Difference between revisions of "User:Maximilian Janisch/latexlist/latex/Algebraic Groups/1"
m (Maximilian Janisch moved page User:Maximilian Janisch/latexlist/latex/Algebraic Groups1 to User:Maximilian Janisch/latexlist/latex/Algebraic Groups/1: Namensfehler) |
(AUTOMATIC EDIT of page 1 out of 12 with 300 lines: Updated image/latex database (currently 3466 images latexified; order by Length, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543406.png ; $J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ ; confidence 0.098 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510132.png ; $\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ ; confidence 0.354 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510129.png ; $\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ ; confidence 0.055 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510131.png ; $\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ ; confidence 0.278 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/l/l058/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510127.png ; $\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ ; confidence 0.232 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333033.png ; $H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ ; confidence 0.956 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510130.png ; $\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ ; confidence 0.628 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524027.png ; $u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ ; confidence 0.733 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510133.png ; $\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$ ; confidence 0.374 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333035.png ; $( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ ; confidence 0.521 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590458.png ; $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ; confidence 0.870 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851074.png ; $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ ; confidence 0.988 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876052.png ; $\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ ; confidence 0.085 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120376.png ; $\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ ; confidence 0.508 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590645.png ; $\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ ; confidence 0.230 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150078.png ; $\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ ; confidence 0.440 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140104.png ; $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ ; confidence 0.112 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876037.png ; $\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ ; confidence 0.157 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631092.png ; $\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ ; confidence 0.055 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631099.png ; $\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ ; confidence 0.212 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045210/g04521075.png ; $\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ ; confidence 0.226 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145065.png ; $g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ ; confidence 0.698 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054017.png ; $( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ ; confidence 0.381 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014048.png ; $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ ; confidence 0.661 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700175.png ; $\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ ; confidence 0.683 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700190.png ; $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ ; confidence 0.944 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009095.png ; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ ; confidence 0.312 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120236.png ; $\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X ; F , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y ; F , \Omega )$ ; confidence 0.634 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590225.png ; $\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ ; confidence 0.324 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952403.png ; $p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ ; confidence 0.681 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c0205509.png ; $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ ; confidence 0.110 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524030.png ; $u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ ; confidence 0.569 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680102.png ; $L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ ; confidence 0.659 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872026.png ; $( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ ; confidence 0.356 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014056.png ; $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ ; confidence 0.481 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267025.png ; $\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ ; confidence 0.345 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140118.png ; $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ ; confidence 0.116 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933502.png ; $r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ ; confidence 0.585 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427031.png ; $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ ; confidence 0.987 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952407.png ; $F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ ; confidence 0.468 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690016.png ; $\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ ; confidence 0.400 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763055.png ; $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ ; confidence 0.862 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590404.png ; $\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ ; confidence 0.459 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524072.png ; $p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ ; confidence 0.705 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249029.png ; $\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ; confidence 0.968 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c0205704.png ; $f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ ; confidence 0.149 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859086.png ; $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ ; confidence 0.856 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090122.png ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ ; confidence 0.507 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120509.png ; $f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ ; confidence 0.491 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590634.png ; $\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ ; confidence 0.920 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090135.png ; $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ ; confidence 0.461 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057064.png ; $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ ; confidence 0.853 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631072.png ; $\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ ; confidence 0.304 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183016.png ; $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ; confidence 0.780 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120253.png ; $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ ; confidence 0.861 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120175.png ; $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ ; confidence 0.921 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690028.png ; $C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ ; confidence 0.205 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851044.png ; $\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ ; confidence 0.520 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590115.png ; $( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ ; confidence 0.693 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696024.png ; $F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ ; confidence 0.628 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j05434030.png ; $C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ ; confidence 0.955 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851050.png ; $[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ ; confidence 0.539 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876030.png ; $\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ ; confidence 0.336 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150022.png ; $\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ; confidence 0.107 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164047.png ; $p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ ; confidence 0.756 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120360.png ; $\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ ; confidence 0.293 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851051.png ; $\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ ; confidence 0.997 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706033.png ; $\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ ; confidence 0.379 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164029.png ; $p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ ; confidence 0.396 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640137.png ; $M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ ; confidence 0.997 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412079.png ; $( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ ; confidence 0.117 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590482.png ; $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ ; confidence 0.986 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333034.png ; $= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ ; confidence 0.549 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120247.png ; $\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ ; confidence 0.521 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700263.png ; $\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ ; confidence 0.097 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851073.png ; $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ ; confidence 0.992 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851078.png ; $N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ ; confidence 0.961 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868032.png ; $\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ ; confidence 0.183 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l0586604.png ; $N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ ; confidence 0.466 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851085.png ; $X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ ; confidence 0.691 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876016.png ; $X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ ; confidence 0.656 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100172.png ; $\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ ; confidence 0.351 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/a/a011/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640139.png ; $\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ ; confidence 0.996 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769069.png ; $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ ; confidence 0.793 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900118.png ; $( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ ; confidence 0.764 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630100.png ; $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ; confidence 0.879 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590653.png ; $( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ ; confidence 0.300 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164053.png ; $1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ ; confidence 0.752 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120555.png ; $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ ; confidence 0.810 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301072.png ; $F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ ; confidence 0.198 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700270.png ; $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ; confidence 0.873 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797042.png ; $\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ ; confidence 0.213 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851030.png ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/l/l058/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872078.png ; $\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ ; confidence 0.964 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464025.png ; $g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ ; confidence 0.184 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631062.png ; $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.837 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/w/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100190.png ; $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ ; confidence 0.771 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970129.png ; $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ ; confidence 0.618 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009096.png ; $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ ; confidence 0.259 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150044.png ; $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ ; confidence 0.775 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830107.png ; $S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ ; confidence 0.149 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970139.png ; $F _ { 1 } ( X ; Y ) , \ldots , F _ { n } ( X ; Y ) \in K [ X _ { 1 } , \ldots , X _ { n } ; Y _ { 1 } , \ldots , Y _ { n } ] \}$ ; confidence 0.353 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631071.png ; $\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ ; confidence 0.648 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524034.png ; $z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ ; confidence 0.676 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090259.png ; $\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ ; confidence 0.381 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183043.png ; $e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ ; confidence 0.187 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851057.png ; $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ ; confidence 0.917 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851069.png ; $[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ ; confidence 0.628 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900110.png ; $\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ ; confidence 0.443 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590429.png ; $p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ ; confidence 0.997 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150014.png ; $\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ; confidence 0.997 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164027.png ; $N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ ; confidence 0.369 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120173.png ; $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ ; confidence 0.824 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852011.png ; $[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ ; confidence 0.276 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820118.png ; $\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ ; confidence 0.098 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861012.png ; $J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ ; confidence 0.364 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933507.png ; $d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ ; confidence 0.696 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100177.png ; $\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ ; confidence 0.143 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120184.png ; $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ ; confidence 0.829 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427077.png ; $\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ ; confidence 0.598 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851037.png ; $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ ; confidence 0.945 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851064.png ; $H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ ; confidence 0.432 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631089.png ; $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ; confidence 0.893 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631088.png ; $[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ ; confidence 0.544 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053016.png ; $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ ; confidence 0.138 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014044.png ; $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140119.png ; $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.287 