confidence 0.964
+
285. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001023.png ; $a x b = c x ^ { \sigma } d$ ; confidence 0.955
  
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004012.png ; $\delta = ( l - 1 , l - 2 , \ldots , 0 )$ ; confidence 0.484
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007093.png ; $X = X ^ { \prime }$ ; confidence 0.955
  
287. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034027.png ; $q ^ { - 1 } L _ { + } - q L _ { - } = z L _ { 0 }$ ; confidence 0.930
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023037.png ; $p _ { 1 } = \ldots = p _ { n } = 1$ ; confidence 0.955
  
288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016020.png ; $\| I _ { 1 } ( f ) - U ^ { i } ( f ) \| _ { 0 }$ ; confidence 0.520
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620194.png ; $- d ^ { 2 } / d x ^ { 2 } + g \operatorname { cos } \sqrt { x }$ ; confidence 0.955
  
289. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017064.png ; $x \sim i y \Leftrightarrow x = y$ ; confidence 0.148
+
289. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043380/g0433808.png ; $f ( x _ { 0 } + h ) = f ( x _ { 0 } ) + ( f _ { G } ^ { \prime } ( x _ { 0 } ) , h ) + \epsilon ( h )$ ; confidence 0.955
  
290. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044016.png ; $[ X , Y ] * \simeq [ D Y , D X ] \times$ ; confidence 0.479
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028028.png ; $H \times T ( n ) \cong G ( n )$ ; confidence 0.955
  
291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020056.png ; $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S$ ; confidence 0.779
+
291. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008037.png ; $\rho \geq 1$ ; confidence 0.955
  
292. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021015.png ; $\pi : S ^ { 3 } \rightarrow S ^ { 2 }$ ; confidence 0.995
+
292. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302709.png ; $| f ( x ) - V _ { n , p } ( f , x ) | \leq 2 \frac { n + 1 } { p + 1 } E _ { n - p } ( f )$ ; confidence 0.955
  
293. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048019.png ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560
+
293. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021015.png ; $t ( M ) = x t ( M / e )$ ; confidence 0.954
  
294. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510136.png ; $\gamma ^ { \prime } ( u ) \notin K$ ; confidence 0.979
+
294. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003026.png ; $D \geq 1$ ; confidence 0.954
  
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051012.png ; $g ( F ( u ) ) = \{ g ( v ) : v \in F ( u ) \}$ ; confidence 0.904
+
295. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002038.png ; $2 \sqrt [ 2 ] { 3 }$ ; confidence 0.954
  
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051085.png ; $u = ( u _ { 1 } , \dots , u _ { m } ) \in V$ ; confidence 0.432
+
296. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008027.png ; $\{ \alpha _ { j } , \beta _ { j } \}$ ; confidence 0.954
  
297. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202403.png ; $p : ( X , A ) \rightarrow ( X / A , * )$ ; confidence 0.997
+
297. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065130/m065130112.png ; $S ^ { 4 }$ ; confidence 0.954
  
298. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907
+
298. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001019.png ; $[ A , B ] _ { \pm } = A B \pm B A$ ; confidence 0.954
  
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025029.png ; $\sqrt { 1 - x ^ { 2 } } h \in C [ - 1,1 ]$ ; confidence 0.995
+
299. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002027.png ; $B = \{ y : \hat { f } ( y ) \neq 0 \}$ ; confidence 0.954
  
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028041.png ; $[ r ] : P _ { 1 } \rightarrow P _ { 2 }$ ; confidence 0.995
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280105.png ; $I = \{ f \in L ^ { 1 } ( G ) : U _ { f } ( x ) = 0 \}$ ; confidence 0.954

Revision as of 00:10, 13 February 2020

List

1. n13005041.png ; $( s , r , 1 )$ ; confidence 0.960

2. s12022058.png ; $\operatorname { det } ( \Delta ) = \operatorname { exp } ( - \frac { d } { d s } \zeta ( s ) | _ { s = 0 } )$ ; confidence 0.960

3. b13019026.png ; $h \in [ H _ { 1 } , H _ { 2 } ] \subseteq [ H , 2 H ]$ ; confidence 0.960

4. d0329708.png ; $R = 0$ ; confidence 0.960

5. l13010039.png ; $B f = F ^ { - 1 } [ b ( x , t , \alpha ) \tilde { f } ]$ ; confidence 0.960

