Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/13"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 13 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 13 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
+
1. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960205.png ; $\nu - 1 / 2 \in Z$ ; confidence 0.954
  
2. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
+
2. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g04509046.png ; $y ( \alpha ) = 0$ ; confidence 0.954
  
3. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491
+
3. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i051620138.png ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954
  
4. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
+
4. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092730/t09273032.png ; $M = M _ { 1 } \# M _ { 2 }$ ; confidence 0.954
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020026.png ; $D ( \phi ) = D ( \phi _ { 1 } ) \ldots D ( \phi _ { n } ) = D ( \psi _ { 1 } ) \ldots D ( \psi _ { m } ) = D ( \psi )$ ; confidence 0.490
+
5. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095230/u09523081.png ; $\{ d f _ { n } / d x \}$ ; confidence 0.954
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
+
6. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120183.png ; $H ^ { p + 1 } ( X , F )$ ; confidence 0.954
  
7. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050296.png ; $G _ { k , q }$ ; confidence 0.954
  
8. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040063.png ; $t \mapsto \pi T ^ { * } ( t ) x ^ { * }$ ; confidence 0.954
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489
+
9. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055020.png ; $H _ { F }$ ; confidence 0.954
  
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111008.png ; $( \alpha , b ) \in A \times A$ ; confidence 0.954
  
11. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023050.png ; $G ( u )$ ; confidence 0.489
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a01254016.png ; $D = ( e )$ ; confidence 0.954
  
12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $V \not \equiv W$ ; confidence 0.489
+
12. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372062.png ; $D \subset \overline { C }$ ; confidence 0.954
  
13. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a0110709.png ; $M _ { 0 } M _ { 1 }$ ; confidence 0.954
  
14. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121038.png ; $\sqrt { z }$ ; confidence 0.953
  
15. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092720/t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010184.png ; $| \hat { \lambda } - \lambda |$ ; confidence 0.488
+
16. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055037.png ; $( n _ { 1 } )$ ; confidence 0.953
  
17. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953
  
18. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
+
18. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593049.png ; $d \psi$ ; confidence 0.953
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040146.png ; $i$ ; confidence 0.488
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095065.png ; $\{ x ( t ) , e _ { i } ( t ) \}$ ; confidence 0.953
  
20. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240749.png ; $\prod x$ ; confidence 0.487
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380172.png ; $x \& y \& z + x \& y + 1$ ; confidence 0.953
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083380/s08338085.png ; $d \in C$ ; confidence 0.487
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120563.png ; $f _ { 0 } ( x ) \rightarrow$ ; confidence 0.953
  
22. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021098.png ; $\sum _ { k = 1 } ^ { g } ( A _ { k } B _ { k } ^ { \prime } - B _ { k } A _ { k } ^ { \prime } ) = 2 \pi i \sum _ { j = 1 } ^ { N } c _ { j } \int _ { L _ { j } } \omega _ { 1 }$ ; confidence 0.487
+
23. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128063.png ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022054.png ; $\overline { W } ^ { T }$ ; confidence 0.486
+
24. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708021.png ; $r > n$ ; confidence 0.953
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046051.png ; $h \in X$ ; confidence 0.486
+
25. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390181.png ; $V = V ^ { + } \oplus V ^ { - }$ ; confidence 0.953
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010189.png ; $i = 1 , \dots , n$ ; confidence 0.485
+
26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
+
27. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060220/l0602207.png ; $\in \Theta$ ; confidence 0.953
  
28. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
+
28. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
  
29. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485
+
29. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006049.png ; $\{ X _ { z } : z \in Z ^ { d } \}$ ; confidence 0.485
+
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028024.png ; $A \otimes B$ ; confidence 0.953
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010111.png ; $p < m$ ; confidence 0.484
+
31. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120139.png ; $H ^ { n - \gamma - 1 } ( B , X )$ ; confidence 0.953
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953
  
33. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l058720151.png ; $C _ { 2 } ( \epsilon )$ ; confidence 0.953
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092250/t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484
+
34. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763060.png ; $\chi \in X ( T ) = X ( B )$ ; confidence 0.953
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010266.png ; $2$ ; confidence 0.484
+
35. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032170/d0321705.png ; $x ( t ) , y ( t )$ ; confidence 0.953
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024035.png ; $w ^ { 2 } = a _ { 0 } z ^ { 2 } + a _ { 1 } z + \alpha _ { 2 }$ ; confidence 0.484
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033017.png ; $b \geq 2$ ; confidence 0.953
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050237.png ; $v < 1$ ; confidence 0.483
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040262.png ; $SO ( 4 )$ ; confidence 0.953
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010151.png ; $k ( A ) = \| A \| _ { 2 } \| A ^ { + } \| _ { 2 }$ ; confidence 0.953
  
39. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081110/r08111018.png ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483
+
39. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970118.png ; $\mu : A \rightarrow A \otimes A$ ; confidence 0.952
  
40. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922406.png ; $k = R / m$ ; confidence 0.483
+
40. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900114.png ; $Z ^ { 2 } ( G , A )$ ; confidence 0.952
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081052.png ; $i ^ { x }$ ; confidence 0.952
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483
+
42. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690125.png ; $n = 7,15$ ; confidence 0.952
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237023.png ; $N = L . L$ ; confidence 0.482
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104406.png ; $A \wedge B = \{ \alpha \wedge b : \alpha \in A , b \in B \}$ ; confidence 0.952
  
44. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010282.png ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200609.png ; $\Omega$ ; confidence 0.482
+
46. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a1100609.png ; $\beta ( A , B ) = \operatorname { E } \operatorname { sup } _ { B \in B } | P ( B | A ) - P ( B ) |$ ; confidence 0.481
+
47. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472103.png ; $C$ ; confidence 0.952
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
+
48. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051090/i05109035.png ; $\Theta$ ; confidence 0.952
  
49. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481
+
49. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
  
50. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481
+
50. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240501.png ; $9$ ; confidence 0.481
+
51. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064870/m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952
  
52. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012074.png ; $R > 1$ ; confidence 0.952
  
53. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110130/k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640133.png ; $T _ { V }$ ; confidence 0.952
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016092.png ; $A \rightarrow A - \lambda I$ ; confidence 0.952
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480
+
55. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952
  
56. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
+
56. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590373.png ; $x _ { 0 } ^ { \mu + 1 } + x _ { 1 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.952
  
57. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p110230174.png ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a0107604.png ; $I = \omega x ^ { 2 } + \frac { v ^ { 2 } } { \omega }$ ; confidence 0.951
  
58. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533026.png ; $18$ ; confidence 0.479
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010015.png ; $x _ { 0 } \in L$ ; confidence 0.951
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010236.png ; $\hat { \lambda }$ ; confidence 0.479
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021066.png ; $\omega 1,2$ ; confidence 0.479
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040010.png ; $T ( 0 ) = I$ ; confidence 0.951
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004074.png ; $5$ ; confidence 0.478
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021054.png ; $a - x \neq 0$ ; confidence 0.478
+
62. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700227.png ; $A ( V ) / GL ( V )$ ; confidence 0.951
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024019.png ; $y$ ; confidence 0.478
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a0116208.png ; $p = \infty$ ; confidence 0.951
  
64. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478
+
64. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951
  
65. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478
+
65. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022038.png ; $A l ( z )$ ; confidence 0.477
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015870/b01587024.png ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033021.png ; $\beta \frac { 1 } { r } / r$ ; confidence 0.477
+
68. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022700/c02270026.png ; $g : Y \rightarrow Z$ ; confidence 0.951
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a11064014.png ; $\Omega$ ; confidence 0.477
+
69. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png ; $\phi$ ; confidence 0.476
+
70. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074010/p07401072.png ; $F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$ ; confidence 0.951
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
+
71. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120288.png ; $\{ G _ { n } \}$ ; confidence 0.951
  
72. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020155.png ; $V \oplus \mathfrak { g }$ ; confidence 0.476
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951
  
73. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476
+
73. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j05434026.png ; $C _ { m } ( \lambda )$ ; confidence 0.951
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040518.png ; $\Omega$ ; confidence 0.476
+
74. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030106.png ; $\Delta _ { 0 } \cup O _ { \gamma }$ ; confidence 0.951
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040144.png ; $R \subset P ^ { 2 }$ ; confidence 0.476
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417023.png ; $\{ z \in C : \operatorname { Im } z > 0 \}$ ; confidence 0.951
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240305.png ; $4$ ; confidence 0.475
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a0109305.png ; $\rho \frac { d } { d t } ( \frac { V ^ { 2 } } { 2 } + U ) = \rho ( g , V ) - \operatorname { div } ( p V )$ ; confidence 0.950
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $x$ ; confidence 0.475
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070030.png ; $r \rightarrow r ^ { - 1 }$ ; confidence 0.950
  
78. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040014.png ; $t \mapsto T ( t ) x$ ; confidence 0.950
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040503.png ; $F \in C$ ; confidence 0.475
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121080.png ; $x _ { 0 } \leq x \leq b$ ; confidence 0.950
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861049.png ; $SO ( 2 n + 1 )$ ; confidence 0.950
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240470.png ; $n$ ; confidence 0.474
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950135.png ; $T _ { X } ( M ) \rightarrow T _ { X } ( M )$ ; confidence 0.950
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080027.png ; $B ( Z , \Delta T ( X , Y ) ) - B ( \Delta T ( Z , Y ) X ) =$ ; confidence 0.950
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006083.png ; $\overline { H }$ ; confidence 0.950
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950
  
85. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474
+
85. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240499.png ; $X _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474
+
86. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473
+
87. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055820/k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
  
88. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
+
88. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708018.png ; $y ^ { * } = \alpha ( g ^ { * } )$ ; confidence 0.950
  
89. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
+
89. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s0919603.png ; $R = \{ \pi ( i ) : \square i \in I \}$ ; confidence 0.950
  
90. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
+
90. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018026.png ; $\lambda _ { x } = n$ ; confidence 0.473
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.950
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
+
92. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427088.png ; $Kan ^ { - 1 }$ ; confidence 0.950
  
93. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105027.png ; $( S _ { \alpha } )$ ; confidence 0.950
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021032.png ; $A _ { 1 } ^ { \prime } , B _ { 1 } ^ { \prime } , \dots , A ^ { \prime } , B _ { g } ^ { \prime }$ ; confidence 0.471
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018023.png ; $\Gamma , \Delta \subseteq Fm _ { L }$ ; confidence 0.950
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091010/s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145030.png ; $D > 0$ ; confidence 0.949
  
96. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040800.png ; $g : B \mapsto D$ ; confidence 0.949
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079027.png ; $M \subset G$ ; confidence 0.949
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040263.png ; $- 1 A$ ; confidence 0.469
+
98. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949
  
99. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110250/h11025012.png ; $T ^ { \aleph } x \in A$ ; confidence 0.469
+
99. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021040.png ; $i \neq i$ ; confidence 0.468
+
100. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c1101705.png ; $D _ { p }$ ; confidence 0.949
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010249.png ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550128.png ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467
+
102. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094540/t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $9 -$ ; confidence 0.467
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149059.png ; $P _ { k } ( x _ { 0 } ) \neq 0$ ; confidence 0.949
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467
+
104. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333012.png ; $\{ X _ { i } : i \in I \}$ ; confidence 0.949
  
105. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121099.png ; $13$ ; confidence 0.949
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010109.png ; $B N = \operatorname { max } _ { 1 \leq i \leq x } | b _ { i } |$ ; confidence 0.467
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.948
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164096.png ; $2 p _ { g } ( V ) + 1$ ; confidence 0.948
  
108. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018056.png ; $A _ { n } = \sum _ { j = 1 } ^ { k } B _ { j } n ^ { s _ { j } } ( \operatorname { ln } n ) ^ { \alpha _ { j } } + O ( n ^ { \beta } )$ ; confidence 0.948
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050262.png ; $N _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { C } ^ { \# } ( n )$ ; confidence 0.466
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139029.png ; $\mu ^ { * } \mu = \mu$ ; confidence 0.948
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z }$ ; confidence 0.465
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0$ ; confidence 0.948
  
111. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104401.png ; $( \Gamma , \prec )$ ; confidence 0.948
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463
+
112. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
  
113. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463
+
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463
+
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462
+
116. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130311.png ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948
  
117. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
+
117. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230228.png ; $D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$ ; confidence 0.948
  
118. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
+
118. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064420/m06442050.png ; $k = m / 2$ ; confidence 0.948
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040249.png ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174011.png ; $P ^ { x }$ ; confidence 0.948
  
120. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417028.png ; $\{ z \rightarrow z + n : n \in Z \}$ ; confidence 0.948
  
121. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
+
121. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235023.png ; $n = r = 2$ ; confidence 0.948
  
122. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a0109909.png ; $n = d ^ { 2 } r / d s ^ { 2 }$ ; confidence 0.948
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040285.png ; $\$ 4$ ; confidence 0.460
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081063.png ; $U _ { k } ( y ) = 0$ ; confidence 0.948
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050170.png ; $K ( n )$ ; confidence 0.460
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a0102008.png ; $\square _ { R } \Omega$ ; confidence 0.460
+
125. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820128.png ; $\gamma ( T ) + F \delta ( T ) = F ( \gamma ( T ) , \delta ( T ) )$ ; confidence 0.948
  
126. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $p _ { i }$ ; confidence 0.459
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948
  
127. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012049.png ; $d = 2$ ; confidence 0.948
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040346.png ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300101.png ; $\overline { \Delta }$ ; confidence 0.947
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021081.png ; $\omega ; 0$ ; confidence 0.458
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
+
130. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120508.png ; $( f , g ) = \sum _ { \alpha } ( f _ { \alpha } , g _ { \alpha } ) _ { \alpha }$ ; confidence 0.947
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024029.png ; $g = 0$ ; confidence 0.947
  
132. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137019.png ; $A = L _ { 1 } ( Z )$ ; confidence 0.947
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
  
134. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024034.png ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a0120907.png ; $\alpha \neq 0$ ; confidence 0.947
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455
+
136. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947
  
138. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
  
139. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { F }$ ; confidence 0.455
+
139. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002060.png ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455
+
140. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041160/f04116031.png ; $\alpha = - b$ ; confidence 0.947
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012047.png ; $W _ { 1 }$ ; confidence 0.455
+
141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004025.png ; $L$ ; confidence 0.453
+
142. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068500/o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021026.png ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453
+
143. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080180/r0801808.png ; $t _ { k } \in R$ ; confidence 0.947
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040553.png ; $G$ ; confidence 0.453
+
144. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010204.png ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452
+
145. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590534.png ; $X \in C ( G )$ ; confidence 0.947
  
146. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
+
146. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120161.png ; $H _ { \Phi } ^ { p } ( X , F )$ ; confidence 0.947
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452
+
147. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540041.png ; $\sum _ { i = 1 } ^ { j } m _ { i } \geq \sum _ { i = 1 } ^ { j } l _ { i }$ ; confidence 0.947
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010197.png ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650293.png ; $\neg \mathfrak { F }$ ; confidence 0.947
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012021.png ; $l ( n )$ ; confidence 0.947
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012064.png ; $n = 0,1 , \dots$ ; confidence 0.450
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040052.png ; $\lambda \in \varrho ( A )$ ; confidence 0.947
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946
  
153. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106703.png ; $y \in Y$ ; confidence 0.946
  
154. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
+
154. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868027.png ; $\Gamma _ { 0 } = \Gamma _ { 0 } ( \mathfrak { g } )$ ; confidence 0.946
  
155. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
+
155. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012054.png ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447
+
156. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333013.png ; $\prod _ { i \in I } X _ { i } \rightarrow Y$ ; confidence 0.946
  
157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
+
157. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
  
158. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047540/h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447
+
158. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471027.png ; $C ^ { G }$ ; confidence 0.946
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090820/s0908209.png ; $X ^ { * }$ ; confidence 0.447
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146097.png ; $( X ) \cap C ^ { 1 } ( X )$ ; confidence 0.946
  
160. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014020.png ; $R ^ { 3 }$ ; confidence 0.946
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004017.png ; $\phi _ { L }$ ; confidence 0.446
+
161. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040246.png ; $C ^ { M }$ ; confidence 0.446
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240218.png ; $z = \Gamma y$ ; confidence 0.946
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015380/b0153803.png ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001062.png ; $i$ ; confidence 0.446
+
164. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i050030120.png ; $A \backslash I$ ; confidence 0.946
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
+
165. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
  
166. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946
  
167. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
+
167. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963509.png ; $( a + b ) + c = a + ( b + c )$ ; confidence 0.946
  
168. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086490/s086490118.png ; $d ^ { \prime }$ ; confidence 0.445
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037026.png ; $\{ X _ { k } ^ { - } : k \geq 1 \}$ ; confidence 0.946
  
169. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025024.png ; $i = 1,2$ ; confidence 0.946
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040214.png ; $K _ { A }$ ; confidence 0.444
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110340/a1103402.png ; $y ( . )$ ; confidence 0.946
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680253.png ; $R = Z$ ; confidence 0.945
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443
+
173. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137020.png ; $\{ \rho ^ { \alpha } \}$ ; confidence 0.945
  
174. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068036.png ; $A _ { 1 } = \ldots = A _ { k } = A$ ; confidence 0.945
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
+
175. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240417.png ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945
  
177. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240213.png ; $7$ ; confidence 0.945
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y$ ; confidence 0.441
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300112.png ; $F _ { m }$ ; confidence 0.945
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040746.png ; $P \cup R$ ; confidence 0.441
+
180. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110500/c11050032.png ; $H C ^ { 0 } ( A )$ ; confidence 0.945
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d > 1$ ; confidence 0.441
+
181. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440
+
182. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430225.png ; $\operatorname { lm } A ( \tau )$ ; confidence 0.945
  
183. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256041.png ; $300$ ; confidence 0.440
+
183. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066480/n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945
  
184. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309060.png ; $R \times D$ ; confidence 0.945
  
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012063.png ; $f ^ { ( n ) } ( \lambda _ { n } ) = 0$ ; confidence 0.945
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\{ X , v \}$ ; confidence 0.439
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439
+
188. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851037.png ; $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ ; confidence 0.945
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021057.png ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022051.png ; $U W ^ { T } = 0$ ; confidence 0.439
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210107.png ; $k , b + k$ ; confidence 0.439
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010163.png ; $( A ) = n < m$ ; confidence 0.944
  
194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082030.png ; $F - G$ ; confidence 0.944
  
195. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010167.png ; $\operatorname { rank } ( A ) = m = n$ ; confidence 0.944
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007045.png ; $d < n$ ; confidence 0.944
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
+
197. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541037.png ; $U _ { 2 } ( K )$ ; confidence 0.944
  
198. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042030/f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950130.png ; $\frac { d ^ { 2 } x ^ { i } } { d t ^ { 2 } } + \Gamma _ { j k } ^ { i } \frac { d x ^ { j } } { d t } \frac { d x ^ { k } } { d t } = 0$ ; confidence 0.944
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001094.png ; $\overline { X } \rightarrow X$ ; confidence 0.437
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010248.png ; $x ^ { ( i ) } \rightarrow x$ ; confidence 0.944
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024030.png ; $n \times p$ ; confidence 0.435
+
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002073.png ; $R ^ { k }$ ; confidence 0.944
  
201. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
  
202. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485065.png ; $A . B$ ; confidence 0.944
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102208.png ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435
+
203. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h048420118.png ; $F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$ ; confidence 0.944
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
+
204. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007019.png ; $- w _ { 0 } ( \chi )$ ; confidence 0.944
  
205. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715026.png ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018040.png ; $s = s 1$ ; confidence 0.434
+
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101204.png ; $\{ A _ { N } \}$ ; confidence 0.433
+
207. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566013.png ; $X$ ; confidence 0.944
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029080.png ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b11004012.png ; $\theta _ { 0 }$ ; confidence 0.944
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695036.png ; $q - 1$ ; confidence 0.944
  
210. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010062.png ; $W = \{ 1 \}$ ; confidence 0.944
  
211. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432
+
211. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096050.png ; $G ( K )$ ; confidence 0.944
  
212. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073840/p0738407.png ; $A \supset B$ ; confidence 0.432
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068034.png ; $d ( A _ { i } ) = \operatorname { inf } _ { n } A _ { i } ( n ) / n$ ; confidence 0.944
  
213. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077370/r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432
+
213. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700190.png ; $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ ; confidence 0.944
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431
+
214. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631093.png ; $( A _ { j } )$ ; confidence 0.944
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160129.png ; $W E$ ; confidence 0.943
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164076.png ; $H ^ { p } ( V , \Omega ^ { q } ) = \operatorname { dim } H ^ { q } ( V , \Omega ^ { p } )$ ; confidence 0.943
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a1100707.png ; $c > 0$ ; confidence 0.943
  
218. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943
  
219. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256016.png ; $1$ ; confidence 0.430
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a0107006.png ; $r : A \rightarrow B$ ; confidence 0.943
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
+
221. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png ; $\Phi \Psi$ ; confidence 0.943
  
222. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
+
222. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061036.png ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
+
223. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076430/q07643044.png ; $f \in W _ { 2 } ^ { 1 }$ ; confidence 0.943
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d > 5$ ; confidence 0.427
+
224. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005045.png ; $( G )$ ; confidence 0.943
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102405.png ; $\alpha ; ( z )$ ; confidence 0.427
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a0125405.png ; $S \subset G$ ; confidence 0.943
  
227. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
+
227. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033280/d0332802.png ; $y \in X$ ; confidence 0.943
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426
+
228. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120178.png ; $H _ { c } ^ { n } ( X , \Omega )$ ; confidence 0.942
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425
+
229. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073040/p07304033.png ; $X$ ; confidence 0.942
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $c _ { q }$ ; confidence 0.425
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425
+
231. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696090.png ; $c \in F \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.942
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $x <$ ; confidence 0.424
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010072.png ; $\partial \phi$ ; confidence 0.942
  
233. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
+
234. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024077.png ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423
+
235. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942
  
236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
+
236. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942
  
237. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422
+
237. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040240.png ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
+
239. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830297.png ; $= \partial A / \partial u _ { A }$ ; confidence 0.942
  
240. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
+
240. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010267.png ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020064.png ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420
+
243. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l058720119.png ; $S _ { n } = n ( p ^ { n + 1 } - 1 )$ ; confidence 0.942
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018018.png ; $Z 1,22$ ; confidence 0.419
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010034.png ; $T _ { n } ( f )$ ; confidence 0.942
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
+
245. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590410.png ; $\pi : X \rightarrow X$ ; confidence 0.941
  
246. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700100.png ; $q ^ { 1 }$ ; confidence 0.419
+
246. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081230/r08123020.png ; $f ( z ) =$ ; confidence 0.941
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018063.png ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033037.png ; $\frac { 1.20 } { \sqrt { b } }$ ; confidence 0.941
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010224.png ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121011.png ; $w _ { 1 } ( z ) = 2 e ^ { i \pi / 6 } v ( \omega z )$ ; confidence 0.941
  
249. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
+
249. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590362.png ; $H _ { n } ( X _ { \epsilon } , Z )$ ; confidence 0.941
  
250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
+
250. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417
+
251. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110220/h1102204.png ; $h : E ^ { m } \rightarrow R$ ; confidence 0.941
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040434.png ; $F _ { 0 }$ ; confidence 0.417
+
252. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120128.png ; $C = Z ( Q )$ ; confidence 0.941
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
+
253. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250029.png ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941
  
254. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416
+
254. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s11004082.png ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941
  
255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007099.png ; $n ^ { 10 }$ ; confidence 0.941
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004054.png ; $F \subset A$ ; confidence 0.416
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695087.png ; $R ( G )$ ; confidence 0.941
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040242.png ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018048.png ; $A _ { x } = n$ ; confidence 0.941
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415
+
258. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559089.png ; $\{ M \}$ ; confidence 0.941
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007082.png ; $H ( x )$ ; confidence 0.941
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022096.png ; $\{ R ( f \circ \pi _ { n } ) \}$ ; confidence 0.941
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
+
261. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820159.png ; $\mathfrak { m } = ( \pi )$ ; confidence 0.941
  
262. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417066.png ; $x _ { 0 } \in \partial X$ ; confidence 0.941
  
263. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
+
263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004090.png ; $f ^ { * }$ ; confidence 0.941
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040527.png ; $\{ A , C \}$ ; confidence 0.413
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240546.png ; $7$ ; confidence 0.941
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941
  
266. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041047.png ; $L ^ { \prime } = ( \pi * L ) ^ { * * }$ ; confidence 0.941
  
267. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $v \in G$ ; confidence 0.413
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130049.png ; $\gamma _ { \nu } ( x _ { i } ) = 1$ ; confidence 0.940
  
268. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081046.png ; $C ( I )$ ; confidence 0.940
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006040.png ; $40$ ; confidence 0.413
+
270. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559054.png ; $\tau _ { 2 } - \epsilon < \tau ^ { \prime \prime } < \tau _ { 2 }$ ; confidence 0.940
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a1100708.png ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412
+
271. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029078.png ; $( X _ { \delta } , \pi X )$ ; confidence 0.412
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076032.png ; $v _ { \perp } ^ { 2 } / H$ ; confidence 0.940
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043024.png ; $q i$ ; confidence 0.412
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040802.png ; $g \circ h = f$ ; confidence 0.940
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412
+
274. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590407.png ; $1 / n 1$ ; confidence 0.940
  
275. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008047.png ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }$ ; confidence 0.940
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021030.png ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412
+
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png ; $SO ( 3 )$ ; confidence 0.940
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040218.png ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411
+
277. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008010.png ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940
  
278. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411
+
278. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067860/n067860258.png ; $V \subset \rho U$ ; confidence 0.940
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410
+
279. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165068.png ; $B = \langle B , O ^ { \prime } , R ^ { \prime } \rangle$ ; confidence 0.940
  
281. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png ; $C _ { \psi }$ ; confidence 0.409
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006032.png ; $u \in C ( [ 0 , T ] ; D ( A ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040120.png ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130040.png ; $A _ { \mu }$ ; confidence 0.940
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150040.png ; $F ( m ) = \sum \alpha _ { j k } m _ { j } m _ { k } , \quad \alpha _ { j k } = \alpha _ { k j }$ ; confidence 0.940
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040225.png ; $\hat { K } _ { A }$ ; confidence 0.407
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380184.png ; $f _ { 5 }$ ; confidence 0.940
  
287. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053030.png ; $f _ { n } \rightarrow f$ ; confidence 0.940
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010213.png ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940
  
289. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939
  
290. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138051.png ; $x \sim y = ( x \& y ) \vee ( x \& \overline { y } )$ ; confidence 0.939
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040649.png ; $57$ ; confidence 0.404
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165046.png ; $A ^ { \prime }$ ; confidence 0.939
  
292. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
+
292. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590350.png ; $X _ { S } \rightarrow X _ { S }$ ; confidence 0.939
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005069.png ; $0 , T$ ; confidence 0.403
+
293. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590510.png ; $x _ { 0 } \in G \backslash H$ ; confidence 0.939
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403
+
294. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310148.png ; $z _ { \gamma } \in A$ ; confidence 0.939
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
+
295. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024110/c02411026.png ; $d = ( d _ { n } )$ ; confidence 0.939
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
+
296. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050770/i05077064.png ; $A = \operatorname { lim } _ { \rightarrow } F ( D )$ ; confidence 0.939
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png ; $21$ ; confidence 0.401
+
297. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026061.png ; $\partial _ { s }$ ; confidence 0.939
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
+
298. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023470/c02347035.png ; $\mu ( g )$ ; confidence 0.939
  
299. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480100.png ; $d ( x )$ ; confidence 0.939
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040116.png ; $2$ ; confidence 0.401
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052053.png ; $1$ ; confidence 0.939