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150021.png ; $\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ; confidence 0.973 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876010.png ; $y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } ; x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.276 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630104.png ; $\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ ; confidence 0.136 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590440.png ; $X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ ; confidence 0.433 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590515.png ; $\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ ; confidence 0.594 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610054.png ; $\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ ; confidence 0.972 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301406.png ; $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ ; confidence 0.648 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120535.png ; $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ ; confidence 0.900 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852046.png ; $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ ; confidence 0.901 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590527.png ; $A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ ; confidence 0.506 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u0954106.png ; $\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ ; confidence 0.287 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640132.png ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830150.png ; $( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ ; confidence 0.376 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830141.png ; $( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ ; confidence 0.562 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082059.png ; $( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ ; confidence 0.553 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235015.png ; $\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ ; confidence 0.142 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427030.png ; $H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ ; confidence 0.651 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590158.png ; $A _ { n } , n \geq 1 , \quad B _ { n } , n \geq 2 , \quad C _ { n } , n \geq 3 , \quad D _ { n } , n \geq 4$ ; confidence 0.956 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058690/l0586905.png ; $B ( F ) = \{ g \in \operatorname { GL } ( V ) : g V _ { i } \subset V _ { i } \text { for all } i \}$ ; confidence 0.454 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100199.png ; $x _ { 0 } + \sum _ { i = 1 } ^ { \infty } x _ { i } V ^ { i } + \sum _ { j = 1 } ^ { < \infty } y _ { j } f ^ { j }$ ; confidence 0.575 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/l/l058/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851068.png ; $[ [ X _ { \alpha _ { i } } , X _ { - } , _ { i } ] , X _ { \alpha _ { j } } ] = n ( i , j ) X _ { \alpha _ { j } }$ ; confidence 0.186 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631087.png ; $[ \alpha _ { 1 } , \alpha _ { 2 } ] = 0 \quad \text { for } \alpha _ { 1 } , \alpha _ { 2 } \in h$ ; confidence 0.597 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590226.png ; $U ^ { n } ( \zeta , r ) = \{ z \in C ^ { n } : | z _ { v } - \zeta _ { v } | < R _ { v } , v = 1 , \ldots , n \}$ ; confidence 0.427 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100192.png ; $x _ { 0 } + \sum _ { i = 1 } ^ { \infty } x _ { i } V ^ { i } + \sum _ { j = 1 } ^ { \infty } y _ { j } f ^ { i }$ ; confidence 0.498 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170108.png ; $j ( x , \gamma \gamma ^ { \prime } ) = j ( x , \gamma ) j ( x \gamma , \gamma ^ { \prime } )$ ; confidence 0.838 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120540.png ; $x , c \in R ^ { n } , \quad ( c , x ) = \sum _ { i = 1 } ^ { n } c _ { i } x _ { i } , \quad y , b \in R ^ { m }$ ; confidence 0.334 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852019.png ; $\mathfrak { g } _ { i } ^ { \prime } / \mathfrak { g } _ { \mathfrak { i } } ^ { \prime } + 1$ ; confidence 0.518 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706029.png ; $R ( t _ { 1 } , \ldots , t _ { n } ) = R \bigotimes _ { Z } ( R ) Z ( R ) ( t _ { 1 } , \ldots , t _ { n } )$ ; confidence 0.249 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024033.png ; $\operatorname { im } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120532.png ; $A ^ { 0 } = \{ x ^ { * } \in X ^ { * } : \langle x ^ { * } , x \rangle \leq 1 , \square x \in A \}$ ; confidence 0.424 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120552.png ; $- F ^ { * } ( 0 , y ^ { * } ) \rightarrow \operatorname { sup } , \quad y ^ { * } \in Y ^ { * }$ ; confidence 0.892 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235012.png ; $x _ { i } \rightarrow \sum _ { j = 1 } ^ { n } \alpha _ { i j } x _ { j } , \quad 1 \leq i \leq n$ ; confidence 0.546 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690094.png ; $e \rightarrow H ^ { 0 } ( G , B ) \rightarrow H ^ { 0 } ( G , A ) \rightarrow ( A / B ) ^ { G }$ ; confidence 0.580 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301305.png ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140109.png ; $j = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , s _ { i } )$ ; confidence 0.262 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150018.png ; $\Delta ( \theta ) = \sqrt { ( 1 - c ^ { 2 } \lambda ^ { 2 } ) ( 1 - e ^ { 2 } \lambda ^ { 2 } ) }$ ; confidence 0.994 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174017.png ; $1 \rightarrow A ( k ) \rightarrow \text { Aut } A \rightarrow G \rightarrow 1$ ; confidence 0.794 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120205.png ; $( H ^ { p } ( X , F ) ) ^ { \prime } \cong \operatorname { Ext } ^ { n - p } ( X ; F , \Omega )$ ; confidence 0.667 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852024.png ; $b ( F ) = \{ x \in \mathfrak { g } | ( V ) : x V _ { i } \subset V _ { i } \text { for all } i \}$ ; confidence 0.136 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310136.png ; $R = ( \rho \otimes \rho ) ( R ) \in \operatorname { End } ( k ^ { n } \otimes k ^ { n } )$ ; confidence 0.930 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590489.png ; $\operatorname { det } \| \frac { \partial x ^ { i } } { \partial a ^ { j } } \| \neq 0$ ; confidence 0.409 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090354.png ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100171.png ; $\sum _ { i , j \in \{ 1,2 , \ldots \} } V _ { i } \langle \alpha _ { i j } \rangle f _ { j }$ ; confidence 0.145 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d03164018.png ; $F \omega = \omega ^ { ( p ) } F , \quad \omega V = V \omega ^ { ( p ) } , \quad F V = V F = p$ ; confidence 0.970 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960177.png ; $( \delta _ { i } \alpha ) ^ { 2 } - \alpha _ { i } ^ { 2 } ( 4 \alpha ^ { 3 } - 8 \alpha - 88 )$ ; confidence 0.712 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427013.png ; $( \alpha e 0 + u ) ( \beta e 0 + v ) = [ \alpha \beta + f ( u , v ) ] e 0 + \alpha v + \beta u$ ; confidence 0.094 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590356.png ; $J ( f ) = ( \partial f / \partial x _ { 0 } , \ldots , \partial f / \partial x _ { n } )$ ; confidence 0.591 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007016.png ; $= \{ f : \pi ^ { - 1 } ( U ) \rightarrow k : f ( g b ) = f ( g ) \chi ( b ) , g \in G , b \in B \}$ ; confidence 0.929 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763061.png ; $k [ G ] _ { \chi } = \{ f \in k [ G ] : f ( g b ) = \chi ( b ) f ( g ) \forall b \in B , g \in G \}$ ; confidence 0.930 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s0855907.png ; $f _ { \zeta } = f _ { \zeta } ( z ) = \sum _ { k = 0 } ^ { \infty } c _ { k } ( z - \zeta ) ^ { k }$ ; confidence 0.992 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150040.png ; $F ( m ) = \sum \alpha _ { j k } m _ { j } m _ { k } , \quad \alpha _ { j k } = \alpha _ { k j }$ ; confidence 0.940 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120263.png ; $p _ { Y } ( f ) = \operatorname { max } _ { z \in K _ { R } } | f ( z ) | , \quad f \in A ( G )$ ; confidence 0.227 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120541.png ; $( b , y ) = \sum _ { i = 1 } ^ { m } b _ { i } y _ { b } , \quad A : R ^ { n } \rightarrow R ^ { m }$ ; confidence 0.277 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427040.png ; $Q = \left( \begin{array} { l l } { 0 } & { 1 } \\ { 1 } & { 0 } \end{array} \right)$ ; confidence 0.925 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058500/l0585006.png ; $\mathfrak { g } = \mathfrak { z } ( \mathfrak { g } ) \dot { + } \mathfrak { g } 0$ ; confidence 0.735 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859071.png ; $z ( s ) = x ( \sqrt { s } ) y ( \sqrt { s } ) x ( \sqrt { s } ) ^ { - 1 } y ( \sqrt { s } ) ^ { - 1 }$ ; confidence 0.991 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l058720135.png ; $k [ X _ { 1 } , \ldots , X _ { m } ; \square X _ { 1 } ^ { p } = 0 , \ldots , X _ { m } ^ { p } = 0 ]$ ; confidence 0.412 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631061.