Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/13"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 13 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 13 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010046.png ; $c _ { 1 } | \xi | ^ { m _ { 1 } } \leq | b | \leq c _ { 2 } | \xi | ^ { m _ { 2 } }$ ; confidence 0.412
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010035.png ; $k _ { z } ( w ) = ( 1 - | z | ^ { 2 } ) / ( 1 - z w ) ^ { 2 }$ ; confidence 0.995
  
2. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019045.png ; $X = - \int _ { - \infty } ^ { t } X _ { A } ( t , z ) C ( z ) X _ { A } ( t , z ) d z$ ; confidence 0.907
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024840/c0248403.png ; $U \subset R$ ; confidence 0.995
  
3. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003054.png ; $\sum _ { i = 1 } ^ { n } \psi ( \frac { x _ { i } - T _ { n } } { S _ { n } } ) = 0$ ; confidence 0.906
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070136.png ; $2 - 10 ^ { - 12 } < \sigma ( n ) / n < 2 + 10 ^ { - 12 }$ ; confidence 0.995
  
4. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m1300205.png ; $\int _ { R ^ { 3 } } ( F _ { A } , F _ { A } ) + ( D _ { A } \phi , D _ { A } \phi )$ ; confidence 0.870
+
4. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300309.png ; $r ( z ) = \sum _ { k = 1 } ^ { \infty } s _ { k } z ^ { - k }$ ; confidence 0.995
  
5. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007022.png ; $\| P \| _ { \infty } = \operatorname { max } _ { [ z ] = 1 } | P ( z ) |$ ; confidence 0.572
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007049.png ; $B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.995
  
6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009042.png ; $\hat { \phi } ( \xi ) = \int _ { R ^ { n } } \phi ( x ) e ^ { - i \xi x } d x$ ; confidence 0.940
+
6. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013020.png ; $\phi : F \rightarrow X$ ; confidence 0.995
  
7. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011020.png ; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532
+
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013024.png ; $f \in L ^ { p } ( G )$ ; confidence 0.995
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015066.png ; $0 < U < I _ { p } , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 )$ ; confidence 0.971
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200164.png ; $( \alpha | \alpha ) > 0$ ; confidence 0.995
  
9. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201905.png ; $L _ { 2 } ( R _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786
+
9. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035430/e0354301.png ; $( x , y , z )$ ; confidence 0.995
  
10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019021.png ; $F ( \tau ) = \int _ { 1 } ^ { \infty } P _ { i \tau - 1 / 2 } ( x ) f ( x ) d x$ ; confidence 0.984
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023075.png ; $F | _ { \Gamma } = f$ ; confidence 0.995
  
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022068.png ; $p ^ { - 1 } \prod _ { m > 0 } ( 1 - p ^ { m } q ^ { n } ) ^ { d m n } = j ( w ) - j ( z )$ ; confidence 0.078
+
11. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490267.png ; $Z ( t )$ ; confidence 0.995
  
12. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006020.png ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H ^ { 1 } ( \Omega )$ ; confidence 0.746
+
12. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060112.png ; $\kappa = - 2 J - 1$ ; confidence 0.995
  
13. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010028.png ; $( b _ { i } a _ { j } + b _ { j } a _ { j i } - b _ { i } b _ { j } ) _ { i , j = 1 } ^ { s }$ ; confidence 0.589
+
13. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004040.png ; $f : G \rightarrow R ^ { 2 }$ ; confidence 0.995
  
14. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752088.png ; $A \in M _ { m \times n } ( K ) \subset M _ { m \times n } ( \hat { K } )$ ; confidence 0.213
+
14. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110217.png ; $G _ { X } ( X - Y ) \leq C ^ { - 1 } \Rightarrow C ^ { - 1 } \leq \frac { m ( X ) } { m ( Y ) } \leq C$ ; confidence 0.995
  
15. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070101.png ; $h \in \operatorname { SPSH } ( \Omega \times \Omega ) , h < 0$ ; confidence 0.920
+
15. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000201.png ; $\rho ^ { \prime } ( x ) = d$ ; confidence 0.995
  
16. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015035.png ; $x \preceq y \Rightarrow \varphi ( x ) \preceq \varphi ( y )$ ; confidence 0.846
+
16. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005067.png ; $M ( H ^ { \infty } ( B _ { E } ) )$ ; confidence 0.995
  
17. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009051.png ; $x \mapsto \int _ { \partial \Omega } f d \mu _ { x } ^ { \Omega }$ ; confidence 0.674
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019083.png ; $2 / 5 = 0.4$ ; confidence 0.995
  
18. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754809.png ; $( p \supset q ) \supset ( ( p \supset \neg q ) \supset \neg p )$ ; confidence 0.985
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013048.png ; $g = n \hbar / 2 e$ ; confidence 0.994
  
19. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002049.png ; $\hat { f } | x , 0 , w \rangle \rightarrow | x , f ( x ) , w \rangle$ ; confidence 0.679
+
19. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024620/c02462074.png ; $\theta _ { 1 }$ ; confidence 0.994
  
20. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200303.png ; $L : A \rightarrow \operatorname { Fun } _ { A } ( G ) \otimes A$ ; confidence 0.699
+
20. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260133.png ; $A ( v , p )$ ; confidence 0.994
  
21. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005044.png ; $d ^ { k } = - \operatorname { grad } _ { H _ { k } ^ { - 1 } } f ( x ^ { k } )$ ; confidence 0.589
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210145.png ; $d _ { 0 } : M ( \lambda ) \rightarrow L ( \lambda )$ ; confidence 0.994
  
22. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007029.png ; $\Delta g = g \otimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 }$ ; confidence 0.173
+
22. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001075.png ; $f ( x ^ { \prime } )$ ; confidence 0.994
  
23. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008042.png ; $q = \operatorname { inf } \{ \dot { k } : \sigma _ { k } \geq 1 \}$ ; confidence 0.614
+
23. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011061.png ; $H ( \varphi , \psi )$ ; confidence 0.994
  
24. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004062.png ; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947
+
24. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018050.png ; $\{ X ( t ) : t \in \partial D \}$ ; confidence 0.994
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018053.png ; $S ^ { \perp } = \{ x \in E : \{ x , s \} = 0 \text { for all } s \in S \}$ ; confidence 0.613
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200602.png ; $\epsilon = 1$ ; confidence 0.994
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020063.png ; $e _ { t } = \sum _ { \pi } \operatorname { sgn } ( \pi ) \{ \pi t \}$ ; confidence 0.996
+
26. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005090.png ; $z _ { 1 } , z _ { 2 } , z _ { 3 } \in T$ ; confidence 0.994
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051073.png ; $u = ( u _ { 1 } , \dots , u _ { m } ) , v = ( v _ { 1 } , \dots , v _ { m } ) \in V$ ; confidence 0.332
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c02502011.png ; $f : X \rightarrow \overline { R }$ ; confidence 0.994
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620163.png ; $q ( x ) = \frac { - 8 \operatorname { sin } 2 x } { x } + 0 ( x ^ { - 2 } )$ ; confidence 0.949
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200142.png ; $i \neq 0$ ; confidence 0.994
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320117.png ; $O ( U ) = O ( U ) \otimes \Lambda ( \xi _ { 1 } , \ldots , \xi _ { q } )$ ; confidence 0.555
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a1300805.png ; $h ( x )$ ; confidence 0.994
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065037.png ; $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$ ; confidence 0.974
+
30. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010130.png ; $A _ { 2 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.994
  
31. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008013.png ; $+ ( 1 - \mu _ { x } + t ^ { + } d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t )$ ; confidence 0.187
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121065.png ; $q ( x )$ ; confidence 0.994
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013040.png ; $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \circ p }$ ; confidence 0.240
+
32. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040130.png ; $z = \pm ( v ^ { - 1 } - v )$ ; confidence 0.994
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014049.png ; $\operatorname { dim } : K _ { 0 } ( Q ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.783
+
33. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003083.png ; $G L _ { 2 }$ ; confidence 0.994
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140117.png ; $\chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z$ ; confidence 0.847
+
34. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300604.png ; $f \in M ( k )$ ; confidence 0.994
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200132.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq$ ; confidence 0.637
+
35. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011088.png ; $\zeta : \overline { M } \rightarrow \overline { M }$ ; confidence 0.994
  
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202004.png ; $M _ { 0 } ( \dot { k } ) = \sum _ { j = 1 } ^ { x } | b _ { j } \| z _ { j } | ^ { k }$ ; confidence 0.127
+
36. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012015.png ; $[ A , f ]$ ; confidence 0.994
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200140.png ; $\operatorname { max } _ { r = m + 1 , \ldots , m + n } | g ( r ) | \geq$ ; confidence 0.321
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012017.png ; $m = n$ ; confidence 0.994
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200116.png ; $\operatorname { min } _ { k = m + 1 , \ldots , m + N } | g ( k ) | \geq$ ; confidence 0.425
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260101.png ; $A [ X$ ; confidence 0.994
  
39. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002030.png ; $f \times : H _ { q } ( X , X _ { 0 } ) \rightarrow H _ { q } ( Y , Y _ { 0 } )$ ; confidence 0.153
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022067.png ; $\overline { \Omega } = \cup T$ ; confidence 0.994
  
40. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002070.png ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k )$ ; confidence 0.932
+
40. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007036.png ; $E ( k , \omega ) = \{ z \in \Delta : \phi _ { \omega } ( z ) \leq k \}$ ; confidence 0.994
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002017.png ; $l _ { p } ( P , Q ) = \operatorname { inf } \{ \| d ( X , Y ) \| _ { p } \}$ ; confidence 0.356
+
41. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015024.png ; $x ^ { i } ( t )$ ; confidence 0.994
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004043.png ; $K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$ ; confidence 0.571
+
42. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w1301102.png ; $f \in L ^ { 1 } ( \mu )$ ; confidence 0.994
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007025.png ; $( \alpha _ { k } | \alpha _ { l } ) = ( \beta _ { k } | \beta _ { l } ) = 0$ ; confidence 0.997
+
43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201508.png ; $\xi , \eta _ { 1 } , \eta _ { 2 } \in A$ ; confidence 0.994
  
44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110197.png ; $G _ { X } ( X - Y \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X }$ ; confidence 0.626
+
44. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110142.png ; $f _ { \Delta _ { k } }$ ; confidence 0.994
  
45. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011019.png ; $J ^ { t } = \operatorname { exp } 2 i \pi t D _ { X } \cdot D _ { \xi }$ ; confidence 0.544
+
45. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014054.png ; $\psi ( - \gamma ) : = \psi ( \gamma ) , \gamma > 0$ ; confidence 0.994
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201108.png ; $D _ { x } = \frac { 1 } { 2 i \pi } \frac { \partial } { \partial x }$ ; confidence 0.847
+
46. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009010.png ; $F _ { 0 } = R$ ; confidence 0.994
  
47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080128.png ; $V _ { n } = ( 1 / 2 ) D _ { n } \theta ^ { 2 } \overline { \theta } ^ { 2 }$ ; confidence 0.854
+
47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180494.png ; $( x , t , r ) \in N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.994
  
48. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016018.png ; $D ( C ) = \operatorname { lim } _ { h \rightarrow 0 } W ( C ^ { h } )$ ; confidence 0.669
+
48. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008086.png ; $( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \|$ ; confidence 0.994
  
49. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017016.png ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j }$ ; confidence 0.712
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013045.png ; $( \nu - 1 ) \times ( \nu - 1 )$ ; confidence 0.994
  
50. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004013.png ; $I ( u ) = \int _ { \Omega } F ( x , u ( x ) , \nabla u ( x ) , \ldots ) d x$ ; confidence 0.950
+
50. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010104.png ; $\beta _ { i j }$ ; confidence 0.994
  
51. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300103.png ; $\kappa ( z ) = Z ( x ( n ) ) = \sum _ { j = 0 } ^ { \infty } x ( j ) z ^ { - j }$ ; confidence 0.437
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583046.png ; $| u ( \lambda ) | \leq 1$ ; confidence 0.994
  
52. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003037.png ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w )$ ; confidence 0.687
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012034.png ; $\int _ { R } \varphi ( t ) d t = 1$ ; confidence 0.994
  
53. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110118.png ; $P \{ M / N \leq x \} \stackrel { \omega } { \rightarrow } F ( x )$ ; confidence 0.368
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a0119703.png ; $\phi ( x )$ ; confidence 0.994
  
54. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111020.png ; $im _ { \rightarrow } H ^ { p } ( U _ { \lambda } ; G ) = H ^ { p } ( x ; G )$ ; confidence 0.456
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040347.png ; $K ( x ) \approx L ( x )$ ; confidence 0.994
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240179.png ; $\eta _ { i j } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j }$ ; confidence 0.993
+
55. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017072.png ; $X \in B ( H )$ ; confidence 0.994
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875
+
56. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007011.png ; $F ( e ) = 1$ ; confidence 0.994
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004029.png ; $\sigma ( \Gamma ) \operatorname { tg } \sigma ( \varphi )$ ; confidence 0.298
+
57. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340155.png ; $x ( 1 ) \in L _ { + }$ ; confidence 0.994
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040530.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n - 1 } \gg \varphi _ { n }$ ; confidence 0.068
+
58. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041067.png ; $z \in C \backslash [ - 1,1 ]$ ; confidence 0.994
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050114.png ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v$ ; confidence 0.983
+
59. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300607.png ; $\{ t \geq 0 , \square - \infty < x < + \infty \}$ ; confidence 0.994
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977
+
60. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008048.png ; $f ( k ) : = f ( 0 , k )$ ; confidence 0.994
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007075.png ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921
+
61. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022065.png ; $\Delta + z$ ; confidence 0.994
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180129.png ; $\mathfrak { P } ( U ) = \langle P ( U ) , \cap , \cup , - \rangle$ ; confidence 0.863
+
62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007030.png ; $J ( z ) = j ( z ) - 744 = \sum _ { k } c _ { k } q ^ { k } =$ ; confidence 0.994
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260108.png ; $\hat { y } _ { i } \in \hat { A } [ [ X _ { 1 } , \dots , X _ { s _ { i } } ] ]$ ; confidence 0.253
+
63. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003038.png ; $\Psi ( x , \theta )$ ; confidence 0.994
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029057.png ; $HF _ { x } ^ { \text { symp } } ( M , \text { id } ) \cong H ^ { * } ( M )$ ; confidence 0.103
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a1303106.png ; $( n \operatorname { log } n )$ ; confidence 0.994
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005051.png ; $P ( \square ^ { n } E ) \rightarrow P ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005044.png ; $B > 0$ ; confidence 0.994
  
66. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006092.png ; $\leq \| V \| \cdot \| ( \mu I - A ) ^ { - 1 } \| \cdot \| V ^ { - 1 } \|$ ; confidence 0.667
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015074.png ; $\Delta u \in G ^ { \infty } ( \Omega )$ ; confidence 0.994
  
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009011.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) p ( f , t )$ ; confidence 0.998
+
67. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t1301506.png ; $H ^ { 2 } ( T )$ ; confidence 0.994
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220130.png ; $\{ s \in C : i / 2 \leq \operatorname { Re } ( s ) \leq 1 + i / 2 \}$ ; confidence 0.918
+
68. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510121.png ; $\gamma : V \rightarrow Z ^ { 0 } \cup \{ \infty \}$ ; confidence 0.994
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012014.png ; $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ ; confidence 0.754
+
69. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007020.png ; $M \in \Gamma$ ; confidence 0.994
  
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022016.png ; $f ( v ) = \frac { \rho } { ( 2 \pi T ) ^ { N / 2 } } e ^ { - p - u ^ { 2 } / 2 T }$ ; confidence 0.343
+
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043072.png ; $V ^ { * } ( R ^ { \prime } , R )$ ; confidence 0.994
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027035.png ; $P ( X _ { 1 } = \alpha + n h \text { for somen } = 0,1 , \ldots ) = 1$ ; confidence 0.211
+
71. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070101.png ; $f \in H _ { 1 }$ ; confidence 0.994
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b1203108.png ; $\hat { f } ( \xi ) = \int _ { R ^ { n } } f ( x ) e ^ { - 2 \pi i x , \xi } d x$ ; confidence 0.552
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050122.png ; $\frac { d u ( t ) } { d t } + A ( t , u ( t ) ) u ( t ) = f ( t , u ( t ) )$ ; confidence 0.994
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200101.png ; $( \mathfrak { g } ^ { \alpha } | \mathfrak { g } ^ { \beta } ) = 0$ ; confidence 0.977
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200403.png ; $L ^ { 0 } ( \mu ) = L ^ { 0 } ( \Omega , \Sigma , \mu )$ ; confidence 0.994
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200111.png ; $\alpha \in \mathfrak { g } ^ { n } _ { 1 } \alpha _ { 1 } + \ldots$ ; confidence 0.345
+
74. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017018.png ; $= \operatorname { det } ( 1 + A _ { 1 } \lambda + \ldots + A _ { n } \lambda ^ { n } )$ ; confidence 0.994
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040099.png ; $g ^ { \prime } ( g B , v ) = ( g ^ { \prime } g B , R ( g ^ { \prime } ) v )$ ; confidence 0.996
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044095.png ; $R [ G \times G$ ; confidence 0.994
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029037.png ; $A = B / ( X _ { 1 } , \dots , X _ { d } ) \cap ( Y _ { 1 } , \dots , Y _ { d } )$ ; confidence 0.513
+
76. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017018.png ; $u \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.994
  
77. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004025.png ; $n \in N : = \{ 1,2 , \ldots \} , z \in C \backslash Z _ { 0 } ^ { - }$ ; confidence 0.335
+
77. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018083.png ; $A ( G )$ ; confidence 0.994
  
78. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007018.png ; $\operatorname { pr } ( \alpha _ { 1 } , \dots , \alpha _ { R } )$ ; confidence 0.149
+
78. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023050.png ; $( t , x ) \in ( 0 , T ) \times H$ ; confidence 0.994
  
79. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007011.png ; $X = \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , Y = \frac { 2 t } { 1 + t ^ { 2 } }$ ; confidence 0.998
+
79. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023032.png ; $D ( \Omega ^ { l } ( M ) ) \subset \Omega ^ { k + l } ( M )$ ; confidence 0.994
  
80. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008032.png ; $N _ { A } = ( \# \frac { A } { n } + o ( 1 ) ) x \operatorname { log } x$ ; confidence 0.876
+
80. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000131.png ; $f ( \epsilon )$ ; confidence 0.994
  
81. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008028.png ; $P _ { A } = \{ \mathfrak { p } : F _ { L } / K ( \mathfrak { p } ) = A \}$ ; confidence 0.812
+
81. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105085.png ; $E \in B ( \Omega )$ ; confidence 0.994
  
82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c13013016.png ; $\frac { d K ( t ) } { d t } = F ( K ( t ) , L ( t ) ) - \lambda K ( t ) - C ( t )$ ; confidence 0.991
+
82. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301304.png ; $T = ( - \pi , \pi ]$ ; confidence 0.994
  
83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180391.png ; $\{ \varnothing ^ { * } \overline { E } , \tilde { \nabla } \}$ ; confidence 0.084
+
83. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h1200109.png ; $\pi : X \rightarrow V$ ; confidence 0.994
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180300.png ; $R ( \nabla ) : \otimes ^ { r } E \rightarrow \otimes ^ { + 2 } E$ ; confidence 0.622
+
84. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p1301204.png ; $\frac { 1 } { 2 } ( c ( D ) - s ( D ) + \operatorname { com } ( D ) )$ ; confidence 0.994
  
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180241.png ; $( W ( g ) \otimes \ldots \otimes W ( g ) ) \in C ^ { \infty } ( M )$ ; confidence 0.967
+
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180344.png ; $\{ M , g \}$ ; confidence 0.994
  
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026011.png ; $\delta ^ { 2 } U _ { j } = h ^ { - 2 } ( U _ { j + 1 } - 2 U _ { j } + U _ { j - 1 } )$ ; confidence 0.961
+
86. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001013.png ; $\alpha \in P$ ; confidence 0.994
  
87. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007094.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = 0$ ; confidence 0.994
  
88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031049.png ; $n ( \epsilon , F _ { \phi } ) \leq \kappa , d , \epsilon ^ { - 2 }$ ; confidence 0.584
+
88. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015067.png ; $C ^ { * } E ( S ) \supset C ^ { * } ( S )$ ; confidence 0.994
  
89. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027027.png ; $| V _ { n , p } ( f , x ) | \leq K ( c ) \operatorname { max } | f ( x ) |$ ; confidence 0.939
+
89. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260179.png ; $\pi : M ( A ) \rightarrow Q ( A )$ ; confidence 0.994
  
90. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006028.png ; $Bel _ { E _ { 1 } , E _ { 2 } } = Bel _ { E _ { 1 } } \oplus Bel _ { E _ { 2 } }$ ; confidence 0.310
+
90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170212.png ; $H _ { 2 } ( K ^ { * } ) = H _ { 1 } ( K ^ { * } ) = 0$ ; confidence 0.994
  
91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011014.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ; ) = 0$ ; confidence 0.477
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031040.png ; $\delta = 0$ ; confidence 0.994
  
92. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030041.png ; $\frac { d \mu _ { Y } } { d \mu _ { Z } } = E _ { \mu _ { X } } [ \psi ( T ) ]$ ; confidence 0.677
+
92. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012034.png ; $( x , z )$ ; confidence 0.994
  
93. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030051.png ; $= E _ { \mu _ { X } } [ \psi ( t ) | X ( t ) = x ] p _ { X } ( 0 , x _ { 0 } ; t , x )$ ; confidence 0.806
+
93. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058035.png ; $I \geq ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.994
  
94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201502.png ; $( d x ^ { 1 } / d t , \ldots , d x ^ { n } / d t ) = ( d x / d t ) = ( \dot { x } )$ ; confidence 0.544
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013590/a01359026.png ; $\delta _ { 1 }$ ; confidence 0.994
  
95. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029063.png ; $Q \rightarrow \Sigma$ ; confidence 0.994
  
96. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023089.png ; $E ^ { k } = M \times F \times F ^ { ( 1 ) } \times \ldots F ^ { ( k ) }$ ; confidence 0.641
+
96. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043430/g04343025.png ; $n ^ { - 1 }$ ; confidence 0.994
  
97. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090110.png ; $P ( X = n ) = p ^ { r } H _ { n + 1 , r } ^ { ( k ) } ( q _ { 1 } , \dots , q _ { k } )$ ; confidence 0.325
+
97. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012076.png ; $( + + + - )$ ; confidence 0.994
  
98. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009060.png ; $P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$ ; confidence 0.620
+
98. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011087.png ; $M \simeq T ( \zeta )$ ; confidence 0.994
  
99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110198.png ; $\tilde { \mathscr { Q } } = \tilde { \mathscr { Q } } ( D ^ { n } )$ ; confidence 0.211
+
99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006089.png ; $f ( k ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } g ( t ) e ^ { i k t } d t )$ ; confidence 0.994
  
100. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110146.png ; $2 \pi \sum _ { k = - \infty } ^ { \infty } \delta ( \xi - 2 \pi k )$ ; confidence 0.996
+
100. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010067.png ; $\lambda ^ { p } ( \mu )$ ; confidence 0.994
  
101. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160120.png ; $\psi _ { \mathfrak { Q } } ^ { l } \overline { \mathfrak { a } }$ ; confidence 0.075
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201208.png ; $f ( \phi | \theta ) = f ( \theta , \phi ) / \int f ( \theta , \phi ) d \phi$ ; confidence 0.994
  
102. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023043.png ; $D _ { X } \in \operatorname { Der } _ { k } \wedge T _ { X } ^ { * } M$ ; confidence 0.915
+
102. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014024.png ; $A _ { i } ^ { T }$ ; confidence 0.994
  
103. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024035.png ; $\dot { x } ( t ) = f ( t , \int _ { t - h ( t ) } ^ { t } K ( t , s , x ( s ) ) d s )$ ; confidence 0.682
+
103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019036.png ; $R = L \overline { L }$ ; confidence 0.994
  
104. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290142.png ; $( f , \phi ) ^ { \leftarrow } ( b ) = \phi ^ { 0 p } \circ b \circ f$ ; confidence 0.216
+
104. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008041.png ; $q \leq p \leq P$ ; confidence 0.994
  
105. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290165.png ; $T \circ ( f , \phi ) ^ { \leftarrow } \geq \phi ^ { 0 p } \circ S$ ; confidence 0.465
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013045.png ; $( X _ { n } )$ ; confidence 0.994
  
106. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001089.png ; $Z ( e ) = \operatorname { log } _ { \omega } ( 1 + \omega ^ { e } )$ ; confidence 0.834
+
106. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015920/b01592017.png ; $1 \leq i \leq k$ ; confidence 0.994
  
107. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573
+
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051029.png ; $( u , v ) \in E$ ; confidence 0.994
  
108. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007038.png ; $\Delta f _ { i } = A _ { , r + 1 } f _ { r + 1 } + \ldots + A _ { , l } f _ { l }$ ; confidence 0.196
+
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048063.png ; $( G , G _ { 0 } )$ ; confidence 0.994
  
109. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012080.png ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +$ ; confidence 0.981
+
109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023069.png ; $X K = X _ { 2 }$ ; confidence 0.994
  
110. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012083.png ; $\partial _ { \infty } = d _ { M } + f \Sigma _ { \infty } \nabla$ ; confidence 0.963
+
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018047.png ; $t _ { 2 } \in D ^ { + }$ ; confidence 0.994
  
111. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807013.png ; $S = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } Z _ { i } ^ { \prime } Z _ { i }$ ; confidence 0.912
+
111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009034.png ; $E _ { 1 } ( k ) = r _ { 1 } ( k ) + r _ { 2 } ( k ) - 1$ ; confidence 0.994
  
112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001035.png ; $\operatorname { per } ( A ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }$ ; confidence 0.598
+
112. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006073.png ; $\langle \lambda | T ( z ) | \lambda ^ { \prime } \rangle$ ; confidence 0.994
  
113. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053032.png ; $\Rightarrow$ ; confidence 0.994
  
114. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006048.png ; $( P ) = \operatorname { dim } ( \operatorname { Prsu } ( P ) )$ ; confidence 0.491
+
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006031.png ; $( \phi , G ( z ) \phi ) =$ ; confidence 0.994
  
115. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006071.png ; $\| S \| : = \int _ { 0 } ^ { \infty } ( 1 + x ) | F ^ { \prime } ( x ) | d x$ ; confidence 0.740
+
115. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002018.png ; $( i L )$ ; confidence 0.994
  
116. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007015.png ; $r \rightarrow \infty , \frac { x } { r } = \alpha ^ { \prime }$ ; confidence 0.652
+
116. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003043.png ; $\varphi \in A ^ { * }$ ; confidence 0.994
  
117. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004065.png ; $\varphi ( D ) = \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.840
+
117. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006026.png ; $2.539$ ; confidence 0.994
  
118. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007051.png ; $\phi _ { \eta } ( F ( z ) ) \leq d ( \omega ) \phi _ { \omega } ( z )$ ; confidence 0.990
+
118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006072.png ; $V Y \rightarrow M$ ; confidence 0.994
  
119. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840279.png ; $A x = \int _ { - \| A \| } ^ { \| A \| } \lambda E ( d \lambda ) x + N x$ ; confidence 0.835
+
119. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111016.png ; $H ^ { p } = 0$ ; confidence 0.994
  
120. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584078.png ; $\int _ { - \infty } ^ { \infty } | f | ^ { 2 } d | \sigma | < \infty$ ; confidence 0.992
+
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140101.png ; $\sigma _ { e } ( T _ { \phi } )$ ; confidence 0.994
  
121. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840329.png ; $x ( . ) \rightarrow \int _ { a } ^ { b } K ( , s ) x ( s ) d \sigma ( s )$ ; confidence 0.475
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028033.png ; $h ^ { N } \in [ 0,1 ]$ ; confidence 0.994
  
122. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508018.png ; $\overline { w } \square _ { 0 } ^ { T } ( h _ { \mu \nu } ) w _ { 0 } > 0$ ; confidence 0.956
+
122. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120126.png ; $\tau : C \rightarrow X$ ; confidence 0.994
  
123. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004025.png ; $L ( A ) \nmid \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.468
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022076.png ; $\xi = v$ ; confidence 0.994
  
124. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006048.png ; $\Delta _ { k } ( s , t ) = - \prod _ { j = 1 } ^ { k } ( t _ { j } - s _ { j } ) +$ ; confidence 0.965
+
124. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003041.png ; $f \in M _ { 3 }$ ; confidence 0.994
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600403.png ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0$ ; confidence 0.784
+
125. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015053.png ; $\Omega$ ; confidence 0.994
  
126. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010057.png ; $R ^ { * } g : = \int _ { S ^ { n - 1 } g ( \alpha , \alpha x ) d \alpha }$ ; confidence 0.359
+
126. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q120050103.png ; $D ^ { 2 } f ( x ^ { * } )$ ; confidence 0.994
  
127. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010016.png ; $\hat { f } _ { p } : = \frac { \partial \hat { f } } { \partial p }$ ; confidence 0.686
+
127. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026095.png ; $f ^ { * } : H ^ { * } ( S ^ { n } ) \rightarrow H ^ { * } ( S ^ { n } )$ ; confidence 0.994
  
128. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003018.png ; $\rho ( x , \theta ) = - \operatorname { ln } f _ { \theta } ( x )$ ; confidence 0.910
+
128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015038.png ; $\xi \in A \rightarrow \pi ( \xi ) \eta$ ; confidence 0.994
  
129. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011028.png ; $X = \operatorname { cl } ( M \backslash ( K \times D ^ { 2 } ) )$ ; confidence 0.836
+
129. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202302.png ; $f : H \rightarrow ( - \infty , + \infty ]$ ; confidence 0.994
  
130. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011016.png ; $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$ ; confidence 0.976
+
130. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h1200107.png ; $\varphi : T V \rightarrow T W$ ; confidence 0.994
  
131. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007034.png ; $f _ { l } ^ { t } = F ^ { - 1 } ( e ^ { i ( p ^ { 0 } - \omega ) t } F ( f _ { l } ) )$ ; confidence 0.176
+
131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019064.png ; $( B ^ { k } / S ^ { k - 1 } , [ S ^ { k - 1 } ] )$ ; confidence 0.994
  
132. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140101.png ; $\operatorname { det } \| \frac { 1 } { b _ { j } ^ { l } } \| \neq 0$ ; confidence 0.511
+
132. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007026.png ; $L _ { 2 } [ 0,2 \pi ]$ ; confidence 0.994
  
133. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027018.png ; $\langle w , f \rangle = w _ { 1 } f _ { 1 } + \ldots + w _ { n } f _ { n }$ ; confidence 0.908
+
133. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011063.png ; $( u , \psi )$ ; confidence 0.994
  
134. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630105.png ; $\| f - q \| _ { L _ { p } ( R ^ { n } ) } \leq c \sum _ { i = 1 } ^ { n } M _ { i }$ ; confidence 0.488
+
134. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007045.png ; $B ( x , y ) \in H _ { + }$ ; confidence 0.994
  
135. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010050.png ; $\sigma ( \zeta ) = \sum _ { i = 0 } ^ { k } \beta _ { i } \zeta ^ { i }$ ; confidence 0.965
+
135. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004066.png ; $\Lambda _ { 1 } ( \Omega ) \geq \Lambda _ { 1 } ( \Omega ^ { * } )$ ; confidence 0.994
  
136. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010040.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \varphi ( \xi ) \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.979
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329056.png ; $7$ ; confidence 0.994
  
137. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520411.png ; $2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.995
+
137. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011071.png ; $X = ( x , \xi ) , Y = ( y , \eta )$ ; confidence 0.994
  
138. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520455.png ; $A = \{ Y : \psi _ { i } = \lambda _ { i } y _ { i } a , i = 1 , \dots , n \}$ ; confidence 0.593
+
138. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024029.png ; $\dot { x } ( t ) = y ( t )$ ; confidence 0.994
  
139. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520405.png ; $( Q , \Lambda ) \neq 0 , \quad q _ { 1 } + \ldots + q _ { n } < 2 ^ { k }$ ; confidence 0.964
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042016.png ; $( V , W , Z )$ ; confidence 0.994
  
140. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001067.png ; $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$ ; confidence 0.926
+
140. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510118.png ; $V ^ { \infty } = V \backslash V ^ { f } , \gamma ^ { \prime } ( u ) = \operatorname { mex } \gamma ( F ( u ) )$ ; confidence 0.994
  
141. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300802.png ; $\square _ { m } u = ( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) ) u$ ; confidence 0.615
+
141. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015070.png ; $\xi , \eta \in A _ { 0 }$ ; confidence 0.994
  
142. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009039.png ; $\mu _ { x } ^ { \Omega } = P _ { \Omega } ( x , \xi ) d \sigma ( \xi )$ ; confidence 0.615
+
142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001066.png ; $( - 1 ) ^ { k } D ^ { k } ( z / ( z - 1 )$ ; confidence 0.994
  
143. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005010.png ; $M ^ { - 1 } \leq \frac { h ( x + t ) - h ( x ) } { h ( x ) - h ( x - t ) } \leq M$ ; confidence 0.998
+
143. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007032.png ; $( u , v ) _ { - } = ( A ^ { 1 / 2 } u , A ^ { 1 / 2 } v ) _ { 0 }$ ; confidence 0.994
  
144. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007010.png ; $\tau \circ \Delta h = R ( \Delta h ) R ^ { - 1 } , \forall h \in H$ ; confidence 0.958
+
144. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100127.png ; $\alpha , \beta \in \Delta$ ; confidence 0.994
  
145. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007042.png ; $R = R _ { q ^ { 2 } } e _ { q ^ { - 2 } } ^ { ( q - q ^ { - 1 } ) E } \varnothing$ ; confidence 0.066
+
145. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008018.png ; $d = d ( w | v )$ ; confidence 0.994
  
146. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300106.png ; $a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1$ ; confidence 0.820
+
146. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100606.png ; $\mu ^ { W }$ ; confidence 0.994
  
147. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004066.png ; $\Lambda _ { 1 } ( \Omega ) \geq \Lambda _ { 1 } ( \Omega ^ { * } )$ ; confidence 0.994
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290201.png ; $d = \operatorname { dim } R$ ; confidence 0.994
  
148. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080107.png ; $( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } K ) _ { 0 } = ( u , A ^ { - 1 } K ) _ { 0 } = u ( y )$ ; confidence 0.966
+
148. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019032.png ; $C _ { G } ( h ) \leq H$ ; confidence 0.994
  
149. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004056.png ; $s ( l ) = h _ { l } \text { and } s _ { \langle 1 ^ { l } } \rangle = e l$ ; confidence 0.143
+
149. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200120.png ; $m \geq - 1$ ; confidence 0.994
  
150. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068023.png ; $L ( P )$ ; confidence 0.994
  
151. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049065.png ; $| N _ { 0 } | = | N _ { N } ( P ) | \leq | N _ { 1 } | = | N _ { N } ( P ) - 1 | \leq$ ; confidence 0.213
+
151. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303408.png ; $L _ { + } = A L _ { - } + A ^ { - 1 } L _ { \infty }$ ; confidence 0.994
  
152. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230154.png ; $f _ { 1 } ( T ) = W ^ { ( x - \gamma _ { 1 } - \ldots - x _ { s } ) / 2 } f ( T )$ ; confidence 0.163
+
152. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009031.png ; $P _ { \Omega } ( x , \xi ) = \frac { \partial } { \partial n } G _ { \Omega } ( x , \xi )$ ; confidence 0.994
  
153. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023026.png ; $\psi ( T T ^ { \prime } ) = \phi ( A ^ { \prime } T T ^ { \prime } A )$ ; confidence 0.992
+
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008020.png ; $m > n$ ; confidence 0.994
  
154. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064037.png ; $E ( \alpha ) = \operatorname { det } T ( a ) T ( \alpha ^ { - 1 } )$ ; confidence 0.391
+
154. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058027.png ; $V = 0$ ; confidence 0.994
  
155. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065011.png ; $\delta _ { \mu } = \operatorname { min } _ { H } \| H \| _ { \mu }$ ; confidence 0.979
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029010.png ; $b _ { 1 } ( Y ) > 0$ ; confidence 0.994
  
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306606.png ; $I _ { n } ( f ) = \sum _ { k = 1 } ^ { n } \lambda _ { n k } f ( \xi _ { n k } )$ ; confidence 0.672
+
156. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105071.png ; $F ( E )$ ; confidence 0.994
  
157. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050149.png ; $\sigma _ { Te } ( A , X ) : = \{ \lambda \in C ^ { n } : A - \lambda i$ ; confidence 0.723
+
157. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026032.png ; $R N$ ; confidence 0.994
  
158. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005021.png ; $\Sigma ^ { i , j } ( f ) = \Sigma ^ { j } ( f | _ { \Sigma ^ { i } ( f ) } )$ ; confidence 0.820
+
158. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002036.png ; $\{ i j , i k , j k \}$ ; confidence 0.994
  
159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015069.png ; $\alpha \in C \rightarrow ( \Delta ^ { \alpha } \xi | \eta )$ ; confidence 0.997
+
159. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110110.png ; $\phi = \phi ( x _ { i } , t ) = \phi ( x _ { i } ( x _ { k } ^ { 0 } , t ) , t )$ ; confidence 0.994
  
160. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020193.png ; $( t ^ { * } ) ^ { - 1 } \circ ( t - r ) ^ { * } \beta _ { 1 } = k \beta _ { 2 }$ ; confidence 0.581
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019037.png ; $m = 0$ ; confidence 0.994
  
161. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020222.png ; $H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \cong Z$ ; confidence 0.962
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005070.png ; $( \beta N \backslash N ) \times \Delta$ ; confidence 0.994
  
162. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
+
162. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007018.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$ ; confidence 0.994
  
163. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030104.png ; $\{ ( x _ { i } , x _ { i } ^ { * } ) : i \in I \} \subset X \times X ^ { * }$ ; confidence 0.990
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029046.png ; $( M , \Sigma )$ ; confidence 0.994
  
164. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110252.png ; $\mathfrak { g } _ { X } = H ( X ) ^ { - 1 } \tilde { h } ( X ) G _ { X } ( T )$ ; confidence 0.270
+
164. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014047.png ; $[ ( 1 + \sqrt { 5 } ) / 2 , \infty )$ ; confidence 0.994
  
165. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201803.png ; $R _ { + } ^ { N } = \{ t = ( t _ { 1 } , \dots , t _ { N } ) : t _ { i } \geq 0 \}$ ; confidence 0.644
+
165. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v1200402.png ; $\mu ( G )$ ; confidence 0.994
  
166. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301207.png ; $d ( x , A ) = \operatorname { inf } \{ d ( x , a ) : \alpha \in A \}$ ; confidence 0.553
+
166. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004067.png ; $D _ { 1 } * D _ { 2 }$ ; confidence 0.994
  
167. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011063.png ; $\int _ { 0 } ^ { \infty } ( 1 - e ^ { - \lambda } ) R ( d \lambda ) = 1$ ; confidence 0.959
+
167. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019038.png ; $A ^ { * } X A - X + C = 0$ ; confidence 0.994
  
168. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011099.png ; $\lambda = \frac { ( 1 - \alpha ) ( k + d n _ { k } ) } { ( k + m _ { k } ) }$ ; confidence 0.440
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022071.png ; $K = \{ \gamma : | \gamma | = m \}$ ; confidence 0.994
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170182.png ; $M ( n + k _ { j } )$ ; confidence 0.994
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240484.png ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922
+
170. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005051.png ; $Y ( v , x ) ] = ( d / d x ) Y ( v , x )$ ; confidence 0.994
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050216.png ; $A _ { 2 } = \prod _ { m _ { 2 } } ^ { 2 } \geq 2 \zeta ( m ^ { 2 } ) = 2.49$ ; confidence 0.094
+
171. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010021.png ; $( H , B )$ ; confidence 0.994
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050115.png ; $\frac { \partial } { \partial s } U ( t , s ) v = U ( t , s ) A ( s ) v$ ; confidence 0.993
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028031.png ; $[ B , C ]$ ; confidence 0.994
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007015.png ; $\frac { \partial } { \partial t } U ( t , s ) - A ( t ) U ( t , s ) = 0$ ; confidence 1.000
+
173. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003076.png ; $\mu \in L ( E )$ ; confidence 0.994
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070121.png ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u v$ ; confidence 0.523
+
174. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663027.png ; $0 < \alpha _ { i } < 1$ ; confidence 0.994
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011027.png ; $T ( i , n ) = T ( i - 1 , T ( i , n - 1 ) ) \text { for } i \geq 1 , n \geq 2$ ; confidence 0.995
+
175. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008066.png ; $Z ( t , \phi )$ ; confidence 0.994
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160163.png ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870
+
176. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066091.png ; $H ^ { p }$ ; confidence 0.994
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023047.png ; $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$ ; confidence 0.749
+
177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017012.png ; $( z _ { t } )$ ; confidence 0.994
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027043.png ; $( T ( x _ { x } ) , \psi _ { j } ) = ( f , \psi _ { j } ) , j = 1 , \ldots , n$ ; confidence 0.274
+
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010130.png ; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032043.png ; $P _ { \theta } ( S _ { N } = K ) = ( 1 - r ^ { J } ) ( 1 - r ^ { K + J } ) ^ { - 1 }$ ; confidence 0.734
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b1101309.png ; $E _ { 2 }$ ; confidence 0.994
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004078.png ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018028.png ; $H ^ { p } ( d \theta / 2 \pi )$ ; confidence 0.994
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006091.png ; $| ( \mu I - A ) ^ { - 1 } \| = \| V ( \mu I - A ) ^ { - 1 } V ^ { - 1 } \| \leq$ ; confidence 0.861
+
181. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007082.png ; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022037.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , i + 1 - s )$ ; confidence 0.808
+
182. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200118.png ; $\gamma \geq 0$ ; confidence 0.994
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022043.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , w + 1 - s )$ ; confidence 0.975
+
183. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021026.png ; $\lambda K + t$ ; confidence 0.994
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220232.png ; $CH ^ { i } ( X , j ) \otimes Q \simeq H _ { M } ^ { 2 j - i } ( X , Q ( i ) )$ ; confidence 0.412
+
184. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023049.png ; $f : ( - \epsilon , \epsilon ) \rightarrow R$ ; confidence 0.994
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015017.png ; $\sum _ { j = 1 } ^ { n } x _ { j } \quad x - \sum _ { j = 1 } ^ { n } x _ { j }$ ; confidence 0.526
+
185. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024035.png ; $T ( \varepsilon )$ ; confidence 0.994
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017034.png ; $f ( x ) = G _ { \alpha } g ( x ) = \int G _ { \alpha } ( x - y ) g ( y ) d y$ ; confidence 0.996
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012058.png ; $( x , y )$ ; confidence 0.994
  
187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030055.png ; $A ( \eta ) \phi = \lambda \phi \operatorname { in } R ^ { N }$ ; confidence 0.288
+
187. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008018.png ; $F ( X , Y ) \in O _ { S } [ X , Y ]$ ; confidence 0.994
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031047.png ; $\operatorname { lim } _ { R } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.962
+
188. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026030.png ; $1 \leq j \leq J - 1$ ; confidence 0.994
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031061.png ; $G _ { \delta } [ f _ { S } ^ { + } ( x _ { 0 } ) - f _ { S } ^ { - } ( x _ { 0 } ) ]$ ; confidence 0.984
+
189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023047.png ; $G \Theta$ ; confidence 0.994
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031069.png ; $\operatorname { lim } _ { R } S _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.584
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018078.png ; $\sigma = u - v$ ; confidence 0.994
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034078.png ; $\| f \| \leq \operatorname { sup } _ { \Lambda / l } | f ( z ) |$ ; confidence 0.077
+
191. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000127.png ; $\alpha \in T$ ; confidence 0.994
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034061.png ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k } , \quad | z | < 1$ ; confidence 0.993
+
192. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070139.png ; $H , A$ ; confidence 0.994
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020093.png ; $\omega \mathfrak { g } ^ { \alpha } = \mathfrak { g } ^ { - } a$ ; confidence 0.214
+
193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024095.png ; $H ^ { 1 } ( K _ { n } ; A )$ ; confidence 0.994
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029048.png ; $1 _ { A } ( A / \mathfrak { q } ) - e _ { \mathfrak { q } } ^ { 0 } ( A )$ ; confidence 0.816
+
194. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300805.png ; $T = \epsilon t$ ; confidence 0.994
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070243.png ; $\mathfrak { D } _ { i } = \sum \mathfrak { D } ( C , C _ { i } ) ( T )$ ; confidence 0.965
+
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200207.png ; $G _ { 2 } ( r ) \leq - M$ ; confidence 0.994
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015028.png ; $| \partial ^ { \alpha } R ( \varphi _ { \varepsilon , x } ) |$ ; confidence 0.893
+
196. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d031920103.png ; $M = N$ ; confidence 0.994
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170178.png ; $K _ { R } \equiv \{ z : r _ { j } ( z , z ) \geq 0 , j = 1 , \ldots , m \}$ ; confidence 0.312
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015026.png ; $q \geq N$ ; confidence 0.994
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201707.png ; $\gamma _ { i j } = \int z ^ { i } z ^ { j } d \mu , 0 \leq i + j \leq 2 n$ ; confidence 0.975
+
198. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006066.png ; $( q , r ) : ( Q , R ) \rightarrow B$ ; confidence 0.994
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030056.png ; $F ( H ) = C \oplus \oplus _ { N = 1 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.118
+
199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030066.png ; $\geq 665$ ; confidence 0.994
  
200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014074.png ; $\lfloor \frac { q - 1 } { n } \rfloor + 1 \leq | V _ { f } | \leq q$ ; confidence 0.832
+
200. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002018.png ; $f ( 0 ) \leq \varepsilon$ ; confidence 0.994
  
201. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013042.png ; $g = n \frac { \hbar } { 2 e } , \quad n = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.649
+
201. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004028.png ; $s = \infty$ ; confidence 0.994
  
202. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301705.png ; $u \in C ^ { 2 } ( \Omega ) \cap C ^ { 0 } ( \overline { \Omega } )$ ; confidence 0.996
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001076.png ; $( V ^ { * } , A )$ ; confidence 0.994
  
203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230116.png ; $d ( z , w ) = \sum _ { i , j = 0 } ^ { \infty } d _ { i j } z ^ { i } w ^ { * j }$ ; confidence 0.962
+
203. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007030.png ; $\{ i : m _ { - } i > 0 \}$ ; confidence 0.994
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030012.png ; $h : R _ { + } \times R ^ { n } \times R ^ { m } \rightarrow R ^ { m }$ ; confidence 0.921
+
204. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020171.png ; $\{ X , Y , Z , p , q \}$ ; confidence 0.994
  
205. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203004.png ; $d Y ( t ) = h ( t , X ( t ) , Y ( t ) ) d t + g ( t , Y ( t ) ) d \tilde { B } ( t )$ ; confidence 0.971
+
205. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006030.png ; $p - 1 | n$ ; confidence 0.994
  
206. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300101.png ; $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.532
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300709.png ; $45045 = 5.79 .11 .13$ ; confidence 0.994
  
207. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006050.png ; $C \Gamma : Y \rightarrow V Y \otimes \wedge ^ { 2 } T ^ { * } M$ ; confidence 0.803
+
207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100134.png ; $T \in C V _ { p } ( G )$ ; confidence 0.994
  
208. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500076.png ; $E ( \rho ^ { 2 } ( \xi , \xi ^ { \prime } ) ) \leq \epsilon ^ { 2 }$ ; confidence 0.595
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017034.png ; $t , T$ ; confidence 0.994
  
209. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000117.png ; $H _ { \epsilon } ^ { \prime \prime } \leq H _ { \epsilon / 2 }$ ; confidence 0.576
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016036.png ; $R = D ^ { 1 / 2 } L ^ { T }$ ; confidence 0.994
  
210. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005010.png ; $[ \lambda ; n ] = \Gamma ( \lambda + n ) / \Gamma ( \lambda )$ ; confidence 0.999
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139013.png ; $L _ { 1 } ( G )$ ; confidence 0.994
  
211. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007070.png ; $0 < \lambda _ { k } \leq | f ^ { ( k ) } ( x ) | \leq A \lambda _ { k }$ ; confidence 0.854
+
211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064051.png ; $\omega _ { \alpha , \beta }$ ; confidence 0.994
  
212. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001023.png ; $f _ { 2 } = \operatorname { gcd } ( x ^ { q ^ { 2 } } - x , f / f _ { 1 } )$ ; confidence 0.663
+
212. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200308.png ; $\operatorname { Ric } ( \omega ) = - \omega$ ; confidence 0.994
  
213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001014.png ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694
+
213. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012063.png ; $\phi : Y \rightarrow Y$ ; confidence 0.994
  
214. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300509.png ; $\sum _ { l = 1 } ^ { m } \| p _ { l } - x \| = c ( a \text { constant } )$ ; confidence 0.270
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011036.png ; $\alpha ( m , n ) \leq 3$ ; confidence 0.994
  
215. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f1300503.png ; $f ( x ) = \sum _ { i = 1 } ^ { m } w _ { i } \| p _ { i } - x \| , x \in R ^ { n }$ ; confidence 0.621
+
215. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005022.png ; $\int _ { 0 } ^ { 1 } \nu ( x + ( y - x ) t ) t ^ { - \alpha } ( 1 - t ) ^ { - \beta } d t$ ; confidence 0.994
  
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009015.png ; $| \mu ( f ) | \leq C _ { U } \operatorname { sup } _ { U } | f ( z ) |$ ; confidence 0.416
+
216. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013049.png ; $\omega ( 0 ) = \omega ( 1 ) = x _ { 0 }$ ; confidence 0.994
  
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008041.png ; $\| \varphi \| = \operatorname { inf } \| \xi \| \| \eta \|$ ; confidence 0.825
+
217. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006016.png ; $h ^ { i } ( E )$ ; confidence 0.994
  
218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010054.png ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032055.png ; $K = \operatorname { log } ( \frac { 1 - \beta } { \alpha } ) ( \operatorname { log } \frac { q } { p } ) ^ { - 1 }$ ; confidence 0.994
  
219. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021055.png ; $b _ { 0 } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { l } }$ ; confidence 0.695
+
219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002044.png ; $F _ { \tau } \subset G$ ; confidence 0.994
  
220. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230105.png ; $( \omega \wedge D ) \varphi = \omega \wedge D ( \varphi )$ ; confidence 1.000
+
220. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037030.png ; $[ 0,1 ] ^ { k }$ ; confidence 0.994
  
221. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029079.png ; $f | _ { \sigma } ^ { \leftarrow } : \tau \leftarrow \sigma$ ; confidence 0.482
+
221. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002027.png ; $X = [ 0,1 ]$ ; confidence 0.994
  
222. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001023.png ; $\{ \alpha , \alpha ^ { q } , \ldots , \alpha ^ { q ^ { n - 1 } } \}$ ; confidence 0.249
+
222. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007033.png ; $\omega \in \partial \Delta$ ; confidence 0.994
  
223. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002046.png ; $Q ( \alpha ^ { \beta } , \ldots , \alpha ^ { \beta ^ { d - 1 } } )$ ; confidence 0.372
+
223. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c12023019.png ; $X ^ { ( 1 ) } \rightarrow X$ ; confidence 0.994
  
224. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003069.png ; $N = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in E _ { M }$ ; confidence 0.976
+
224. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180160.png ; $\theta \otimes \varphi \in \otimes ^ { 2 } E$ ; confidence 0.994
  
225. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007017.png ; $a _ { 11 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m$ ; confidence 0.201
+
225. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021029.png ; $w _ { i } ( x ) = \delta ( x - x _ { i } )$ ; confidence 0.994
  
226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002021.png ; $P ( A _ { 1 } \cap \ldots \cap A _ { k } ) = \frac { ( n - k ) ! } { n ! }$ ; confidence 0.325
+
226. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004057.png ; $\Omega _ { + }$ ; confidence 0.994
  
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004031.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ) = 0$ ; confidence 0.997
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240380.png ; $( p , n - r - p + 1 )$ ; confidence 0.994
  
228. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090203.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 ) / ( u ^ { s } - u )$ ; confidence 0.897
+
228. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009043.png ; $\operatorname { lim } _ { x \rightarrow \eta } P _ { \Omega } ( x , \xi ) = 0 , \eta \neq \xi$ ; confidence 0.994
  
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090218.png ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503
+
229. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302103.png ; $\| f \| = \operatorname { sup } \{ \| \pi ( f ) \| : \pi \in \Sigma \}$ ; confidence 0.994
  
230. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002016.png ; $P ( X = 0 ) \leq \operatorname { exp } ( - \lambda + \Delta )$ ; confidence 0.596
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070120.png ; $u ( v )$ ; confidence 0.994
  
231. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002095.png ; $E [ X _ { \infty } \operatorname { log } ^ { + } X _ { \infty } ]$ ; confidence 0.175
+
231. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583060.png ; $\{ T ^ { n } \}$ ; confidence 0.994
  
232. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004087.png ; $a ( x _ { + } - n _ { - } - s ( D _ { L } ) + 1 ) , ( n - s ( D _ { L } ) + 1 ) \neq 0$ ; confidence 0.093
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018067.png ; $g = ( \theta \otimes \varphi + \varphi \otimes \theta ) / 2$ ; confidence 0.994
  
233. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007029.png ; $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.981
+
233. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004058.png ; $s ( D _ { L } )$ ; confidence 0.994
  
234. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012020.png ; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310115.png ; $( T , V )$ ; confidence 0.994
  
235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007034.png ; $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$ ; confidence 0.641
+
235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015050.png ; $\operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) )$ ; confidence 0.994
  
236. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003074.png ; $\Pi ( \alpha ) = 2 \operatorname { arctan } e ^ { - \alpha }$ ; confidence 0.793
+
236. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002012.png ; $s _ { 0 } \neq 0,1$ ; confidence 0.994
  
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012093.png ; $V _ { \operatorname { sin } p } ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.499
+
237. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040115.png ; $\xi ( x )$ ; confidence 0.994
  
238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120209.png ; $\alpha : G ( K _ { \operatorname { tot } } S ) \rightarrow G$ ; confidence 0.330
+
238. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260170.png ; $\alpha = \pi \circ \overline { \alpha }$ ; confidence 0.994
  
239. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105086.png ; $P ( E ) < \delta \Rightarrow \lambda ( F ( E ) ) < \epsilon )$ ; confidence 0.983
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009032.png ; $O ( N ^ { 2 } )$ ; confidence 0.994
  
240. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201102.png ; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}$ ; confidence 0.947
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018011.png ; $u \rightarrow \infty$ ; confidence 0.994
  
241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011077.png ; $g f \simeq 1 : \overline { M } \rightarrow \overline { M }$ ; confidence 0.966
+
241. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004051.png ; $\chi ^ { \prime } ( G ) \leq \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.994
  
242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130050/m1300502.png ; $\alpha \leftrightarrow \alpha b \frac { + 1 } { \alpha }$ ; confidence 0.103
+
242. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302108.png ; $G ( x , \alpha ) = 0$ ; confidence 0.994
  
243. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110110.png ; $\phi = \phi ( x _ { i } , t ) = \phi ( x _ { i } ( x _ { k } ^ { 0 } , t ) , t )$ ; confidence 0.994
+
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053013.png ; $( \Omega _ { 1 } , A _ { 1 } , \nu )$ ; confidence 0.994
  
244. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014067.png ; $\int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in R ^ { n } , r \in R ^ { + }$ ; confidence 0.678
+
244. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014030.png ; $\phi _ { \beta } : X _ { i } \rightarrow X _ { j }$ ; confidence 0.994
  
245. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022011.png ; $T _ { g } ( z ) = \sum _ { k = - 1 } ^ { \infty } \chi _ { k } ( g ) q ^ { k }$ ; confidence 0.991
+
245. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080127.png ; $u = \operatorname { exp } ( - 4 J / k _ { B } T )$ ; confidence 0.994
  
246. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027025.png ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n$ ; confidence 0.572
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009014.png ; $\phi ( x ) = 3 ( v - 1 ) \operatorname { sech } ^ { 2 } \{ x \sqrt { ( v - 1 ) / ( 4 v ) } \}$ ; confidence 0.994
  
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025092.png ; $\partial _ { t } u ( x , t ) + \partial _ { x } ( u ^ { m } ( x , t ) ) = 0$ ; confidence 0.469
+
247. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013036.png ; $W \geq 2 \pi ^ { 2 }$ ; confidence 0.994
  
248. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003050.png ; $\{ w , v \} = \int \int _ { \Omega } [ A w ( x , y ) ] v ( x , y ) d x d y =$ ; confidence 0.949
+
248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007028.png ; $n - 2$ ; confidence 0.994
  
249. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003062.png ; $\hat { u } = ( L - \operatorname { Re } ( \lambda ) I ) ^ { - 1 } f$ ; confidence 0.250
+
249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150162.png ; $d ( x , N ( T ) ) > 0$ ; confidence 0.994
  
250. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010049.png ; $\rho ( \zeta ) = \sum _ { i = 0 } ^ { k } \alpha _ { i } \zeta ^ { i }$ ; confidence 0.981
+
250. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001032.png ; $X = V \times W \rightarrow V$ ; confidence 0.994
  
251. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520384.png ; $\dot { y } _ { i } = \lambda _ { i } y _ { i } , \quad i = 1 , \dots , n$ ; confidence 0.601
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906706.png ; $U f$ ; confidence 0.994
  
252. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010154.png ; $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.918
+
252. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025079.png ; $u ( x , \varepsilon )$ ; confidence 0.994
  
253. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008066.png ; $\int _ { 0 } ^ { \infty } p ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0$ ; confidence 0.989
+
253. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110149.png ; $d N ( s )$ ; confidence 0.994
  
254. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005015.png ; $f ^ { * } ( t ) = \operatorname { inf } \{ s > 0 : d f ( s ) \leq t \}$ ; confidence 0.955
+
254. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040141.png ; $( v , z ) = ( \pm e ^ { \pm \pi i / 3 } , \pm i )$ ; confidence 0.994
  
255. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006012.png ; $\operatorname { lim } _ { t \rightarrow 0 } \Phi ( t ) / t = 0$ ; confidence 0.988
+
255. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005059.png ; $A _ { + } ( x , y )$ ; confidence 0.994
  
256. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017092.png ; $( a + i b ) x = x ( c + i d ) \Leftrightarrow ( a - i b ) x = x ( c - i d )$ ; confidence 0.895
+
256. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020119.png ; $( d , d )$ ; confidence 0.994
  
257. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007040.png ; $\Delta g = g \otimes g _ { s } \epsilon g = 1 , S _ { g } = g ^ { - 1 }$ ; confidence 0.304
+
257. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013010.png ; $M \subset E _ { 1 }$ ; confidence 0.994
  
258. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070140.png ; $\langle . , . \rangle : A \otimes H \rightarrow \dot { k }$ ; confidence 0.110
+
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026065.png ; $( \omega , \omega ^ { 2 } / 2 )$ ; confidence 0.994
  
259. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300101.png ; $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.477
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029030.png ; $z \in \partial U$ ; confidence 0.994
  
260. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070127.png ; $K ( x , y ) : = \int _ { T } h ( t , y ) \overline { h ( t , x ) } d m ( t ) =$ ; confidence 0.987
+
260. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s1202203.png ; $C ^ { \infty } ( E )$ ; confidence 0.994
  
261. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070168.png ; $f ( x ) = ( F ( t ) , h ( t , x ) ) _ { H } , ( f ( x ) , h ( s , x ) ) _ { H } = F ( s )$ ; confidence 0.958
+
261. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008013.png ; $\rho _ { i } = 0$ ; confidence 0.994
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041021.png ; $\langle L p , q \rangle _ { s } = \langle p , L q \rangle _ { s }$ ; confidence 0.446
+
262. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004095.png ; $( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 }$ ; confidence 0.994
  
263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s1202705.png ; $Q _ { n } [ f ] = \sum _ { v = 1 } ^ { n } \alpha _ { v , n } f ( x _ { v , n } )$ ; confidence 0.381
+
263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026042.png ; $k \rightarrow 0$ ; confidence 0.994
  
264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059038.png ; $P _ { n } = M [ \frac { Q _ { n } ( t ) - Q _ { n } ( z ) } { t - z } ] , n = 0,1 ,$ ; confidence 0.233
+
264. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026016.png ; $U ^ { 0 } j = P _ { j } , \quad 0 \leq j \leq J$ ; confidence 0.994
  
265. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067089.png ; $S ( \theta ) _ { 1 , \cdots , j _ { q } } ^ { i _ { 1 } \ldots i _ { p } }$ ; confidence 0.148
+
265. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y1200204.png ; $A ( \xi )$ ; confidence 0.994
  
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064071.png ; $\int _ { - \infty } ^ { \infty } | t | | s ( t ) | ^ { 2 } d t < \infty$ ; confidence 0.886
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c1201805.png ; $\lambda : M \rightarrow R ^ { + }$ ; confidence 0.994
  