6. i12005098.png ; $e ^ { s } ( T , V )$ ; confidence 0.960

7. b12022080.png ; $M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.960

8. z13001063.png ; $n ^ { k }$ ; confidence 0.960

9. f12014041.png ; $\sum _ { k = 1 } ^ { \infty } | x _ { k } | ^ { 2 } / k = 1$ ; confidence 0.960

10. v120020203.png ; $G = p \circ q ^ { - 1 } : X \rightarrow K ( Y )$ ; confidence 0.960

11. b11002059.png ; $| b ( u , v ) | ^ { 2 } \leq | b ( u , u ) | | b ( v , v ) |$ ; confidence 0.960

12. j12002012.png ; $f ( z ) = \int k _ { \vartheta } ( z ) f ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.960

13. z12001010.png ; $[ f _ { \alpha } , f _ { \beta } ] = ( \beta - \alpha ) f _ { \alpha + \beta }$ ; confidence 0.960

14. d13008018.png ; $D _ { \xi } = D ( \xi , R ) : = \{ z \in \Delta : \frac { | 1 - z \overline { \xi } | ^ { 2 } } { 1 - | z | ^ { 2 } } < R \}$ ; confidence 0.960

15. b1301909.png ; $\alpha \in ( 1 / 3,2 / 3 )$ ; confidence 0.960

16. e12027021.png ; $\frac { \alpha } { 2 } + \frac { 1 } { 4 } \leq r < \frac { \alpha } { 2 } + \frac { 5 } { 4 }$ ; confidence 0.960

17. w130080159.png ; $( \overline { \partial } + \mu \partial + \overline { A } ) \psi = 0$ ; confidence 0.960

18. a013180173.png ; $V _ { f }$ ; confidence 0.960

19. b13019081.png ; $3 / 20 = 0.15$ ; confidence 0.960

20. o12001017.png ; $U = \sqrt { g L \alpha \delta \theta _ { 0 } } , \quad t = \frac { U } { L }$ ; confidence 0.960

21. c021040121.png ; $F = R$ ; confidence 0.960

22. m12001013.png ; $T + \lambda I$ ; confidence 0.960

23. p13013072.png ; $T _ { \lambda }$ ; confidence 0.960

24. b120420117.png ; $U _ { q } ( sl _ { 2 } )$ ; confidence 0.960

25. h12002045.png ; $H ^ { 2 } = L ^ { 2 } \ominus H ^ { 2 }$ ; confidence 0.960

26. g04337011.png ; $f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.960

27. e120230111.png ; $E ( L )$ ; confidence 0.960

28. h13009043.png ; $g _ { i } \in A$ ; confidence 0.960

29. x12002033.png ; $D ( R )$ ; confidence 0.960

30. i12004063.png ; $r \in C ^ { 2 }$ ; confidence 0.960

31. f1301307.png ; $S \cap M \neq 0$ ; confidence 0.960

32. c12018042.png ; $E \otimes \ldots \otimes E$ ; confidence 0.960

33. b12055044.png ; $M \ni x \mapsto d ( x , ) \in C ( M )$ ; confidence 0.960

34. b12034050.png ; $H ( M )$ ; confidence 0.960

35. i130090204.png ; $\mu _ { \chi } ^ { * } = \mu _ { \chi }$ ; confidence 0.960

36. c13019029.png ; $\varphi ( t , x ) \notin N$ ; confidence 0.960

37. t13015059.png ; $C ^ { * } ( S )$ ; confidence 0.960

38. a12024010.png ; $v _ { \infty } ( f ) = - \operatorname { log } | f |$ ; confidence 0.960

39. c130070242.png ; $T \cap k ( C _ { i } )$ ; confidence 0.960

40. a12007060.png ; $u ^ { \prime } \in B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.960

41. b13003015.png ; $( BL ( X , Y ) , BL ( Y , X ) )$ ; confidence 0.960

42. i12008052.png ; $\{ S _ { i } \}$ ; confidence 0.960

43. h04601090.png ; $( W \cup W ^ { \prime } ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.960

44. c1200305.png ; $a < b$ ; confidence 0.960

45. i12006077.png ; $( G )$ ; confidence 0.960

46. e13006056.png ; $\omega \in C$ ; confidence 0.960

47. b12037056.png ; $L _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.960

48. s120230135.png ; $X _ { i } ( p \times n _ { i } )$ ; confidence 0.960

49. m13011037.png ; $\frac { \partial \phi } { \partial t } = ( \frac { \partial \phi ( x , t ) } { \partial t } ) | _ { x }$ ; confidence 0.960