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } \otimes \mathfrak { g }$ ; confidence 0.982 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590470.png ; $F ( x , y , \lambda ) = ( x - \mu ) ( x ^ { 2 } + y ^ { 3 } + \lambda y ^ { 2 } - 6 \lambda x y )$ ; confidence 0.998 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090160.png ; $\langle g x , y \rangle = \langle x , g ^ { T } y \rangle , \quad \forall g \in G$ ; confidence 0.652 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183044.png ; $h = \operatorname { max } _ { \pi } ( e _ { 1 } \pi ( 1 ) + \ldots + e _ { n } \pi ( n ) )$ ; confidence 0.715 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120121.png ; $H _ { r } ( M ^ { n } , X ) | H _ { n - r } ( M ^ { n } , X ^ { * } ) , \quad \text { for } X | X ^ { * }$ ; confidence 0.734 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690056.png ; $( \sigma ( \alpha ) ( c ) ) ( g , h ) = \alpha ^ { g } c ( g , h ) ( \alpha ^ { g } ) ^ { - 1 }$ ; confidence 0.301 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137022.png ; $\sum _ { \alpha \in I } ( \operatorname { dim } \rho ^ { \alpha } ) ^ { 2 } = | G |$ ; confidence 0.960 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014072.png ; $q ( v ) = \operatorname { dim } G _ { Q } ( v ) - \operatorname { dim } A _ { Q } ( v )$ ; confidence 0.221 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164076.png ; $H ^ { p } ( V , \Omega ^ { q } ) = \operatorname { dim } H ^ { q } ( V , \Omega ^ { p } )$ ; confidence 0.943 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120235.png ; $\gamma : H _ { X \backslash Y } ^ { p + 1 } ( X , F ) \rightarrow H ^ { p + 1 } ( X , F )$ ; confidence 0.715 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001058.png ; $t ( z _ { 1 } , z _ { 2 } ) = ( e ^ { i t } z _ { 1 } , e ^ { i \alpha t } z _ { 2 } ) , \quad t \in R$ ; confidence 0.800 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001044.png ; $( g f ) ( u , v ) = f ( g ^ { - 1 } ( u ) , g ^ { - 1 } ( v ) ) \quad \text { for any } u , v \in V$ ; confidence 0.987 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590376.png ; $x _ { 0 } ^ { \mu - 1 } + x _ { 0 } x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.937 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140147.png ; $0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0$ ; confidence 0.747 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933508.png ; $K = ( \operatorname { cos } u ) / a l ( 1 + \epsilon \operatorname { cos } u )$ ; confidence 0.499 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057019.png ; $\rho ( e _ { i } ) v = 0 , \quad \rho ( h _ { i } ) v = k _ { i } v , \quad i = 1 , \dots , r$ ; confidence 0.484 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070052.png ; $\gamma : H ^ { 1 } ( X _ { 0 } , \Theta ) \rightarrow H ^ { 2 } ( X _ { 0 } , \Theta )$ ; confidence 0.700 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120244.png ; $H _ { c } ^ { n - p - 1 } ( X \backslash Y , \operatorname { Hom } ( F , \Omega ) )$ ; confidence 0.923 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120424.png ; $A ^ { o } = \{ y \in G : \operatorname { Re } ( x , y ) \leq 1 , \forall x \in A \}$ ; confidence 0.603 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960187.png ; $X _ { 0 } X _ { 2 } ^ { 2 } - ( 4 X _ { 1 } ^ { 3 } - 8 X _ { 0 } ^ { 2 } X _ { 1 } - 8 X _ { 0 } ^ { 3 } ) = 0$ ; confidence 0.432 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851045.png ; $H _ { \alpha } \in [ \mathfrak { g } _ { \alpha } , \mathfrak { g } - \alpha ]$ ; confidence 0.566 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859082.png ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690078.png ; $\rho ( f ) ( \alpha ) = d f \cdot f ^ { - 1 } + ( \operatorname { Ad } f ) \alpha$ ; confidence 0.231 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t09335012.png ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } = a ^ { 2 } , \quad x _ { 3 } ^ { 2 } + x _ { 4 } ^ { 2 } = b ^ { 2 }$ ; confidence 0.863 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700167.png ; $\tilde { \rho } : \tilde { \kappa } \rightarrow \tilde { M } _ { X _ { 0 } }$ ; confidence 0.601 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830344.png ; $\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$ ; confidence 0.983 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082053.png ; $= F _ { i } ( F _ { 1 } ( X , Y ) , \ldots , F _ { n } ( X , Y ) , Z _ { 1 } , \ldots , Z _ { n } )$ ; confidence 0.658 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082052.png ; $F _ { i } ( X _ { 1 } , \ldots , X _ { n } , F _ { 1 } ( Y , Z ) , \ldots , F _ { n } ( Y , Z ) ) =$ ; confidence 0.659 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900125.png ; $G \rightarrow \text { Out } A = \text { Aut } A / \operatorname { Int } A$ ; confidence 0.290 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690058.png ; $\alpha \in C ^ { 0 } , \quad b \in C ^ { 1 } , \quad c \in C ^ { 2 } , \quad g \in G$ ; confidence 0.173 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310140.png ; $T _ { 1 } = T \otimes 1 \in \operatorname { End } ( k ^ { n } \otimes k ^ { n } )$ ; confidence 0.284 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631052.png ; $\{ a , b \} = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( a b - b a )$ ; confidence 0.345 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014060.png ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/w/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759034.png ; $\phi = \sum \phi _ { v } : WC ( A , k ) \rightarrow \sum _ { v } WC ( A , k _ { v } )$ ; confidence 0.221 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090100.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690105.png ; $P ( G / H , t ) = \prod _ { i = 1 } ^ { r } \frac { 1 - t ^ { 2 k } i } { 1 - t ^ { 2 l _ { i } } }$ ; confidence 0.529 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769085.png ; $( g , f ) \sim ( g h ^ { - 1 } , h f ) , \quad g \in G , \quad k \in H , \quad f \in F$ ; confidence 0.494 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851071.png ; $( \text { ad } X _ { - } \alpha _ { i } ) ^ { 1 - n ( i , j ) } X _ { - } \alpha _ { j } = 0$ ; confidence 0.289 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590498.png ; $\frac { d x _ { 1 } } { X _ { 1 } ( x ) } = \ldots = \frac { d x _ { x } } { X _ { x } ( x ) }$ ; confidence 0.695 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590138.png ; $V ^ { \prime } ( \alpha ) = \{ z \in \overline { C } : 0 < | z - \alpha | < R \}$ ; confidence 0.853 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054078.png ; $\{ \alpha , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771045.png ; $X ( T _ { 0 } / Z ( G ) ^ { 0 } ) _ { Q } = X ( T _ { 0 } / Z ( G ) ^ { 0 } ) \bigotimes _ { Z } Q$ ; confidence 0.558 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090106.png ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi$ ; confidence 0.648 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090109.png ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E \otimes ^ { \gamma }$ ; confidence 0.166 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/a/a011/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164011.png ; $p ^ { ( 1 ) } = ( K _ { V } ^ { 2 } ) + 1 = \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + 1$ ; confidence 0.919 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070043.png ; $T _ { \emptyset } ( S ) \rightarrow H ^ { 1 } ( X _ { \diamond } , \Theta )$ ; confidence 0.185 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830164.png ; $( t _ { 1 } , \ldots , t _ { n } , u ) \rightarrow F ( 0 , \ldots , 0 , \alpha )$ ; confidence 0.606 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830160.png ; $u = \frac { F ( t _ { 1 } , \ldots , t _ { x } ) } { G ( t _ { 1 } , \ldots , t _ { x } ) }$ ; confidence 0.902 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120468.png ; $f \in ( F ^ { \prime } , \sigma ( F ^ { \prime } , F ) ) \square ^ { \prime }$ ; confidence 0.990 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267014.png ; $T \rightarrow H ^ { 1 } ( T _ { f } p q c , G _ { m } ) = H ^ { 1 } ( T _ { et } , G _ { m } )$ ; confidence 0.492 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590381.png ; $x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.934 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524049.png ; $F ^ { - 1 } ( y ) = \operatorname { inf } \{ x : F ( x ) \leq y \leq F ( x + 0 ) \}$ ; confidence 0.904 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759027.png ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } )$ ; confidence 0.456 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/a/a011/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150012.png ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700137.png ; $\kappa ^ { \prime } \rightarrow \operatorname { Spec } \Lambda$ ; confidence 0.898 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851070.png ; $( \text { ad } X _ { \alpha _ { i } } ) ^ { 1 - n ( i , j ) } X _ { \alpha _ { j } } = 0$ ; confidence 0.438 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001086.png ; $| X / G | = \frac { 1 } { | G | } \sum _ { g \in G } | \operatorname { Fix } g |$ ; confidence 0.300 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267053.png ; $f ^ { \prime } : X ^ { \prime } = X \times S S ^ { \prime } \rightarrow S$ ; confidence 0.259 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763029.png ; $V ( \chi ) = \{ v \in V : \phi ( t ) v = \chi ( t ) v \forall t \in T \} \neq 0$ ; confidence 0.311 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d03164021.png ; $D _ { k } / D _ { k } V ^ { n } \simeq \operatorname { End } _ { k } ( W _ { n k }$ ; confidence 0.576 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830322.png ; $\operatorname { deg } _ { A } ( F ) < \operatorname { deg } _ { A } ( A )$ ; confidence 0.907 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830310.png ; $\operatorname { deg } _ { A } ( A ) = \operatorname { deg } _ { A } ( B )$ ; confidence 0.865 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830306.png ; $\operatorname { deg } _ { A } ( A ) < \operatorname { deg } _ { A } ( B )$ ; confidence 0.560 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120508.png ; $( f , g ) = \sum _ { \alpha } ( f _ { \alpha } , g _ { \alpha } ) _ { \alpha }$ ; confidence 0.947 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120522.png ; $\| f | H \| = \operatorname { dist } ( f , H ^ { 0 } ) , \quad f \in F ^ { * }$ ; confidence 0.990 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235025.png ; $\Delta = 3 b ^ { 2 } c ^ { 2 } + 6 a b c d - 4 b ^ { 3 } d - 4 a c ^ { 3 } - a ^ { 2 } d ^ { 2 }$ ; confidence 0.992 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427038.png ; $J _ { \Im } : X \rightarrow S _ { \square } ^ { \prime } X ^ { \prime } S$ ; confidence 0.174 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706024.png ; $S K _ { 1 } ( R ) \simeq \operatorname { SL } ( 1 , R ) / [ R ^ { * } , R ^ { * } ]$ ; confidence 0.445 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090294.png ; $\mathfrak { b } ^ { + } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.723 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023470/c02347043.png ; $j = 1 , \ldots , n _ { \alpha } = \operatorname { dim } R ^ { \alpha }$ ; confidence 0.704 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700219.png ; $\tilde { p } : \tilde { \kappa } \rightarrow \hat { M } _ { X _ { 0 } }$ ; confidence 0.375 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120245.png ; $\alpha ( z ) = \sum _ { x = 0 } ^ { \infty } \frac { a _ { x } } { z ^ { x + 1 } }$ ; confidence 0.561 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960202.png ; $B _ { \nu } = y ^ { \prime \prime } + x ^ { - 1 } + ( 1 - \nu ^ { 2 } x ^ { - 2 } ) y$ ; confidence 0.963 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082060.png ; $z _ { i } = F _ { i } ( x _ { 1 } , \ldots , x _ { n } , y _ { 1 } , \ldots , y _ { n } )$ ; confidence 0.408 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235032.png ; $f _ { i } ( x _ { 1 } , \ldots , x _ { n } ) = \sum _ { j = 1 } ^ { n } a _ { j } x _ { j }$ ; confidence 0.612 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058500/l05850020.png ; $: \mathfrak { h } \rightarrow \mathfrak { g } ( \mathfrak { g } )$ ; confidence 0.180 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267011.png ; $f ^ { \prime } : X \times s S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.505 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868309.png ; $B = B _ { 0 } \supset B _ { 1 } \supset \ldots \supset B _ { t } = \{ 1 \}$ ; confidence 0.917 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054040.png ; $\operatorname { diag } ( \alpha , \alpha ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013048.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , ) : F \rightarrow X$ ; confidence 0.653 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/u/u095/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541046.png ; $G _ { \alpha } \times \ldots \times G _ { \alpha } \rightarrow U$ ; confidence 0.129 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a0141703.png ; $f ( \gamma ( x ) ) = f ( x ) , \quad x \in M , \quad \gamma \in \Gamma$ ; confidence 0.691 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057062.png ; $0 \rightarrow S \rightarrow F \rightarrow G \rightarrow 0$ ; confidence 0.972 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333031.png ; $f = a _ { 0 } x ^ { 3 } + 3 a _ { 1 } x ^ { 2 } y + 3 a _ { 2 } x y ^ { 2 } + a _ { 3 } y ^ { 3 }$ ; confidence 0.852 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120378.png ; $\operatorname { sup } _ { f \in B ^ { 1 } } | f ^ { \prime } ( z _ { 0 } ) |$ ; confidence 0.660 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970136.png ; $\iota * \text { id } = \text { id } * _ { \iota } = e \circ \epsilon$ ; confidence 0.102 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851066.png ; $X _ { \alpha _ { i } } , X _ { - \alpha _ { i } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.447 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872082.png ; $L _ { 0 } = < e _ { 1 } , \ldots , e _ { \gamma } : e _ { z } ^ { [ p ] } = e _ { i } >$ ; confidence 0.131 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877094.png ; $T ^ { 2 } = \{ ( z _ { 1 } , z _ { 2 } ) : z _ { i } \in C , | z _ { i } | = 1 , i = 1,2 \}$ ; confidence 0.972 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150079.png ; $x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } x _ { 2 } + x _ { 2 } ^ { 3 } x _ { 0 } = 0$ ; confidence 0.999 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150039.png ; $v = ( v _ { 1 } , \ldots , v _ { p } ) , \quad ( m , v ) = \sum m _ { i } v _ { i }$ ; confidence 0.458 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120507.png ; $\{ \alpha : g _ { \alpha } \neq 0 \square \text { is finite } \}$ ; confidence 0.495 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412098.png ; $H _ { r } ( R , X ) | H ^ { r } ( R , X ^ { * } ) , \quad \text { for } X | X ^ { * }$ ; confidence 0.972 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960194.png ; $y ^ { ( n ) } + \alpha _ { 1 } y ^ { ( n - 1 ) } + \ldots + \alpha _ { n } y = 0$ ; confidence 0.817 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820105.png ; $G _ { \alpha } ( X , Y ) = ( X _ { 1 } + Y _ { 1 } , \ldots , X _ { n } + Y _ { n } )$ ; confidence 0.419 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h04741010.png ; $f ( t _ { 1 } ^ { 0 } , \ldots , t _ { x } ^ { 0 } , x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.418 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769076.png ; $[ \mathfrak { m } , \mathfrak { m } ] \subseteq \mathfrak { f }$ ; confidence 0.914 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690030.png ; $( \sigma ( a ) ( c ) ) _ { i j k } = \alpha _ { i } c _ { i j k } a _ { i } ^ { - 1 }$ ; confidence 0.186 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900117.png ; $\phi ^ { \prime } ( g ) = ( \operatorname { Int } h ( g ) ) \phi ( g )$ ; confidence 0.698 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590383.png ; $x _ { 0 } ^ { 5 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.985 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590379.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.987 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590467.png ; $F ( x , y , \lambda ) = ( x - \mu ) ( x ^ { 2 } - \lambda y ^ { 2 } ) + y ^ { 4 }$ ; confidence 1.000 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014069.png ; $M _ { i j } ^ { \beta } \in M _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014026.png ; $X = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , } \beta \in Q _ { 1 }$ ; confidence 0.354 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640146.png ; $\omega \leq \operatorname { dim } H ^ { 2 } ( V , E _ { \alpha } )$ ; confidence 0.999 |
Latest revision as of 16:00, 26 October 2019
List
1. ; $J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ ; confidence 0.098
2. ; $\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ ; confidence 0.354
3. ; $\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ ; confidence 0.055
4. ; $\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ ; confidence 0.278
5. ; $\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ ; confidence 0.232
6. ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
7. ; $H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ ; confidence 0.956
8. ; $\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ ; confidence 0.628
9. ; $u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ ; confidence 0.733
10. ; $\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$ ; confidence 0.374
11. ; $( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ ; confidence 0.521
12. ; $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ; confidence 0.870