267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306609.png ; $Q _ { n } ( z , \tau ) = \phi _ { n } ( z ) + \tau \phi _ { n } ^ { * } ( z )$ ; confidence 0.897
+
267. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013080.png ; $S ^ { 2 } \times U ( 1 )$ ; confidence 0.994
  
268. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004049.png ; $h : = \operatorname { max } _ { N \in N } \{ \sigma _ { N } - n \}$ ; confidence 0.189
+
268. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450273.png ; $( L , \leq )$ ; confidence 0.994
  
269. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009020.png ; $\rho _ { X } \circ \pi _ { Y } ( \alpha ) = \rho _ { X } ( \alpha )$ ; confidence 0.443
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070122.png ; $A ( t , v )$ ; confidence 0.994
  
270. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070121.png ; $\eta ( q ) = q ^ { 1 / 24 } \prod _ { i = 1 } ^ { \infty } ( 1 - q ^ { i } )$ ; confidence 0.991
+
270. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003010.png ; $\| \mu \| _ { \infty } < 1$ ; confidence 0.994
  
271. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140107.png ; $nd T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447
+
271. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012076.png ; $i \geq 2$ ; confidence 0.994
  
272. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014072.png ; $\operatorname { dist } _ { L } \infty ( u , H ^ { \infty } ) < 1$ ; confidence 0.828
+
272. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017050.png ; $\{ \lambda _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.994
  
273. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900151.png ; $H = \oplus _ { p = 1 } ^ { \infty } L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.992
+
273. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040158.png ; $1 < s \leq m / ( m - 1 )$ ; confidence 0.994
  
274. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006027.png ; $k ^ { n } B _ { n } ( \frac { h } { k } ) = G _ { n } - \sum \frac { 1 } { p }$ ; confidence 0.959
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430142.png ; $H _ { 1 } \rightarrow H$ ; confidence 0.994
  
275. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w1300408.png ; $\omega _ { j } = 2 \frac { \partial X _ { j } } { \partial z } d z$ ; confidence 0.992
+
275. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042036.png ; $\Psi _ { V , W } = \Psi _ { W , V } ^ { - 1 }$ ; confidence 0.994
  
276. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006094.png ; $\xi : C ^ { \infty } ( M , R ) \rightarrow C ^ { \infty } ( M , N )$ ; confidence 0.993
+
276. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008020.png ; $m = n - 2 j$ ; confidence 0.994
  
277. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200609.png ; $( C ^ { \infty } ( R ^ { m } , R ) , A ) \simeq A ^ { m } = T _ { A } R ^ { m }$ ; confidence 0.780
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420118.png ; $( b _ { i } - q ) ( b _ { i } + q ^ { - 1 } ) = 0$ ; confidence 0.994
  
278. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010016.png ; $\kappa _ { i j } = a ^ { j - 2 } 2 \pi ^ { j l 2 } / \Gamma ( ( d - 2 ) / 2 )$ ; confidence 0.058
+
278. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051074.png ; $( u , v ) \in E$ ; confidence 0.994
  
279. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004037.png ; $H \subseteq X ( G )$ ; confidence 0.994
  
280. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003065.png ; $f ( t ) = \int _ { 0 } ^ { 1 } ( Z f ) ( t , w ) d w , - \infty < t < \infty$ ; confidence 0.992
+
280. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026030.png ; $\lambda ( x y ) = \lambda ( x ) y$ ; confidence 0.994
  
281. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001090.png ; $M = K , \overline { U } _ { 1 } , U _ { - 1 } , U _ { 2 } , U _ { 3 } , U _ { 5 }$ ; confidence 0.994
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510113.png ; $k = 1 < \infty$ ; confidence 0.994
  
282. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011055.png ; $G _ { p , n } ( x ) = \sum _ { i = 1 } ^ { N } 1 _ { \{ n p _ { i n } \geq x \} }$ ; confidence 0.881
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043087.png ; $E _ { 1 } ^ { 2 } E _ { 2 } + E _ { 2 } E _ { 1 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 1 } E _ { 2 } E _ { 1 } = 0$ ; confidence 0.994
  
283. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110107.png ; $\frac { 1 } { m } \sum _ { i = 1 } ^ { r } \frac { 1 } { m - i + 1 } = p ( z )$ ; confidence 0.964
+
283. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018015.png ; $\xi ( u )$ ; confidence 0.994
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240393.png ; $\operatorname { tr } ( M _ { H } ( M _ { H } + M _ { E } ) ^ { - 1 } ) > c$ ; confidence 0.562
+
284. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584048.png ; $0 \in \rho ( G )$ ; confidence 0.994
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n } - 1 , \varphi _ { n }$ ; confidence 0.255
+
285. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008078.png ; $( f - \kappa _ { p } ( f ) ) ( z ) =$ ; confidence 0.994
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040322.png ; $Q = \operatorname { Alg } \operatorname { Mod } ^ { * S } D$ ; confidence 0.274
+
286. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019094.png ; $\sigma ( x , x ) > 0$ ; confidence 0.994
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050149.png ; $= \prod _ { p \in P } ( 1 + | p | ^ { - z } + | p | ^ { - 2 z } + \ldots ) =$ ; confidence 0.517
+
287. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004032.png ; $\omega _ { 1 } = \frac { 1 } { 2 } ( 1 - g ^ { 2 } ) \eta , \omega _ { 2 } = \frac { i } { 2 } ( 1 + g ^ { 2 } ) \eta , \omega _ { 3 } = g \eta$ ; confidence 0.994
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a1200501.png ; $\frac { d u ( t ) } { d t } = A ( t ) u ( t ) + f ( t ) , \quad 0 < t \leq T$ ; confidence 0.999
+
288. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h04820013.png ; $E > 0$ ; confidence 0.994
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010038.png ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006034.png ; $A _ { K }$ ; confidence 0.994
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020060.png ; $( T - t _ { j } I ) ^ { r _ { j } } P _ { j } = 0 \quad ( j = 1 , \ldots , n )$ ; confidence 0.444
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022045.png ; $u ( t , x ) = \int f ( t , x , \xi ) d \xi - k$ ; confidence 0.994
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
+
291. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002063.png ; $\hat { \theta } _ { n } = \psi _ { \mu } ( X _ { n } )$ ; confidence 0.994
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023057.png ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { N } ! } x$ ; confidence 0.783
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420135.png ; $V \rightarrow H \otimes V$ ; confidence 0.994
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027055.png ; $W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.818
+
293. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900185.png ; $A ( \zeta )$ ; confidence 0.994
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501019.png ; $j _ { r } \circ \phi _ { r } = \phi _ { r + 1 } \circ g _ { \gamma }$ ; confidence 0.218
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050235.png ; $A _ { G } > 0$ ; confidence 0.994
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210104.png ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628
+
295. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003071.png ; $- h \Delta + V ( x )$ ; confidence 0.994
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002053.png ; $Q _ { n } ( t ) = Q ( t ) + \frac { t - F _ { n } ( Q ( t ) ) } { f ( Q ( t ) ) } +$ ; confidence 0.900
+
296. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020026.png ; $( H ( G ) , B ( H ( G ) ) )$ ; confidence 0.994
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004040.png ; $( \cap _ { x = 0 } ^ { \infty } W _ { x } ) \cap E \neq \emptyset$ ; confidence 0.111
+
297. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065013.png ; $L ^ { 2 } ( \mu )$ ; confidence 0.994
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004068.png ; $( U _ { 1 } \supset V _ { 1 } \supset \ldots \supset U _ { n } )$ ; confidence 0.900
+
298. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008047.png ; $V _ { n } = \operatorname { span } \{ V _ { n } ^ { n - 2 j } : 0 \leq j \leq n \}$ ; confidence 0.994
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006053.png ; $A = \operatorname { diag } \{ b _ { 11 } , \dots , b _ { n n } \}$ ; confidence 0.411
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023074.png ; $Q ( q \times p )$ ; confidence 0.994
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012017.png ; $R ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ ; confidence 0.450
+
300. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300809.png ; $L _ { 3 } = A _ { 3 } P _ { 3 }$ ; confidence 0.994

Revision as of 00:10, 13 February 2020

List

1. b13010035.png ; $k _ { z } ( w ) = ( 1 - | z | ^ { 2 } ) / ( 1 - z w ) ^ { 2 }$ ; confidence 0.995

2. c0248403.png ; $U \subset R$ ; confidence 0.995

3. a130070136.png ; $2 - 10 ^ { - 12 } < \sigma ( n ) / n < 2 + 10 ^ { - 12 }$ ; confidence 0.995

4. h1300309.png ; $r ( z ) = \sum _ { k = 1 } ^ { \infty } s _ { k } z ^ { - k }$ ; confidence 0.995

5. a12007049.png ; $B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.995

6. f13013020.png ; $\phi : F \rightarrow X$ ; confidence 0.995

7. b12013024.png ; $f \in L ^ { p } ( G )$ ; confidence 0.995

8. b130200164.png ; $( \alpha | \alpha ) > 0$ ; confidence 0.995

9. e0354301.png ; $( x , y , z )$ ; confidence 0.995

10. a12023075.png ; $F | _ { \Gamma } = f$ ; confidence 0.995

11. l059490267.png ; $Z ( t )$ ; confidence 0.995

12. i130060112.png ; $\kappa = - 2 J - 1$ ; confidence 0.995

13. q13004040.png ; $f : G \rightarrow R ^ { 2 }$ ; confidence 0.995

14. w120110217.png ; $G _ { X } ( X - Y ) \leq C ^ { - 1 } \Rightarrow C ^ { - 1 } \leq \frac { m ( X ) } { m ( Y ) } \leq C$ ; confidence 0.995

15. l057000201.png ; $\rho ^ { \prime } ( x ) = d$ ; confidence 0.995

16. b12005067.png ; $M ( H ^ { \infty } ( B _ { E } ) )$ ; confidence 0.995

17. b13019083.png ; $2 / 5 = 0.4$ ; confidence 0.995

18. d13013048.png ; $g = n \hbar / 2 e$ ; confidence 0.994

19. c02462074.png ; $\theta _ { 1 }$ ; confidence 0.994

20. e120260133.png ; $A ( v , p )$ ; confidence 0.994

21. b120210145.png ; $d _ { 0 } : M ( \lambda ) \rightarrow L ( \lambda )$ ; confidence 0.994

22. o13001075.png ; $f ( x ^ { \prime } )$ ; confidence 0.994

23. w12011061.png ; $H ( \varphi , \psi )$ ; confidence 0.994

24. w12018050.png ; $\{ X ( t ) : t \in \partial D \}$ ; confidence 0.994

25. b1200602.png ; $\epsilon = 1$ ; confidence 0.994

26. q13005090.png ; $z _ { 1 } , z _ { 2 } , z _ { 3 } \in T$ ; confidence 0.994

27. c02502011.png ; $f : X \rightarrow \overline { R }$ ; confidence 0.994

28. b130200142.png ; $i \neq 0$ ; confidence 0.994

29. a1300805.png ; $h ( x )$ ; confidence 0.994

30. o130010130.png ; $A _ { 2 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.994

31. a01121065.png ; $q ( x )$ ; confidence 0.994

32. j130040130.png ; $z = \pm ( v ^ { - 1 } - v )$ ; confidence 0.994

33. e13003083.png ; $G L _ { 2 }$ ; confidence 0.994

34. h1300604.png ; $f \in M ( k )$ ; confidence 0.994

35. m12011088.png ; $\zeta : \overline { M } \rightarrow \overline { M }$ ; confidence 0.994

36. m12012015.png ; $[ A , f ]$ ; confidence 0.994

37. a12012017.png ; $m = n$ ; confidence 0.994

38. a120260101.png ; $A [ X$ ; confidence 0.994

39. b13022067.png ; $\overline { \Omega } = \cup T$ ; confidence 0.994

40. j13007036.png ; $E ( k , \omega ) = \{ z \in \Delta : \phi _ { \omega } ( z ) \leq k \}$ ; confidence 0.994

41. e12015024.png ; $x ^ { i } ( t )$ ; confidence 0.994

42. w1301102.png ; $f \in L ^ { 1 } ( \mu )$ ; confidence 0.994

43. t1201508.png ; $\xi , \eta _ { 1 } , \eta _ { 2 } \in A$ ; confidence 0.994

44. f120110142.png ; $f _ { \Delta _ { k } }$ ; confidence 0.994

45. p13014054.png ; $\psi ( - \gamma ) : = \psi ( \gamma ) , \gamma > 0$ ; confidence 0.994