50. c02014012.png ; $\Sigma _ { 11 }$ ; confidence 0.960

51. a130180123.png ; $c _ { i } ( R ) =$ ; confidence 0.960

52. s12017041.png ; $w _ { i } \geq 0$ ; confidence 0.959

53. v12006027.png ; $k ^ { n } B _ { n } ( \frac { h } { k } ) = G _ { n } - \sum \frac { 1 } { p }$ ; confidence 0.959

54. c130160160.png ; $P = FO ( LFP )$ ; confidence 0.959

55. e12023044.png ; $\sigma _ { t } ( x ) = ( x , y ( x ) + t z ( x ) )$ ; confidence 0.959

56. r130080128.png ; $\int _ { D } B ( x , y ) u ( y ) d y = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi _ { j } ) _ { 0 } \varphi _ { j } ( x )$ ; confidence 0.959

57. b12043070.png ; $U _ { q } ( gl _ { 2 } )$ ; confidence 0.959

58. t12006013.png ; $V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }$ ; confidence 0.959

59. h046420294.png ; $M ( P )$ ; confidence 0.959

60. p12017010.png ; $X = A$ ; confidence 0.959

61. o130010132.png ; $\operatorname { sup } _ { \alpha ^ { \prime } , \alpha \in S ^ { 2 } } | A _ { 1 } - A _ { 2 } | < \delta$ ; confidence 0.959

62. b01566045.png ; $p > q$ ; confidence 0.959

63. b11022081.png ; $i + 1$ ; confidence 0.959

64. e120240106.png ; $T = T _ { p } ( E )$ ; confidence 0.959

65. l12013034.png ; $f _ { j } ( x )$ ; confidence 0.959

66. z13003032.png ; $| f ( t ) | \leq C ( 1 + | t | ) ^ { - ( 1 + \epsilon ) }$ ; confidence 0.959

67. d120230120.png ; $Z R - R Z ^ { * } = G J G ^ { * }$ ; confidence 0.959

68. i13003049.png ; $T ( M ^ { g } )$ ; confidence 0.959

69. t12006019.png ; $\rho \rightarrow E ( \rho )$ ; confidence 0.959

70. s12016026.png ; $A ( q , d ) ( f )$ ; confidence 0.959

71. b12040052.png ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959

72. b1302706.png ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959

73. b130290187.png ; $\operatorname { lim } A \geq 1$ ; confidence 0.959

74. b110220231.png ; $CH ^ { i } ( X )$ ; confidence 0.959

75. s12022069.png ; $\sum _ { k } ( z + \lambda _ { k } ) ^ { - s } , \operatorname { Re } ( s ) > \frac { 1 } { 2 } \operatorname { dim } M$ ; confidence 0.959

76. b130290183.png ; $d ^ { + }$ ; confidence 0.959

77. s13059031.png ; $\langle P , Q \rangle \equiv M [ P ( z ) Q ( z ) ]$ ; confidence 0.959

78. l13008031.png ; $\mu : = \operatorname { min } \{ \operatorname { dim } l , n - 1 \}$ ; confidence 0.959

79. p11025046.png ; $x ^ { k + 1 }$ ; confidence 0.959

80. s12026047.png ; $( L ^ { 2 } ) ^ { + }$ ; confidence 0.959

81. a1303204.png ; $X$ ; confidence 0.959

82. b110220163.png ; $L ( h ^ { i } ( X ) , s )$ ; confidence 0.959

83. w12021053.png ; $s _ { i } = 1$ ; confidence 0.959

84. h12002012.png ; $\operatorname { inf } \{ \| \phi \| _ { \infty } : \phi \in L ^ { \infty } , \hat { \phi } ( j ) = \alpha _ { j } \text { for } j \geq 0 \}$ ; confidence 0.959

85. z13011063.png ; $\int _ { 0 } ^ { \infty } ( 1 - e ^ { - \lambda } ) R ( d \lambda ) = 1$ ; confidence 0.959

86. c120210133.png ; $L ( \theta ) = N ( 0 , \Gamma ^ { - 1 } ( \theta ) ^ { * } L _ { 2 } ( \theta ) )$ ; confidence 0.959

87. a110220108.png ; $R _ { 1 }$ ; confidence 0.959

88. c0250209.png ; $( C , \alpha )$ ; confidence 0.959

89. f12011024.png ; $\operatorname { Im } z \in \Gamma _ { j }$ ; confidence 0.959

90. b130020105.png ; $M ( A )$ ; confidence 0.959

91. e12012012.png ; $Q ( \theta ^ { ( t + 1 ) } | \theta ^ { ( t ) } ) \geq Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.959