13. ; $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ ; confidence 0.988
14. ; $\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ ; confidence 0.085
15. ; $\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ ; confidence 0.508
16. ; $\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ ; confidence 0.230
17. ; $\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ ; confidence 0.440
18. ; $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ ; confidence 0.112
19. ; $\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ ; confidence 0.157
20. ; $\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ ; confidence 0.055
21. ; $\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ ; confidence 0.212
22. ; $\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ ; confidence 0.226
23. ; $g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ ; confidence 0.698
24. ; $( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ ; confidence 0.381
25. ; $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ ; confidence 0.661
26. ; $\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ ; confidence 0.683
27. ; $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ ; confidence 0.944
28. ; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ ; confidence 0.312
29. ; $\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X ; F , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y ; F , \Omega )$ ; confidence 0.634
30. ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
31. ; $\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ ; confidence 0.324
32. ; $p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ ; confidence 0.681
33. ; $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ ; confidence 0.110
34. ; $u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ ; confidence 0.569
35. ; $L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ ; confidence 0.659
36. ; $( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ ; confidence 0.356
37. ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197
38. ; $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ ; confidence 0.481
39. ; $\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ ; confidence 0.345
40. ; $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ ; confidence 0.116
41. ; $r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ ; confidence 0.585
42. ; $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ ; confidence 0.987
43. ; $F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ ; confidence 0.468
44. ; $\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ ; confidence 0.400
45. ; $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ ; confidence 0.862
46. ; $\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ ; confidence 0.459
47. ; $p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ ; confidence 0.705
48. ; $\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ; confidence 0.968
49. ; $f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ ; confidence 0.149
50. ; $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ ; confidence 0.856
51. ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ ; confidence 0.507
52. ; $f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ ; confidence 0.491
53. ; $\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ ; confidence 0.920
54. ; $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ ; confidence 0.461
55. ; $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ ; confidence 0.853
56. ; $\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ ; confidence 0.304
57. ; $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ; confidence 0.780
58. ; $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ ; confidence 0.861
59. ; $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ ; confidence 0.921
60. ; $C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ ; confidence 0.205
61. ; $\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ ; confidence 0.520
62. ; $( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ ; confidence 0.693
63. ; $F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ ; confidence 0.628
64. ; $C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ ; confidence 0.955
65. ; $[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ ; confidence 0.539
66. ; $\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ ; confidence 0.336
67. ; $\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ; confidence 0.107
68. ; $p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ ; confidence 0.756
69. ; $\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ ; confidence 0.293
70. ; $\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ ; confidence 0.997
71. ; $\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ ; confidence 0.379
72. ; $p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ ; confidence 0.396
73. ; $M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ ; confidence 0.997
74. ; $( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ ; confidence 0.117
75. ; $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ ; confidence 0.986
76. ; $= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ ; confidence 0.549
77. ; $\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ ; confidence 0.521
78. ; $\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ ; confidence 0.097
79. ; $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ ; confidence 0.992
80. ; $N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ ; confidence 0.961
81. ; $\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ ; confidence 0.183
82. ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
83. ; $N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ ; confidence 0.466
84. ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
85. ; $X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ ; confidence 0.691
86. ; $X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ ; confidence 0.656
87. ; $\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ ; confidence 0.351
88. ; $\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ ; confidence 0.996
89. ; $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ ; confidence 0.793
90. ; $( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ ; confidence 0.764
91. ; $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ; confidence 0.879
92. ; $( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ ; confidence 0.300
93. ; $1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ ; confidence 0.752
94. ; $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ ; confidence 0.810
95. ; $F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ ; confidence 0.198
96. ; $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ; confidence 0.873
97. ; $\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ ; confidence 0.213
98. ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976
99. ; $\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ ; confidence 0.964
100. ; $g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ ; confidence 0.184
101. ; $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.837
102. ; $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ ; confidence 0.771
103. ; $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ ; confidence 0.618
104. ; $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ ; confidence 0.259
105. ; $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ ; confidence 0.775
106. ; $S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ ; confidence 0.149
107. ; $F _ { 1 } ( X ; Y ) , \ldots , F _ { n } ( X ; Y ) \in K [ X _ { 1 } , \ldots , X _ { n } ; Y _ { 1 } , \ldots , Y _ { n } ] \}$ ; confidence 0.353
108. ; $\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ ; confidence 0.648
109. ; $z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ ; confidence 0.676
110. ; $\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ ; confidence 0.381
111. ; $e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ ; confidence 0.187
112. ; $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ ; confidence 0.917
113. ; $[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ ; confidence 0.628
114. ; $\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ ; confidence 0.443
115. ; $p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ ; confidence 0.997
116. ; $\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ; confidence 0.997
117. ; $N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ ; confidence 0.369
118. ; $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ ; confidence 0.824
119. ; $[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ ; confidence 0.276
120. ; $\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ ; confidence 0.098
121. ; $J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ ; confidence 0.364
122. ; $d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ ; confidence 0.696
123. ; $\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ ; confidence 0.143
124. ; $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ ; confidence 0.829
125. ; $\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ ; confidence 0.598
126. ; $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ ; confidence 0.945