46. w13009010.png ; $F _ { 0 } = R$ ; confidence 0.994

47. c120180494.png ; $( x , t , r ) \in N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.994

48. r13008086.png ; $( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \|$ ; confidence 0.994

49. m13013045.png ; $( \nu - 1 ) \times ( \nu - 1 )$ ; confidence 0.994

50. o130010104.png ; $\beta _ { i j }$ ; confidence 0.994

51. c02583046.png ; $| u ( \lambda ) | \leq 1$ ; confidence 0.994

52. b13012034.png ; $\int _ { R } \varphi ( t ) d t = 1$ ; confidence 0.994

53. a0119703.png ; $\phi ( x )$ ; confidence 0.994

54. a130040347.png ; $K ( x ) \approx L ( x )$ ; confidence 0.994

55. p12017072.png ; $X \in B ( H )$ ; confidence 0.994

56. g13007011.png ; $F ( e ) = 1$ ; confidence 0.994

57. s120340155.png ; $x ( 1 ) \in L _ { + }$ ; confidence 0.994

58. s13041067.png ; $z \in C \backslash [ - 1,1 ]$ ; confidence 0.994

59. d0300607.png ; $\{ t \geq 0 , \square - \infty < x < + \infty \}$ ; confidence 0.994

60. o13008048.png ; $f ( k ) : = f ( 0 , k )$ ; confidence 0.994

61. s12022065.png ; $\Delta + z$ ; confidence 0.994

62. t12007030.png ; $J ( z ) = j ( z ) - 744 = \sum _ { k } c _ { k } q ^ { k } =$ ; confidence 0.994

63. m12003038.png ; $\Psi ( x , \theta )$ ; confidence 0.994

64. a1303106.png ; $( n \operatorname { log } n )$ ; confidence 0.994

65. a12005044.png ; $B > 0$ ; confidence 0.994

66. c13015074.png ; $\Delta u \in G ^ { \infty } ( \Omega )$ ; confidence 0.994

67. t1301506.png ; $H ^ { 2 } ( T )$ ; confidence 0.994

68. s130510121.png ; $\gamma : V \rightarrow Z ^ { 0 } \cup \{ \infty \}$ ; confidence 0.994

69. e12007020.png ; $M \in \Gamma$ ; confidence 0.994

70. b12043072.png ; $V ^ { * } ( R ^ { \prime } , R )$ ; confidence 0.994

71. r130070101.png ; $f \in H _ { 1 }$ ; confidence 0.994

72. a120050122.png ; $\frac { d u ( t ) } { d t } + A ( t , u ( t ) ) u ( t ) = f ( t , u ( t ) )$ ; confidence 0.994

73. b1200403.png ; $L ^ { 0 } ( \mu ) = L ^ { 0 } ( \Omega , \Sigma , \mu )$ ; confidence 0.994

74. m12017018.png ; $= \operatorname { det } ( 1 + A _ { 1 } \lambda + \ldots + A _ { n } \lambda ^ { n } )$ ; confidence 0.994

75. b12044095.png ; $R [ G \times G$ ; confidence 0.994

76. d13017018.png ; $u \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.994

77. d12018083.png ; $A ( G )$ ; confidence 0.994

78. m12023050.png ; $( t , x ) \in ( 0 , T ) \times H$ ; confidence 0.994

79. f12023032.png ; $D ( \Omega ^ { l } ( M ) ) \subset \Omega ^ { k + l } ( M )$ ; confidence 0.994

80. e035000131.png ; $f ( \epsilon )$ ; confidence 0.994

81. l06105085.png ; $E \in B ( \Omega )$ ; confidence 0.994

82. h1301304.png ; $T = ( - \pi , \pi ]$ ; confidence 0.994

83. h1200109.png ; $\pi : X \rightarrow V$ ; confidence 0.994

84. p1301204.png ; $\frac { 1 } { 2 } ( c ( D ) - s ( D ) + \operatorname { com } ( D ) )$ ; confidence 0.994

85. c120180344.png ; $\{ M , g \}$ ; confidence 0.994

86. l11001013.png ; $\alpha \in P$ ; confidence 0.994

87. a13007094.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = 0$ ; confidence 0.994

88. t13015067.png ; $C ^ { * } E ( S ) \supset C ^ { * } ( S )$ ; confidence 0.994

89. m130260179.png ; $\pi : M ( A ) \rightarrow Q ( A )$ ; confidence 0.994

90. l120170212.png ; $H _ { 2 } ( K ^ { * } ) = H _ { 1 } ( K ^ { * } ) = 0$ ; confidence 0.994

91. b12031040.png ; $\delta = 0$ ; confidence 0.994

92. n12012034.png ; $( x , z )$ ; confidence 0.994

93. s13058035.png ; $I \geq ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.994

94. a01359026.png ; $\delta _ { 1 }$ ; confidence 0.994

95. a13029063.png ; $Q \rightarrow \Sigma$ ; confidence 0.994

96. g04343025.png ; $n ^ { - 1 }$ ; confidence 0.994

97. w12012076.png ; $( + + + - )$ ; confidence 0.994

98. m12011087.png ; $M \simeq T ( \zeta )$ ; confidence 0.994

99. i13006089.png ; $f ( k ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } g ( t ) e ^ { i k t } d t )$ ; confidence 0.994

100. f13010067.png ; $\lambda ^ { p } ( \mu )$ ; confidence 0.994

101. e1201208.png ; $f ( \phi | \theta ) = f ( \theta , \phi ) / \int f ( \theta , \phi ) d \phi$ ; confidence 0.994

102. c13014024.png ; $A _ { i } ^ { T }$ ; confidence 0.994

103. m13019036.png ; $R = L \overline { L }$ ; confidence 0.994

104. q12008041.png ; $q \leq p \leq P$ ; confidence 0.994

105. a12013045.png ; $( X _ { n } )$ ; confidence 0.994

106. b01592017.png ; $1 \leq i \leq k$ ; confidence 0.994

107. s13051029.png ; $( u , v ) \in E$ ; confidence 0.994

108. s13048063.png ; $( G , G _ { 0 } )$ ; confidence 0.994

109. s12023069.png ; $X K = X _ { 2 }$ ; confidence 0.994

110. w12018047.png ; $t _ { 2 } \in D ^ { + }$ ; confidence 0.994

111. i13009034.png ; $E _ { 1 } ( k ) = r _ { 1 } ( k ) + r _ { 2 } ( k ) - 1$ ; confidence 0.994

112. l12006073.png ; $\langle \lambda | T ( z ) | \lambda ^ { \prime } \rangle$ ; confidence 0.994

113. b12053032.png ; $\Rightarrow$ ; confidence 0.994

114. l12006031.png ; $( \phi , G ( z ) \phi ) =$ ; confidence 0.994

115. y12002018.png ; $( i L )$ ; confidence 0.994

116. q12003043.png ; $\varphi \in A ^ { * }$ ; confidence 0.994

117. n13006026.png ; $2.539$ ; confidence 0.994

118. e12006072.png ; $V Y \rightarrow M$ ; confidence 0.994

119. c02111016.png ; $H ^ { p } = 0$ ; confidence 0.994

120. t120140101.png ; $\sigma _ { e } ( T _ { \phi } )$ ; confidence 0.994

121. f13028033.png ; $h ^ { N } \in [ 0,1 ]$ ; confidence 0.994

122. h120120126.png ; $\tau : C \rightarrow X$ ; confidence 0.994

123. b12022076.png ; $\xi = v$ ; confidence 0.994

124. d12003041.png ; $f \in M _ { 3 }$ ; confidence 0.994

125. p12015053.png ; $\Omega$ ; confidence 0.994

126. q120050103.png ; $D ^ { 2 } f ( x ^ { * } )$ ; confidence 0.994

127. b13026095.png ; $f ^ { * } : H ^ { * } ( S ^ { n } ) \rightarrow H ^ { * } ( S ^ { n } )$ ; confidence 0.994

128. t12015038.png ; $\xi \in A \rightarrow \pi ( \xi ) \eta$ ; confidence 0.994

129. m1202302.png ; $f : H \rightarrow ( - \infty , + \infty ]$ ; confidence 0.994

130. h1200107.png ; $\varphi : T V \rightarrow T W$ ; confidence 0.994

131. c13019064.png ; $( B ^ { k } / S ^ { k - 1 } , [ S ^ { k - 1 } ] )$ ; confidence 0.994

132. t13007026.png ; $L _ { 2 } [ 0,2 \pi ]$ ; confidence 0.994

133. w12011063.png ; $( u , \psi )$ ; confidence 0.994

134. r13007045.png ; $B ( x , y ) \in H _ { + }$ ; confidence 0.994

135. r13004066.png ; $\Lambda _ { 1 } ( \Omega ) \geq \Lambda _ { 1 } ( \Omega ^ { * } )$ ; confidence 0.994

136. a01329056.png ; $7$ ; confidence 0.994

137. w12011071.png ; $X = ( x , \xi ) , Y = ( y , \eta )$ ; confidence 0.994

138. f12024029.png ; $\dot { x } ( t ) = y ( t )$ ; confidence 0.994

139. b12042016.png ; $( V , W , Z )$ ; confidence 0.994

140. s130510118.png ; $V ^ { \infty } = V \backslash V ^ { f } , \gamma ^ { \prime } ( u ) = \operatorname { mex } \gamma ( F ( u ) )$ ; confidence 0.994

141. t12015070.png ; $\xi , \eta \in A _ { 0 }$ ; confidence 0.994

142. z13001066.png ; $( - 1 ) ^ { k } D ^ { k } ( z / ( z - 1 )$ ; confidence 0.994

143. r13007032.png ; $( u , v ) _ { - } = ( A ^ { 1 / 2 } u , A ^ { 1 / 2 } v ) _ { 0 }$ ; confidence 0.994

144. m120100127.png ; $\alpha , \beta \in \Delta$ ; confidence 0.994

145. d11008018.png ; $d = d ( w | v )$ ; confidence 0.994

146. w1100606.png ; $\mu ^ { W }$ ; confidence 0.994

147. b130290201.png ; $d = \operatorname { dim } R$ ; confidence 0.994

148. f12019032.png ; $C _ { G } ( h ) \leq H$ ; confidence 0.994

149. t120200120.png ; $m \geq - 1$ ; confidence 0.994

150. a11068023.png ; $L ( P )$ ; confidence 0.994

151. s1303408.png ; $L _ { + } = A L _ { - } + A ^ { - 1 } L _ { \infty }$ ; confidence 0.994

152. p13009031.png ; $P _ { \Omega } ( x , \xi ) = \frac { \partial } { \partial n } G _ { \Omega } ( x , \xi )$ ; confidence 0.994

153. c12008020.png ; $m > n$ ; confidence 0.994

154. s13058027.png ; $V = 0$ ; confidence 0.994

155. a13029010.png ; $b _ { 1 } ( Y ) > 0$ ; confidence 0.994

156. l06105071.png ; $F ( E )$ ; confidence 0.994

157. c11026032.png ; $R N$ ; confidence 0.994

158. j13002036.png ; $\{ i j , i k , j k \}$ ; confidence 0.994

159. m130110110.png ; $\phi = \phi ( x _ { i } , t ) = \phi ( x _ { i } ( x _ { k } ^ { 0 } , t ) , t )$ ; confidence 0.994

160. a13019037.png ; $m = 0$ ; confidence 0.994

161. b12005070.png ; $( \beta N \backslash N ) \times \Delta$ ; confidence 0.994

162. q12007018.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$ ; confidence 0.994

163. a13029046.png ; $( M , \Sigma )$ ; confidence 0.994

164. p12014047.png ; $[ ( 1 + \sqrt { 5 } ) / 2 , \infty )$ ; confidence 0.994

165. v1200402.png ; $\mu ( G )$ ; confidence 0.994

166. j13004067.png ; $D _ { 1 } * D _ { 2 }$ ; confidence 0.994

167. l12019038.png ; $A ^ { * } X A - X + C = 0$ ; confidence 0.994

168. b13022071.png ; $K = \{ \gamma : | \gamma | = m \}$ ; confidence 0.994

169. c120170182.png ; $M ( n + k _ { j } )$ ; confidence 0.994

170. v13005051.png ; $Y ( v , x ) ] = ( d / d x ) Y ( v , x )$ ; confidence 0.994