92. s1300409.png ; $H ^ { * } = H \cup P ^ { 1 } ( Q ) \subset P ^ { 1 } ( C )$ ; confidence 0.959

93. i13004039.png ; $| x | ^ { \lambda } \operatorname { exp } ( - A | x | ^ { - \alpha } )$ ; confidence 0.959

94. r13011014.png ; $\xi ( s ) = \xi ( 0 ) \prod _ { \rho } ( 1 - \frac { s } { \rho } ) e ^ { s / \rho }$ ; confidence 0.959

95. h12004026.png ; $U _ { \xi } \cap V _ { \eta } = * \emptyset$ ; confidence 0.959

96. t13013095.png ; $H$ ; confidence 0.959

97. a12012042.png ; $( I - A ) ^ { - 1 } v$ ; confidence 0.959

98. b13029096.png ; $h _ { 0 } = 0$ ; confidence 0.958

99. a12026079.png ; $m ^ { c } A ^ { x }$ ; confidence 0.958

100. b12015065.png ; $\sum _ { j = 1 } ^ { n } x _ { j }$ ; confidence 0.958

101. c02118075.png ; $k - 2$ ; confidence 0.958

102. q1200106.png ; $\varphi _ { i } ( f )$ ; confidence 0.958

103. z130110127.png ; $M _ { i k }$ ; confidence 0.958

104. z13008015.png ; $x = r \operatorname { cos } \theta$ ; confidence 0.958

105. a130040148.png ; $\square \psi \rightarrow \varphi \in T$ ; confidence 0.958

106. q12007010.png ; $\tau \circ \Delta h = R ( \Delta h ) R ^ { - 1 } , \forall h \in H$ ; confidence 0.958

107. e12002030.png ; $\operatorname { cat } ( X ) = - 1 +$ ; confidence 0.958

108. a12005054.png ; $u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.958

109. b13027044.png ; $A \rightarrow B ( H )$ ; confidence 0.958

110. g13002039.png ; $2 \sqrt [ 4 ] { 3 }$ ; confidence 0.958

111. f12023081.png ; $L _ { K } = [ i _ { K } , d ]$ ; confidence 0.958

112. t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958

113. a130240330.png ; $( p \times p _ { 1 } )$ ; confidence 0.958

114. e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958

115. x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958

116. k13005029.png ; $Kn = \alpha \frac { Ma } { Re }$ ; confidence 0.958

117. a13029014.png ; $A ^ { \pm }$ ; confidence 0.958

118. i13001029.png ; $\overline { d } _ { \chi } ^ { G }$ ; confidence 0.958

119. c11030034.png ; $\sigma = \pm 1$ ; confidence 0.958

120. l13006090.png ; $( u _ { i } , u _ { i } + 1 )$ ; confidence 0.958

121. b12004079.png ; $T : L _ { 1 } \rightarrow L _ { 1 }$ ; confidence 0.958

122. a130040742.png ; $\square$ ; confidence 0.958

123. s1200203.png ; $L : R ^ { N } \times R \rightarrow R$ ; confidence 0.958

124. a130240365.png ; $( p \times p )$ ; confidence 0.958

125. r13008030.png ; $K f = 0$ ; confidence 0.958

126. l120100127.png ; $u _ { j } = ( - \Delta + m ^ { 2 } ) ^ { - 1 / 2 } f _ { j }$ ; confidence 0.958

127. l11004053.png ; $G \in X$ ; confidence 0.958

128. b120040126.png ; $0 \leq f _ { n } \uparrow f \in X$ ; confidence 0.958

129. f13001045.png ; $\omega < 2.376$ ; confidence 0.958

130. b01535075.png ; $A \subset B$ ; confidence 0.958

131. s1200208.png ; $g ( x ; t ) = \frac { 1 } { ( 2 \pi t ) ^ { N / 2 } } \operatorname { exp } ( - \frac { x _ { 1 } ^ { 2 } + \ldots + x _ { N } ^ { 2 } } { 2 t } )$ ; confidence 0.958

132. g13003058.png ; $u _ { j } | _ { K } \equiv 0$ ; confidence 0.958

133. i130060168.png ; $| \frac { \partial A ( x , y ) } { \partial x } + \frac { 1 } { 4 } q ( \frac { x + y } { 2 } ) | \leq c \sigma ( x ) \sigma ( \frac { x + y } { 2 } ) , | \frac { \partial A ( x , y ) } { \partial y } + \frac { 1 } { 4 } q ( \frac { x + y } { 2 } ) | \leq c \sigma ( x ) \sigma ( \frac { x + y } { 2 } )$ ; confidence 0.958