127. ; $H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ ; confidence 0.432
128. ; $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ; confidence 0.893
129. ; $[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ ; confidence 0.544
130. ; $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ ; confidence 0.138
131. ; $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819
132. ; $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.287
133. ; $\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ; confidence 0.973
134. ; $y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } ; x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.276
135. ; $\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ ; confidence 0.136
136. ; $X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ ; confidence 0.433
137. ; $\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ ; confidence 0.594
138. ; $\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ ; confidence 0.972
139. ; $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ ; confidence 0.648
140. ; $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ ; confidence 0.900
141. ; $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ ; confidence 0.901
142. ; $A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ ; confidence 0.506
143. ; $\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ ; confidence 0.287
144. ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981
145. ; $( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ ; confidence 0.376
146. ; $( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ ; confidence 0.562
147. ; $( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ ; confidence 0.553
148. ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979
149. ; $\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ ; confidence 0.142
150. ; $H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ ; confidence 0.651
151. ; $A _ { n } , n \geq 1 , \quad B _ { n } , n \geq 2 , \quad C _ { n } , n \geq 3 , \quad D _ { n } , n \geq 4$ ; confidence 0.956
152. ; $B ( F ) = \{ g \in \operatorname { GL } ( V ) : g V _ { i } \subset V _ { i } \text { for all } i \}$ ; confidence 0.454
153. ; $x _ { 0 } + \sum _ { i = 1 } ^ { \infty } x _ { i } V ^ { i } + \sum _ { j = 1 } ^ { < \infty } y _ { j } f ^ { j }$ ; confidence 0.575
154. ; $[ [ X _ { \alpha _ { i } } , X _ { - } , _ { i } ] , X _ { \alpha _ { j } } ] = n ( i , j ) X _ { \alpha _ { j } }$ ; confidence 0.186
155. ; $[ \alpha _ { 1 } , \alpha _ { 2 } ] = 0 \quad \text { for } \alpha _ { 1 } , \alpha _ { 2 } \in h$ ; confidence 0.597
156. ; $U ^ { n } ( \zeta , r ) = \{ z \in C ^ { n } : | z _ { v } - \zeta _ { v } | < R _ { v } , v = 1 , \ldots , n \}$ ; confidence 0.427
157. ; $x _ { 0 } + \sum _ { i = 1 } ^ { \infty } x _ { i } V ^ { i } + \sum _ { j = 1 } ^ { \infty } y _ { j } f ^ { i }$ ; confidence 0.498
158. ; $j ( x , \gamma \gamma ^ { \prime } ) = j ( x , \gamma ) j ( x \gamma , \gamma ^ { \prime } )$ ; confidence 0.838
159. ; $x , c \in R ^ { n } , \quad ( c , x ) = \sum _ { i = 1 } ^ { n } c _ { i } x _ { i } , \quad y , b \in R ^ { m }$ ; confidence 0.334
160. ; $\mathfrak { g } _ { i } ^ { \prime } / \mathfrak { g } _ { \mathfrak { i } } ^ { \prime } + 1$ ; confidence 0.518
161. ; $R ( t _ { 1 } , \ldots , t _ { n } ) = R \bigotimes _ { Z } ( R ) Z ( R ) ( t _ { 1 } , \ldots , t _ { n } )$ ; confidence 0.249
162. ; $\operatorname { im } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575
163. ; $A ^ { 0 } = \{ x ^ { * } \in X ^ { * } : \langle x ^ { * } , x \rangle \leq 1 , \square x \in A \}$ ; confidence 0.424
164. ; $- F ^ { * } ( 0 , y ^ { * } ) \rightarrow \operatorname { sup } , \quad y ^ { * } \in Y ^ { * }$ ; confidence 0.892
165. ; $x _ { i } \rightarrow \sum _ { j = 1 } ^ { n } \alpha _ { i j } x _ { j } , \quad 1 \leq i \leq n$ ; confidence 0.546
166. ; $e \rightarrow H ^ { 0 } ( G , B ) \rightarrow H ^ { 0 } ( G , A ) \rightarrow ( A / B ) ^ { G }$ ; confidence 0.580
167. ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974
168. ; $j = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , s _ { i } )$ ; confidence 0.262
169. ; $\Delta ( \theta ) = \sqrt { ( 1 - c ^ { 2 } \lambda ^ { 2 } ) ( 1 - e ^ { 2 } \lambda ^ { 2 } ) }$ ; confidence 0.994
170. ; $1 \rightarrow A ( k ) \rightarrow \text { Aut } A \rightarrow G \rightarrow 1$ ; confidence 0.794
171. ; $( H ^ { p } ( X , F ) ) ^ { \prime } \cong \operatorname { Ext } ^ { n - p } ( X ; F , \Omega )$ ; confidence 0.667
172. ; $b ( F ) = \{ x \in \mathfrak { g } | ( V ) : x V _ { i } \subset V _ { i } \text { for all } i \}$ ; confidence 0.136
173. ; $R = ( \rho \otimes \rho ) ( R ) \in \operatorname { End } ( k ^ { n } \otimes k ^ { n } )$ ; confidence 0.930
174. ; $\operatorname { det } \| \frac { \partial x ^ { i } } { \partial a ^ { j } } \| \neq 0$ ; confidence 0.409
175. ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882
176. ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841
177. ; $\sum _ { i , j \in \{ 1,2 , \ldots \} } V _ { i } \langle \alpha _ { i j } \rangle f _ { j }$ ; confidence 0.145
178. ; $F \omega = \omega ^ { ( p ) } F , \quad \omega V = V \omega ^ { ( p ) } , \quad F V = V F = p$ ; confidence 0.970
179. ; $( \delta _ { i } \alpha ) ^ { 2 } - \alpha _ { i } ^ { 2 } ( 4 \alpha ^ { 3 } - 8 \alpha - 88 )$ ; confidence 0.712
180. ; $( \alpha e 0 + u ) ( \beta e 0 + v ) = [ \alpha \beta + f ( u , v ) ] e 0 + \alpha v + \beta u$ ; confidence 0.094
181. ; $J ( f ) = ( \partial f / \partial x _ { 0 } , \ldots , \partial f / \partial x _ { n } )$ ; confidence 0.591
182. ; $= \{ f : \pi ^ { - 1 } ( U ) \rightarrow k : f ( g b ) = f ( g ) \chi ( b ) , g \in G , b \in B \}$ ; confidence 0.929
183. ; $k [ G ] _ { \chi } = \{ f \in k [ G ] : f ( g b ) = \chi ( b ) f ( g ) \forall b \in B , g \in G \}$ ; confidence 0.930
184. ; $f _ { \zeta } = f _ { \zeta } ( z ) = \sum _ { k = 0 } ^ { \infty } c _ { k } ( z - \zeta ) ^ { k }$ ; confidence 0.992
185. ; $F ( m ) = \sum \alpha _ { j k } m _ { j } m _ { k } , \quad \alpha _ { j k } = \alpha _ { k j }$ ; confidence 0.940
186. ; $p _ { Y } ( f ) = \operatorname { max } _ { z \in K _ { R } } | f ( z ) | , \quad f \in A ( G )$ ; confidence 0.227
187. ; $( b , y ) = \sum _ { i = 1 } ^ { m } b _ { i } y _ { b } , \quad A : R ^ { n } \rightarrow R ^ { m }$ ; confidence 0.277
188. ; $Q = \left( \begin{array} { l l } { 0 } & { 1 } \\ { 1 } & { 0 } \end{array} \right)$ ; confidence 0.925
189. ; $\mathfrak { g } = \mathfrak { z } ( \mathfrak { g } ) \dot { + } \mathfrak { g } 0$ ; confidence 0.735
190. ; $z ( s ) = x ( \sqrt { s } ) y ( \sqrt { s } ) x ( \sqrt { s } ) ^ { - 1 } y ( \sqrt { s } ) ^ { - 1 }$ ; confidence 0.991
191. ; $k [ X _ { 1 } , \ldots , X _ { m } ; \square X _ { 1 } ^ { p } = 0 , \ldots , X _ { m } ^ { p } = 0 ]$ ; confidence 0.412
192. ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } \otimes \mathfrak { g }$ ; confidence 0.982
193. ; $F ( x , y , \lambda ) = ( x - \mu ) ( x ^ { 2 } + y ^ { 3 } + \lambda y ^ { 2 } - 6 \lambda x y )$ ; confidence 0.998
194. ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
195. ; $\langle g x , y \rangle = \langle x , g ^ { T } y \rangle , \quad \forall g \in G$ ; confidence 0.652
196. ; $h = \operatorname { max } _ { \pi } ( e _ { 1 } \pi ( 1 ) + \ldots + e _ { n } \pi ( n ) )$ ; confidence 0.715
197. ; $H _ { r } ( M ^ { n } , X ) | H _ { n - r } ( M ^ { n } , X ^ { * } ) , \quad \text { for } X | X ^ { * }$ ; confidence 0.734
198. ; $( \sigma ( \alpha ) ( c ) ) ( g , h ) = \alpha ^ { g } c ( g , h ) ( \alpha ^ { g } ) ^ { - 1 }$ ; confidence 0.301
199. ; $\sum _ { \alpha \in I } ( \operatorname { dim } \rho ^ { \alpha } ) ^ { 2 } = | G |$ ; confidence 0.960
200. ; $q ( v ) = \operatorname { dim } G _ { Q } ( v ) - \operatorname { dim } A _ { Q } ( v )$ ; confidence 0.221
201. ; $H ^ { p } ( V , \Omega ^ { q } ) = \operatorname { dim } H ^ { q } ( V , \Omega ^ { p } )$ ; confidence 0.943
202. ; $\gamma : H _ { X \backslash Y } ^ { p + 1 } ( X , F ) \rightarrow H ^ { p + 1 } ( X , F )$ ; confidence 0.715
203. ; $t ( z _ { 1 } , z _ { 2 } ) = ( e ^ { i t } z _ { 1 } , e ^ { i \alpha t } z _ { 2 } ) , \quad t \in R$ ; confidence 0.800
204. ; $( g f ) ( u , v ) = f ( g ^ { - 1 } ( u ) , g ^ { - 1 } ( v ) ) \quad \text { for any } u , v \in V$ ; confidence 0.987
205. ; $x _ { 0 } ^ { \mu - 1 } + x _ { 0 } x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.937
206. ; $0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0$ ; confidence 0.747
207. ; $K = ( \operatorname { cos } u ) / a l ( 1 + \epsilon \operatorname { cos } u )$ ; confidence 0.499
208. ; $\rho ( e _ { i } ) v = 0 , \quad \rho ( h _ { i } ) v = k _ { i } v , \quad i = 1 , \dots , r$ ; confidence 0.484
209. ; $\gamma : H ^ { 1 } ( X _ { 0 } , \Theta ) \rightarrow H ^ { 2 } ( X _ { 0 } , \Theta )$ ; confidence 0.700
210. ; $H _ { c } ^ { n - p - 1 } ( X \backslash Y , \operatorname { Hom } ( F , \Omega ) )$ ; confidence 0.923
211. ; $A ^ { o } = \{ y \in G : \operatorname { Re } ( x , y ) \leq 1 , \forall x \in A \}$ ; confidence 0.603
212. ; $X _ { 0 } X _ { 2 } ^ { 2 } - ( 4 X _ { 1 } ^ { 3 } - 8 X _ { 0 } ^ { 2 } X _ { 1 } - 8 X _ { 0 } ^ { 3 } ) = 0$ ; confidence 0.432