171. t13010021.png ; $( H , B )$ ; confidence 0.994

172. c12028031.png ; $[ B , C ]$ ; confidence 0.994

173. l11003076.png ; $\mu \in L ( E )$ ; confidence 0.994

174. n06663027.png ; $0 < \alpha _ { i } < 1$ ; confidence 0.994

175. w13008066.png ; $Z ( t , \phi )$ ; confidence 0.994

176. b11066091.png ; $H ^ { p }$ ; confidence 0.994

177. w13017012.png ; $( z _ { t } )$ ; confidence 0.994

178. t120010130.png ; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994

179. b1101309.png ; $E _ { 2 }$ ; confidence 0.994

180. d12018028.png ; $H ^ { p } ( d \theta / 2 \pi )$ ; confidence 0.994

181. j13007082.png ; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994

182. e037200118.png ; $\gamma \geq 0$ ; confidence 0.994

183. m12021026.png ; $\lambda K + t$ ; confidence 0.994

184. e12023049.png ; $f : ( - \epsilon , \epsilon ) \rightarrow R$ ; confidence 0.994

185. f13024035.png ; $T ( \varepsilon )$ ; confidence 0.994

186. a12012058.png ; $( x , y )$ ; confidence 0.994

187. t12008018.png ; $F ( X , Y ) \in O _ { S } [ X , Y ]$ ; confidence 0.994

188. c12026030.png ; $1 \leq j \leq J - 1$ ; confidence 0.994

189. d12023047.png ; $G \Theta$ ; confidence 0.994

190. c12018078.png ; $\sigma = u - v$ ; confidence 0.994

191. l057000127.png ; $\alpha \in T$ ; confidence 0.994

192. q120070139.png ; $H , A$ ; confidence 0.994

193. e12024095.png ; $H ^ { 1 } ( K _ { n } ; A )$ ; confidence 0.994

194. w1300805.png ; $T = \epsilon t$ ; confidence 0.994

195. t120200207.png ; $G _ { 2 } ( r ) \leq - M$ ; confidence 0.994

196. d031920103.png ; $M = N$ ; confidence 0.994

197. c13015026.png ; $q \geq N$ ; confidence 0.994

198. e13006066.png ; $( q , r ) : ( Q , R ) \rightarrow B$ ; confidence 0.994

199. b13030066.png ; $\geq 665$ ; confidence 0.994

200. n13002018.png ; $f ( 0 ) \leq \varepsilon$ ; confidence 0.994

201. g12004028.png ; $s = \infty$ ; confidence 0.994

202. b13001076.png ; $( V ^ { * } , A )$ ; confidence 0.994

203. l12007030.png ; $\{ i : m _ { - } i > 0 \}$ ; confidence 0.994

204. v120020171.png ; $\{ X , Y , Z , p , q \}$ ; confidence 0.994

205. v12006030.png ; $p - 1 | n$ ; confidence 0.994

206. a1300709.png ; $45045 = 5.79 .11 .13$ ; confidence 0.994

207. f130100134.png ; $T \in C V _ { p } ( G )$ ; confidence 0.994

208. b13017034.png ; $t , T$ ; confidence 0.994

209. c12016036.png ; $R = D ^ { 1 / 2 } L ^ { T }$ ; confidence 0.994

210. a01139013.png ; $L _ { 1 } ( G )$ ; confidence 0.994

211. s13064051.png ; $\omega _ { \alpha , \beta }$ ; confidence 0.994

212. k1200308.png ; $\operatorname { Ric } ( \omega ) = - \omega$ ; confidence 0.994

213. h12012063.png ; $\phi : Y \rightarrow Y$ ; confidence 0.994

214. a12011036.png ; $\alpha ( m , n ) \leq 3$ ; confidence 0.994

215. e13005022.png ; $\int _ { 0 } ^ { 1 } \nu ( x + ( y - x ) t ) t ^ { - \alpha } ( 1 - t ) ^ { - \beta } d t$ ; confidence 0.994

216. h12013049.png ; $\omega ( 0 ) = \omega ( 1 ) = x _ { 0 }$ ; confidence 0.994

217. k12006016.png ; $h ^ { i } ( E )$ ; confidence 0.994

218. a13032055.png ; $K = \operatorname { log } ( \frac { 1 - \beta } { \alpha } ) ( \operatorname { log } \frac { q } { p } ) ^ { - 1 }$ ; confidence 0.994

219. z13002044.png ; $F _ { \tau } \subset G$ ; confidence 0.994

220. s13037030.png ; $[ 0,1 ] ^ { k }$ ; confidence 0.994

221. n13002027.png ; $X = [ 0,1 ]$ ; confidence 0.994

222. j13007033.png ; $\omega \in \partial \Delta$ ; confidence 0.994

223. c12023019.png ; $X ^ { ( 1 ) } \rightarrow X$ ; confidence 0.994

224. c120180160.png ; $\theta \otimes \varphi \in \otimes ^ { 2 } E$ ; confidence 0.994

225. t13021029.png ; $w _ { i } ( x ) = \delta ( x - x _ { i } )$ ; confidence 0.994

226. e13004057.png ; $\Omega _ { + }$ ; confidence 0.994

227. a130240380.png ; $( p , n - r - p + 1 )$ ; confidence 0.994

228. p13009043.png ; $\operatorname { lim } _ { x \rightarrow \eta } P _ { \Omega } ( x , \xi ) = 0 , \eta \neq \xi$ ; confidence 0.994

229. f1302103.png ; $\| f \| = \operatorname { sup } \{ \| \pi ( f ) \| : \pi \in \Sigma \}$ ; confidence 0.994

230. a120070120.png ; $u ( v )$ ; confidence 0.994

231. c02583060.png ; $\{ T ^ { n } \}$ ; confidence 0.994

232. c12018067.png ; $g = ( \theta \otimes \varphi + \varphi \otimes \theta ) / 2$ ; confidence 0.994

233. j13004058.png ; $s ( D _ { L } )$ ; confidence 0.994

234. a130310115.png ; $( T , V )$ ; confidence 0.994

235. m12015050.png ; $\operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) )$ ; confidence 0.994

236. o13002012.png ; $s _ { 0 } \neq 0,1$ ; confidence 0.994

237. g130040115.png ; $\xi ( x )$ ; confidence 0.994

238. m130260170.png ; $\alpha = \pi \circ \overline { \alpha }$ ; confidence 0.994

239. c13009032.png ; $O ( N ^ { 2 } )$ ; confidence 0.994

240. d11018011.png ; $u \rightarrow \infty$ ; confidence 0.994

241. v12004051.png ; $\chi ^ { \prime } ( G ) \leq \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.994

242. d1302108.png ; $G ( x , \alpha ) = 0$ ; confidence 0.994

243. b12053013.png ; $( \Omega _ { 1 } , A _ { 1 } , \nu )$ ; confidence 0.994

244. t13014030.png ; $\phi _ { \beta } : X _ { i } \rightarrow X _ { j }$ ; confidence 0.994

245. i120080127.png ; $u = \operatorname { exp } ( - 4 J / k _ { B } T )$ ; confidence 0.994

246. b13009014.png ; $\phi ( x ) = 3 ( v - 1 ) \operatorname { sech } ^ { 2 } \{ x \sqrt { ( v - 1 ) / ( 4 v ) } \}$ ; confidence 0.994

247. w13013036.png ; $W \geq 2 \pi ^ { 2 }$ ; confidence 0.994

248. c13007028.png ; $n - 2$ ; confidence 0.994

249. f120150162.png ; $d ( x , N ( T ) ) > 0$ ; confidence 0.994

250. h12001032.png ; $X = V \times W \rightarrow V$ ; confidence 0.994

251. s0906706.png ; $U f$ ; confidence 0.994

252. m13025079.png ; $u ( x , \varepsilon )$ ; confidence 0.994

253. z130110149.png ; $d N ( s )$ ; confidence 0.994

254. j130040141.png ; $( v , z ) = ( \pm e ^ { \pm \pi i / 3 } , \pm i )$ ; confidence 0.994

255. i13005059.png ; $A _ { + } ( x , y )$ ; confidence 0.994

256. n120020119.png ; $( d , d )$ ; confidence 0.994

257. f13013010.png ; $M \subset E _ { 1 }$ ; confidence 0.994

258. e12026065.png ; $( \omega , \omega ^ { 2 } / 2 )$ ; confidence 0.994

259. b12029030.png ; $z \in \partial U$ ; confidence 0.994

260. s1202203.png ; $C ^ { \infty } ( E )$ ; confidence 0.994

261. i12008013.png ; $\rho _ { i } = 0$ ; confidence 0.994

262. j13004095.png ; $( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 }$ ; confidence 0.994

263. c12026042.png ; $k \rightarrow 0$ ; confidence 0.994

264. c12026016.png ; $U ^ { 0 } j = P _ { j } , \quad 0 \leq j \leq J$ ; confidence 0.994

265. y1200204.png ; $A ( \xi )$ ; confidence 0.994

266. c1201805.png ; $\lambda : M \rightarrow R ^ { + }$ ; confidence 0.994

267. d13013080.png ; $S ^ { 2 } \times U ( 1 )$ ; confidence 0.994

268. d032450273.png ; $( L , \leq )$ ; confidence 0.994

269. a120070122.png ; $A ( t , v )$ ; confidence 0.994

270. t12003010.png ; $\| \mu \| _ { \infty } < 1$ ; confidence 0.994

271. l11012076.png ; $i \geq 2$ ; confidence 0.994

272. d13017050.png ; $\{ \lambda _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.994

273. g120040158.png ; $1 < s \leq m / ( m - 1 )$ ; confidence 0.994

274. b120430142.png ; $H _ { 1 } \rightarrow H$ ; confidence 0.994

275. b12042036.png ; $\Psi _ { V , W } = \Psi _ { W , V } ^ { - 1 }$ ; confidence 0.994

276. z13008020.png ; $m = n - 2 j$ ; confidence 0.994

277. b120420118.png ; $( b _ { i } - q ) ( b _ { i } + q ^ { - 1 } ) = 0$ ; confidence 0.994

278. s13051074.png ; $( u , v ) \in E$ ; confidence 0.994

279. l11004037.png ; $H \subseteq X ( G )$ ; confidence 0.994

280. m13026030.png ; $\lambda ( x y ) = \lambda ( x ) y$ ; confidence 0.994

281. s130510113.png ; $k = 1 < \infty$ ; confidence 0.994

282. b12043087.png ; $E _ { 1 } ^ { 2 } E _ { 2 } + E _ { 2 } E _ { 1 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 1 } E _ { 2 } E _ { 1 } = 0$ ; confidence 0.994

283. d11018015.png ; $\xi ( u )$ ; confidence 0.994

284. k05584048.png ; $0 \in \rho ( G )$ ; confidence 0.994

285. k12008078.png ; $( f - \kappa _ { p } ( f ) ) ( z ) =$ ; confidence 0.994

286. e12019094.png ; $\sigma ( x , x ) > 0$ ; confidence 0.994

287. w13004032.png ; $\omega _ { 1 } = \frac { 1 } { 2 } ( 1 - g ^ { 2 } ) \eta , \omega _ { 2 } = \frac { i } { 2 } ( 1 + g ^ { 2 } ) \eta , \omega _ { 3 } = g \eta$ ; confidence 0.994

288. h04820013.png ; $E > 0$ ; confidence 0.994

289. a13006034.png ; $A _ { K }$ ; confidence 0.994

290. b12022045.png ; $u ( t , x ) = \int f ( t , x , \xi ) d \xi - k$ ; confidence 0.994

291. n12002063.png ; $\hat { \theta } _ { n } = \psi _ { \mu } ( X _ { n } )$ ; confidence 0.994

292. b120420135.png ; $V \rightarrow H \otimes V$ ; confidence 0.994

293. v096900185.png ; $A ( \zeta )$ ; confidence 0.994

294. a130050235.png ; $A _ { G } > 0$ ; confidence 0.994

295. n13003071.png ; $- h \Delta + V ( x )$ ; confidence 0.994

296. d12020026.png ; $( H ( G ) , B ( H ( G ) ) )$ ; confidence 0.994

297. s13065013.png ; $L ^ { 2 } ( \mu )$ ; confidence 0.994

298. z13008047.png ; $V _ { n } = \operatorname { span } \{ V _ { n } ^ { n - 2 j } : 0 \leq j \leq n \}$ ; confidence 0.994

299. s12023074.png ; $Q ( q \times p )$ ; confidence 0.994

300. i1300809.png ; $L _ { 3 } = A _ { 3 } P _ { 3 }$ ; confidence 0.994

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/13&oldid=44423