134. r130070168.png ; $f ( x ) = ( F ( t ) , h ( t , x ) ) _ { H } , ( f ( x ) , h ( s , x ) ) _ { H } = F ( s )$ ; confidence 0.958

135. s13053052.png ; $F _ { q }$ ; confidence 0.958

136. m12023047.png ; $d f _ { t } ( x )$ ; confidence 0.958

137. a110610215.png ; $G = SU ( 2 )$ ; confidence 0.958

138. s12026024.png ; $\Gamma ^ { + }$ ; confidence 0.958

139. e12012033.png ; $Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.958

140. d03024038.png ; $\alpha > r$ ; confidence 0.958

141. c12018079.png ; $g = \lambda \mu ( d u \otimes d u - d v \otimes d v )$ ; confidence 0.958

142. k12012052.png ; $r \in ( 0,4 ]$ ; confidence 0.958

143. f12015070.png ; $x ( A ) < \infty$ ; confidence 0.957

144. w13008052.png ; $\operatorname { Jac } ( \Sigma _ { g } )$ ; confidence 0.957

145. i12008095.png ; $H \rightarrow 0$ ; confidence 0.957

146. m06222016.png ; $C _ { 1 } ^ { 2 }$ ; confidence 0.957

147. f12002043.png ; $A ( X )$ ; confidence 0.957

148. j13007045.png ; $\{ z _ { n } \} \subset \Delta$ ; confidence 0.957

149. z13007044.png ; $Z A$ ; confidence 0.957

150. j120020224.png ; $S = \{ r e ^ { i \vartheta } : 1 - h \leq r < 1 , | \vartheta - \vartheta _ { 0 } | \leq h \}$ ; confidence 0.957

151. y12004018.png ; $\{ u _ { j } \} \subset A$ ; confidence 0.957

152. b120400123.png ; $V$ ; confidence 0.957

153. f12011027.png ; $\langle f , \varphi \rangle = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) \varphi ( z ) d z$ ; confidence 0.957

154. t12021071.png ; $M _ { H }$ ; confidence 0.957

155. r130070141.png ; $( h ( s , x ) , h ( t , x ) ) _ { H } = \delta _ { m } ( t - s )$ ; confidence 0.957

156. f12023094.png ; $[ [ L _ { K } , L _ { L } ] , d ] = 0$ ; confidence 0.957

157. t120200185.png ; $G _ { 2 } ( r )$ ; confidence 0.957

158. b12022047.png ; $\int M ( u , \xi ) d \xi = u + k$ ; confidence 0.957

159. o06817010.png ; $Z _ { n } ( t ) = \sqrt { n } ( F _ { n } ( t ) - t )$ ; confidence 0.957

160. i13007032.png ; $k _ { 0 } > 0$ ; confidence 0.957

161. b13006088.png ; $( A + E ) x = \mu x = ( \mu I ) x \Rightarrow$ ; confidence 0.957

162. l13006095.png ; $k > r$ ; confidence 0.957

163. l120170239.png ; $x _ { 1 } = 1$ ; confidence 0.957

164. z1301305.png ; $( x _ { 1 } , x _ { 2 } , x _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.957

165. o130010138.png ; $f \in C ^ { 2 , \lambda }$ ; confidence 0.957

166. l05702070.png ; $b _ { i } ( X ; l )$ ; confidence 0.957

167. e120010119.png ; $( e , B ) \in E$ ; confidence 0.957

168. c023110101.png ; $Z G$ ; confidence 0.957

169. a01165079.png ; $H$ ; confidence 0.957

170. f1202105.png ; $| z | < r$ ; confidence 0.957

171. v130050114.png ; $1 _ { n } ( w ) = 0$ ; confidence 0.957

172. h13005042.png ; $\frac { \partial u } { \partial t } = - 2 \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } ) + 6 u ^ { 2 } \frac { \partial } { \partial y } [ u ^ { - 1 } \partial ^ { - 1 } x \frac { \partial } { \partial y } ( \frac { 1 } { \sqrt { u } } ) ]$ ; confidence 0.957

173. h1200408.png ; $B \backslash A$ ; confidence 0.957

174. q07633028.png ; $B ( H )$ ; confidence 0.957

175. s13045036.png ; $( x _ { 2 } , y _ { 2 } )$ ; confidence 0.957

176. w12001018.png ; $\psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) =$ ; confidence 0.957