213. ; $H _ { \alpha } \in [ \mathfrak { g } _ { \alpha } , \mathfrak { g } - \alpha ]$ ; confidence 0.566
214. ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976
215. ; $\rho ( f ) ( \alpha ) = d f \cdot f ^ { - 1 } + ( \operatorname { Ad } f ) \alpha$ ; confidence 0.231
216. ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } = a ^ { 2 } , \quad x _ { 3 } ^ { 2 } + x _ { 4 } ^ { 2 } = b ^ { 2 }$ ; confidence 0.863
217. ; $\tilde { \rho } : \tilde { \kappa } \rightarrow \tilde { M } _ { X _ { 0 } }$ ; confidence 0.601
218. ; $\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$ ; confidence 0.983
219. ; $= F _ { i } ( F _ { 1 } ( X , Y ) , \ldots , F _ { n } ( X , Y ) , Z _ { 1 } , \ldots , Z _ { n } )$ ; confidence 0.658
220. ; $F _ { i } ( X _ { 1 } , \ldots , X _ { n } , F _ { 1 } ( Y , Z ) , \ldots , F _ { n } ( Y , Z ) ) =$ ; confidence 0.659
221. ; $G \rightarrow \text { Out } A = \text { Aut } A / \operatorname { Int } A$ ; confidence 0.290
222. ; $\alpha \in C ^ { 0 } , \quad b \in C ^ { 1 } , \quad c \in C ^ { 2 } , \quad g \in G$ ; confidence 0.173
223. ; $T _ { 1 } = T \otimes 1 \in \operatorname { End } ( k ^ { n } \otimes k ^ { n } )$ ; confidence 0.284
224. ; $\{ a , b \} = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( a b - b a )$ ; confidence 0.345
225. ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814
226. ; $\phi = \sum \phi _ { v } : WC ( A , k ) \rightarrow \sum _ { v } WC ( A , k _ { v } )$ ; confidence 0.221
227. ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
228. ; $P ( G / H , t ) = \prod _ { i = 1 } ^ { r } \frac { 1 - t ^ { 2 k } i } { 1 - t ^ { 2 l _ { i } } }$ ; confidence 0.529
229. ; $( g , f ) \sim ( g h ^ { - 1 } , h f ) , \quad g \in G , \quad k \in H , \quad f \in F$ ; confidence 0.494
230. ; $( \text { ad } X _ { - } \alpha _ { i } ) ^ { 1 - n ( i , j ) } X _ { - } \alpha _ { j } = 0$ ; confidence 0.289
231. ; $\frac { d x _ { 1 } } { X _ { 1 } ( x ) } = \ldots = \frac { d x _ { x } } { X _ { x } ( x ) }$ ; confidence 0.695
232. ; $V ^ { \prime } ( \alpha ) = \{ z \in \overline { C } : 0 < | z - \alpha | < R \}$ ; confidence 0.853
233. ; $\{ \alpha , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934
234. ; $X ( T _ { 0 } / Z ( G ) ^ { 0 } ) _ { Q } = X ( T _ { 0 } / Z ( G ) ^ { 0 } ) \bigotimes _ { Z } Q$ ; confidence 0.558
235. ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi$ ; confidence 0.648
236. ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E \otimes ^ { \gamma }$ ; confidence 0.166
237. ; $p ^ { ( 1 ) } = ( K _ { V } ^ { 2 } ) + 1 = \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + 1$ ; confidence 0.919
238. ; $T _ { \emptyset } ( S ) \rightarrow H ^ { 1 } ( X _ { \diamond } , \Theta )$ ; confidence 0.185
239. ; $( t _ { 1 } , \ldots , t _ { n } , u ) \rightarrow F ( 0 , \ldots , 0 , \alpha )$ ; confidence 0.606
240. ; $u = \frac { F ( t _ { 1 } , \ldots , t _ { x } ) } { G ( t _ { 1 } , \ldots , t _ { x } ) }$ ; confidence 0.902
241. ; $f \in ( F ^ { \prime } , \sigma ( F ^ { \prime } , F ) ) \square ^ { \prime }$ ; confidence 0.990
242. ; $T \rightarrow H ^ { 1 } ( T _ { f } p q c , G _ { m } ) = H ^ { 1 } ( T _ { et } , G _ { m } )$ ; confidence 0.492
243. ; $x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.934
244. ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572
245. ; $F ^ { - 1 } ( y ) = \operatorname { inf } \{ x : F ( x ) \leq y \leq F ( x + 0 ) \}$ ; confidence 0.904
246. ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } )$ ; confidence 0.456
247. ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980
248. ; $\kappa ^ { \prime } \rightarrow \operatorname { Spec } \Lambda$ ; confidence 0.898
249. ; $( \text { ad } X _ { \alpha _ { i } } ) ^ { 1 - n ( i , j ) } X _ { \alpha _ { j } } = 0$ ; confidence 0.438
250. ; $| X / G | = \frac { 1 } { | G | } \sum _ { g \in G } | \operatorname { Fix } g |$ ; confidence 0.300
251. ; $f ^ { \prime } : X ^ { \prime } = X \times S S ^ { \prime } \rightarrow S$ ; confidence 0.259
252. ; $V ( \chi ) = \{ v \in V : \phi ( t ) v = \chi ( t ) v \forall t \in T \} \neq 0$ ; confidence 0.311
253. ; $D _ { k } / D _ { k } V ^ { n } \simeq \operatorname { End } _ { k } ( W _ { n k }$ ; confidence 0.576
254. ; $\operatorname { deg } _ { A } ( F ) < \operatorname { deg } _ { A } ( A )$ ; confidence 0.907
255. ; $\operatorname { deg } _ { A } ( A ) = \operatorname { deg } _ { A } ( B )$ ; confidence 0.865
256. ; $\operatorname { deg } _ { A } ( A ) < \operatorname { deg } _ { A } ( B )$ ; confidence 0.560
257. ; $( f , g ) = \sum _ { \alpha } ( f _ { \alpha } , g _ { \alpha } ) _ { \alpha }$ ; confidence 0.947
258. ; $\| f | H \| = \operatorname { dist } ( f , H ^ { 0 } ) , \quad f \in F ^ { * }$ ; confidence 0.990
259. ; $\Delta = 3 b ^ { 2 } c ^ { 2 } + 6 a b c d - 4 b ^ { 3 } d - 4 a c ^ { 3 } - a ^ { 2 } d ^ { 2 }$ ; confidence 0.992
260. ; $J _ { \Im } : X \rightarrow S _ { \square } ^ { \prime } X ^ { \prime } S$ ; confidence 0.174
261. ; $S K _ { 1 } ( R ) \simeq \operatorname { SL } ( 1 , R ) / [ R ^ { * } , R ^ { * } ]$ ; confidence 0.445
262. ; $\mathfrak { b } ^ { + } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.723
263. ; $j = 1 , \ldots , n _ { \alpha } = \operatorname { dim } R ^ { \alpha }$ ; confidence 0.704
264. ; $\tilde { p } : \tilde { \kappa } \rightarrow \hat { M } _ { X _ { 0 } }$ ; confidence 0.375
265. ; $\alpha ( z ) = \sum _ { x = 0 } ^ { \infty } \frac { a _ { x } } { z ^ { x + 1 } }$ ; confidence 0.561
266. ; $B _ { \nu } = y ^ { \prime \prime } + x ^ { - 1 } + ( 1 - \nu ^ { 2 } x ^ { - 2 } ) y$ ; confidence 0.963
267. ; $z _ { i } = F _ { i } ( x _ { 1 } , \ldots , x _ { n } , y _ { 1 } , \ldots , y _ { n } )$ ; confidence 0.408
268. ; $f _ { i } ( x _ { 1 } , \ldots , x _ { n } ) = \sum _ { j = 1 } ^ { n } a _ { j } x _ { j }$ ; confidence 0.612
269. ; $: \mathfrak { h } \rightarrow \mathfrak { g } ( \mathfrak { g } )$ ; confidence 0.180
270. ; $f ^ { \prime } : X \times s S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.505
271. ; $B = B _ { 0 } \supset B _ { 1 } \supset \ldots \supset B _ { t } = \{ 1 \}$ ; confidence 0.917
272. ; $\operatorname { diag } ( \alpha , \alpha ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671
273. ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , ) : F \rightarrow X$ ; confidence 0.653
274. ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497
275. ; $G _ { \alpha } \times \ldots \times G _ { \alpha } \rightarrow U$ ; confidence 0.129
276. ; $f ( \gamma ( x ) ) = f ( x ) , \quad x \in M , \quad \gamma \in \Gamma$ ; confidence 0.691
277. ; $0 \rightarrow S \rightarrow F \rightarrow G \rightarrow 0$ ; confidence 0.972
278. ; $f = a _ { 0 } x ^ { 3 } + 3 a _ { 1 } x ^ { 2 } y + 3 a _ { 2 } x y ^ { 2 } + a _ { 3 } y ^ { 3 }$ ; confidence 0.852
279. ; $\operatorname { sup } _ { f \in B ^ { 1 } } | f ^ { \prime } ( z _ { 0 } ) |$ ; confidence 0.660
280. ; $\iota * \text { id } = \text { id } * _ { \iota } = e \circ \epsilon$ ; confidence 0.102
281. ; $X _ { \alpha _ { i } } , X _ { - \alpha _ { i } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.447
282. ; $L _ { 0 } = < e _ { 1 } , \ldots , e _ { \gamma } : e _ { z } ^ { [ p ] } = e _ { i } >$ ; confidence 0.131
283. ; $T ^ { 2 } = \{ ( z _ { 1 } , z _ { 2 } ) : z _ { i } \in C , | z _ { i } | = 1 , i = 1,2 \}$ ; confidence 0.972
284. ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977
285. ; $x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } x _ { 2 } + x _ { 2 } ^ { 3 } x _ { 0 } = 0$ ; confidence 0.999
286. ; $v = ( v _ { 1 } , \ldots , v _ { p } ) , \quad ( m , v ) = \sum m _ { i } v _ { i }$ ; confidence 0.458
287. ; $\{ \alpha : g _ { \alpha } \neq 0 \square \text { is finite } \}$ ; confidence 0.495
288. ; $H _ { r } ( R , X ) | H ^ { r } ( R , X ^ { * } ) , \quad \text { for } X | X ^ { * }$ ; confidence 0.972
289. ; $y ^ { ( n ) } + \alpha _ { 1 } y ^ { ( n - 1 ) } + \ldots + \alpha _ { n } y = 0$ ; confidence 0.817
290. ; $G _ { \alpha } ( X , Y ) = ( X _ { 1 } + Y _ { 1 } , \ldots , X _ { n } + Y _ { n } )$ ; confidence 0.419
291. ; $f ( t _ { 1 } ^ { 0 } , \ldots , t _ { x } ^ { 0 } , x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.418
292. ; $[ \mathfrak { m } , \mathfrak { m } ] \subseteq \mathfrak { f }$ ; confidence 0.914
293. ; $( \sigma ( a ) ( c ) ) _ { i j k } = \alpha _ { i } c _ { i j k } a _ { i } ^ { - 1 }$ ; confidence 0.186
294. ; $\phi ^ { \prime } ( g ) = ( \operatorname { Int } h ( g ) ) \phi ( g )$ ; confidence 0.698
295. ; $x _ { 0 } ^ { 5 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.985
296. ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.987
297. ; $F ( x , y , \lambda ) = ( x - \mu ) ( x ^ { 2 } - \lambda y ^ { 2 } ) + y ^ { 4 }$ ; confidence 1.000
298. ; $M _ { i j } ^ { \beta } \in M _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705
299. ; $X = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , } \beta \in Q _ { 1 }$ ; confidence 0.354
300. ; $\omega \leq \operatorname { dim } H ^ { 2 } ( V , E _ { \alpha } )$ ; confidence 0.999
Maximilian Janisch/latexlist/latex/Algebraic Groups/1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/Algebraic_Groups/1&oldid=44090