177. b1107507.png ; $R ^ { - 1 }$ ; confidence 0.957

178. v09690022.png ; $Z = A \cap A ^ { \prime }$ ; confidence 0.957

179. l057000148.png ; $\Gamma \cup \{ x : \sigma \} \vdash M : \tau$ ; confidence 0.957

180. i13009095.png ; $f _ { i } ( T )$ ; confidence 0.957

181. a130070104.png ; $\sigma ^ { * } ( n ) > \alpha n$ ; confidence 0.957

182. e120230121.png ; $\gamma : M \rightarrow R$ ; confidence 0.957

183. t120140108.png ; $1 f$ ; confidence 0.957

184. e12002033.png ; $( X )$ ; confidence 0.957

185. g13005015.png ; $r = r ( k , d )$ ; confidence 0.957

186. f12011055.png ; $g ( \xi ) = F [ f ] = \sum _ { k = 1 } ^ { M } G _ { k } ( \xi + i \Delta _ { k } 0 )$ ; confidence 0.957

187. i130090186.png ; $L _ { p } ( 1 - s , \chi ) = G _ { \chi } ( u ^ { s } - 1 )$ ; confidence 0.957

188. a13012024.png ; $r \geq k + \lambda$ ; confidence 0.957

189. q12008022.png ; $\sum _ { p = 1 } ^ { P } \rho _ { p } E [ W _ { p } ] = \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) }$ ; confidence 0.956

190. b13016083.png ; $\overline { f } \in A$ ; confidence 0.956

191. s1304508.png ; $= 1 - \frac { 6 \sum _ { i = 1 } ^ { n } ( R _ { i } - S _ { i } ) ^ { 2 } } { n ( n ^ { 2 } - 1 ) }$ ; confidence 0.956

192. a13022013.png ; $g s = 1 d$ ; confidence 0.956

193. w12009021.png ; $S ( n , 1 )$ ; confidence 0.956

194. f12001011.png ; $S [ i ]$ ; confidence 0.956

195. t1201507.png ; $( \xi \eta _ { 1 } | \eta _ { 2 } ) = ( \eta _ { 1 } | \xi ^ { \# } \eta _ { 2 } )$ ; confidence 0.956

196. d03167010.png ; $\zeta : \xi | \rightarrow \eta | _ { A }$ ; confidence 0.956

197. k12008062.png ; $\kappa _ { p } ( f )$ ; confidence 0.956

198. c120180305.png ; $R ( \nabla ) \otimes 1 : S ^ { 2 } E \rightarrow \otimes ^ { 4 } E$ ; confidence 0.956

199. f12023050.png ; $K \in C ^ { \infty } ( \wedge ^ { k + 1 } T ^ { * } M \otimes T M ) = \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.956

200. o1200507.png ; $I ( \lambda f ) : = \int _ { 0 } ^ { \infty } \varphi ( \lambda f ^ { * } ( s ) ) w ( s ) d s < \infty$ ; confidence 0.956

201. o1300402.png ; $X ( . )$ ; confidence 0.956

202. s13011036.png ; $v = w ( r , s )$ ; confidence 0.956

203. e120230142.png ; $L : E ^ { k } \rightarrow R$ ; confidence 0.956

204. s13050025.png ; $| A |$ ; confidence 0.956

205. s13049020.png ; $d ( P )$ ; confidence 0.956

206. m13022045.png ; $( g , h ) \in M \times M$ ; confidence 0.956

207. f04021083.png ; $M L$ ; confidence 0.956

208. l120170217.png ; $K = L - e$ ; confidence 0.956

209. t12006064.png ; $- \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } )$ ; confidence 0.956

210. g043800137.png ; $H \times H$ ; confidence 0.956

211. k05508018.png ; $\overline { w } \square _ { 0 } ^ { T } ( h _ { \mu \nu } ) w _ { 0 } > 0$ ; confidence 0.956

212. c12026025.png ; $| \tau _ { j } ^ { n + 1 } | \leq C ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.956

213. b13007052.png ; $BS ( 2,4 )$ ; confidence 0.956

214. c120010153.png ; $s _ { 1 } ( \zeta ) d \zeta _ { 1 } + \ldots + s _ { n } ( \zeta ) d \zeta _ { n }$ ; confidence 0.956

215. a120070112.png ; $L ( x , t , D _ { x } )$ ; confidence 0.956

216. b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956

217. g13003048.png ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956

218. l11002085.png ; $x \preceq y$ ; confidence 0.956

219. r13010034.png ; $D _ { n }$ ; confidence 0.956

220. w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956

221. t1200603.png ; $E ( N )$ ; confidence 0.956

222. s13041039.png ; $( \mu _ { 0 } , \mu _ { 1 } )$ ; confidence 0.956

223. l12003087.png ; $\tau : R ^ { * } \rightarrow H ^ { * } B E$ ; confidence 0.956

224. a12010016.png ; $S ( t ) x = e ^ { - t A _ { x } }$ ; confidence 0.956

225. d12002018.png ; $\overline { u } _ { 1 } = u _ { 1 } ^ { * }$ ; confidence 0.956

226. s1202004.png ; $\lambda = ( \lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0 )$ ; confidence 0.956

227. k1300108.png ; $L ^ { ( 1 ) }$ ; confidence 0.956

228. c130070251.png ; $\nu _ { 1 } + \nu _ { 2 } + 2 \gamma g$ ; confidence 0.956

229. h04601097.png ; $( 2 W ; M _ { 0 } , M _ { 0 } ^ { \prime } )$ ; confidence 0.956

230. f12011038.png ; $e ^ { - i x \zeta }$ ; confidence 0.956

231. p13007066.png ; $L _ { E } ^ { * } \equiv \infty$ ; confidence 0.956

232. o13005039.png ; $\operatorname { Im } A = K J K ^ { * }$ ; confidence 0.956

233. f12015053.png ; $A ^ { n } \in \Phi ( X ) = \Phi ( X , X )$ ; confidence 0.956

234. w1301208.png ; $A _ { \lambda } \in CL ( X )$ ; confidence 0.956

235. l05700096.png ; $B X Y$ ; confidence 0.956

236. b01742013.png ; $A ( U )$ ; confidence 0.956

237. a13030063.png ; $I ( T )$ ; confidence 0.956

238. b1300707.png ; $m | = | n | = 1$ ; confidence 0.956

239. j120020131.png ; $( f , h ) \mapsto \int _ { \partial D } u ( e ^ { i \vartheta } ) h ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.956

240. b13019060.png ; $b ( m ) = \# \{ n \in Z : n ^ { 2 } = m \}$ ; confidence 0.956

241. w12018030.png ; $W ( v )$ ; confidence 0.956

242. f12024063.png ; $\dot { x } ( t ) = f ( t , x _ { t } , \dot { x } _ { t } )$ ; confidence 0.956

243. w12017062.png ; $\leq l + 1$ ; confidence 0.956

244. b12051059.png ; $H _ { + } = H _ { c } + \frac { y y ^ { T } } { y ^ { T } s } - \frac { ( H _ { c } s ) ( H _ { c } s ) ^ { T } } { s ^ { T } H _ { c } s }$ ; confidence 0.956

245. a0102205.png ; $p \geq 1$ ; confidence 0.956

246. o12006034.png ; $L _ { \Phi } ( \Omega )$ ; confidence 0.956

247. w12008054.png ; $W ( f ) = \int _ { X } f ( u ) \Omega ( u ) d \mu _ { X } ( u )$ ; confidence 0.956

248. c13015038.png ; $E _ { M } ( \Omega )$ ; confidence 0.956

249. b13001079.png ; $V ^ { * }$ ; confidence 0.955

250. w12001029.png ; $C ^ { \prime } = - 2 C$ ; confidence 0.955

251. l12003032.png ; $B Z / p Z$ ; confidence 0.955

252. i1300403.png ; $\frac { a 0 } { 2 } + \sum _ { k = 1 } ^ { \infty } a _ { k } \operatorname { cos } k x$ ; confidence 0.955

253. n1200306.png ; $s : N \rightarrow N$ ; confidence 0.955

254. i12006041.png ; $( x ) = \{ y : y < p x \}$ ; confidence 0.955

255. b1201405.png ; $S ( z )$ ; confidence 0.955

256. c02601085.png ; $u > t$ ; confidence 0.955

257. s1200506.png ; $S _ { 0 } ( z ) = S ( z )$ ; confidence 0.955

258. i130090201.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 )$ ; confidence 0.955

259. b12040098.png ; $G / B \times V$ ; confidence 0.955

260. p13013036.png ; $\{ T _ { \lambda } : \lambda \in SP ^ { + } ( n ) \} \cup \{ T _ { \lambda } , T _ { \lambda } ^ { \prime } = \operatorname { sgn } . T _ { \lambda } : \lambda \in SP ^ { - } ( n ) \}$ ; confidence 0.955

261. t12006014.png ; $U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }$ ; confidence 0.955

262. l11001060.png ; $P = \{ x \in A : x \succeq 0 \}$ ; confidence 0.955

263. s13045077.png ; $f _ { S }$ ; confidence 0.955

264. a01107010.png ; $M _ { 0 }$ ; confidence 0.955

265. g13001031.png ; $\omega \in E$ ; confidence 0.955

266. o12005015.png ; $f ^ { * } ( t ) = \operatorname { inf } \{ s > 0 : d f ( s ) \leq t \}$ ; confidence 0.955

267. i12001015.png ; $C ^ { 0 , \sigma ( t ) } ( \Omega )$ ; confidence 0.955

268. w09759011.png ; $I = \operatorname { ind } _ { k } ( D )$ ; confidence 0.955

269. b120400108.png ; $H ^ { 0 } ( G / B , G \times ^ { R } V )$ ; confidence 0.955

270. l12010082.png ; $\int _ { R ^ { n N } } | \nabla \Phi | ^ { 2 } \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.955

271. c02583056.png ; $\sigma ( T )$ ; confidence 0.955

272. c11040013.png ; $x \preceq h y$ ; confidence 0.955

273. e120190199.png ; $W _ { 1 } ^ { + }$ ; confidence 0.955

274. m12016034.png ; $q < p$ ; confidence 0.955

275. d03260098.png ; $\mu _ { 1 } = 0$ ; confidence 0.955

276. c02601040.png ; $s < t$ ; confidence 0.955

277. c120170141.png ; $p , q \in P ( n )$ ; confidence 0.955

278. i130090122.png ; $\Lambda = Z _ { p } [ [ T ] ]$ ; confidence 0.955

279. a130310111.png ; $T ^ { - 1 }$ ; confidence 0.955

280. c12030048.png ; $n < \infty$ ; confidence 0.955

281. s12026057.png ; $\partial _ { s + } \phi ( s ) = 0$ ; confidence 0.955

282. m1200603.png ; $\frac { \partial \vec { B } } { \partial t } = \operatorname { rot } [ \vec { v } \times \vec { B } ] , \frac { \partial \rho } { \partial t } + \operatorname { div } \rho \vec { v } = 0$ ; confidence 0.955

283. j120020141.png ; $[ X _ { \infty } Y _ { \infty } ]$ ; confidence 0.955

284. c1202307.png ; $f ^ { \prime } ( \theta ) \in A _ { 0 }$ ; confidence 0.955

285. x12001023.png ; $a x b = c x ^ { \sigma } d$ ; confidence 0.955

286. c13007093.png ; $X = X ^ { \prime }$ ; confidence 0.955

287. a12023037.png ; $p _ { 1 } = \ldots = p _ { n } = 1$ ; confidence 0.955

288. s130620194.png ; $- d ^ { 2 } / d x ^ { 2 } + g \operatorname { cos } \sqrt { x }$ ; confidence 0.955

289. g0433808.png ; $f ( x _ { 0 } + h ) = f ( x _ { 0 } ) + ( f _ { G } ^ { \prime } ( x _ { 0 } ) , h ) + \epsilon ( h )$ ; confidence 0.955

290. b13028028.png ; $H \times T ( n ) \cong G ( n )$ ; confidence 0.955

291. q12008037.png ; $\rho \geq 1$ ; confidence 0.955

292. d0302709.png ; $| f ( x ) - V _ { n , p } ( f , x ) | \leq 2 \frac { n + 1 } { p + 1 } E _ { n - p } ( f )$ ; confidence 0.955

293. t12021015.png ; $t ( M ) = x t ( M / e )$ ; confidence 0.954

294. x12003026.png ; $D \geq 1$ ; confidence 0.954

295. g13002038.png ; $2 \sqrt [ 2 ] { 3 }$ ; confidence 0.954

296. w13008027.png ; $\{ \alpha _ { j } , \beta _ { j } \}$ ; confidence 0.954

297. m065130112.png ; $S ^ { 4 }$ ; confidence 0.954

298. q12001019.png ; $[ A , B ] _ { \pm } = A B \pm B A$ ; confidence 0.954

299. u13002027.png ; $B = \{ y : \hat { f } ( y ) \neq 0 \}$ ; confidence 0.954

300. a120280105.png ; $I = \{ f \in L ^ { 1 } ( G ) : U _ { f } ( x ) = 0 \}$ ; confidence 0.954

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/26. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/26&oldid=44436