Latest revision as of 09:58, 17 October 2019

List

1. e036960205.png ; $\nu - 1 / 2 \in Z$ ; confidence 0.954

2. g04509046.png ; $y ( \alpha ) = 0$ ; confidence 0.954

3. i051620138.png ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954

4. t09273032.png ; $M = M _ { 1 } \# M _ { 2 }$ ; confidence 0.954

5. u09523081.png ; $\{ d f _ { n } / d x \}$ ; confidence 0.954

6. d034120183.png ; $H ^ { p + 1 } ( X , F )$ ; confidence 0.954

7. a130050296.png ; $G _ { k , q }$ ; confidence 0.954

8. a11040063.png ; $t \mapsto \pi T ^ { * } ( t ) x ^ { * }$ ; confidence 0.954

9. f04055020.png ; $H _ { F }$ ; confidence 0.954

10. a0111008.png ; $( \alpha , b ) \in A \times A$ ; confidence 0.954

11. a01254016.png ; $D = ( e )$ ; confidence 0.954

12. c02372062.png ; $D \subset \overline { C }$ ; confidence 0.954

13. a0110709.png ; $M _ { 0 } M _ { 1 }$ ; confidence 0.954

14. a01121038.png ; $\sqrt { z }$ ; confidence 0.953

15. a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953

16. f04055037.png ; $( n _ { 1 } )$ ; confidence 0.953

17. a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953

18. c02593049.png ; $d \psi$ ; confidence 0.953

19. a01095065.png ; $\{ x ( t ) , e _ { i } ( t ) \}$ ; confidence 0.953

20. a011380172.png ; $x \& y \& z + x \& y + 1$ ; confidence 0.953

21. d034120563.png ; $f _ { 0 } ( x ) \rightarrow$ ; confidence 0.953

22. b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953

23. d03128063.png ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953

24. e03708021.png ; $r > n$ ; confidence 0.953

25. h047390181.png ; $V = V ^ { + } \oplus V ^ { - }$ ; confidence 0.953

26. i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953

27. l0602207.png ; $\in \Theta$ ; confidence 0.953

28. l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953

29. t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953

30. c12028024.png ; $A \otimes B$ ; confidence 0.953

31. d034120139.png ; $H ^ { n - \gamma - 1 } ( B , X )$ ; confidence 0.953

32. a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953

33. l058720151.png ; $C _ { 2 } ( \epsilon )$ ; confidence 0.953

34. r07763060.png ; $\chi \in X ( T ) = X ( B )$ ; confidence 0.953

35. d0321705.png ; $x ( t ) , y ( t )$ ; confidence 0.953

36. a11033017.png ; $b \geq 2$ ; confidence 0.953

37. a110040262.png ; $SO ( 4 )$ ; confidence 0.953

38. a110010151.png ; $k ( A ) = \| A \| _ { 2 } \| A ^ { + } \| _ { 2 }$ ; confidence 0.953

39. h047970118.png ; $\mu : A \rightarrow A \otimes A$ ; confidence 0.952

40. n066900114.png ; $Z ^ { 2 } ( G , A )$ ; confidence 0.952

41. a01081052.png ; $i ^ { x }$ ; confidence 0.952

42. h047690125.png ; $n = 7,15$ ; confidence 0.952

43. a1104406.png ; $A \wedge B = \{ \alpha \wedge b : \alpha \in A , b \in B \}$ ; confidence 0.952

44. a130240135.png ; $A$ ; confidence 0.952

45. a110010282.png ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952

46. d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952

47. h0472103.png ; $C$ ; confidence 0.952

48. i05109035.png ; $\Theta$ ; confidence 0.952

49. i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952

50. j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952

51. m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952

52. a01012074.png ; $R > 1$ ; confidence 0.952

53. a011640133.png ; $T _ { V }$ ; confidence 0.952

54. a11016092.png ; $A \rightarrow A - \lambda I$ ; confidence 0.952

55. h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952

56. s085590373.png ; $x _ { 0 } ^ { \mu + 1 } + x _ { 1 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.952

57. a0107604.png ; $I = \omega x ^ { 2 } + \frac { v ^ { 2 } } { \omega }$ ; confidence 0.951

58. a11010015.png ; $x _ { 0 } \in L$ ; confidence 0.951

59. a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951

60. a11040010.png ; $T ( 0 ) = I$ ; confidence 0.951

61. a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951

62. d030700227.png ; $A ( V ) / GL ( V )$ ; confidence 0.951

63. a0116208.png ; $p = \infty$ ; confidence 0.951

64. s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951

65. t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951

66. b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951

67. b01587024.png ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951

68. c02270026.png ; $g : Y \rightarrow Z$ ; confidence 0.951

69. m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951

70. p07401072.png ; $F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$ ; confidence 0.951

71. d034120288.png ; $\{ G _ { n } \}$ ; confidence 0.951

72. a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951

73. j05434026.png ; $C _ { m } ( \lambda )$ ; confidence 0.951

74. r081030106.png ; $\Delta _ { 0 } \cup O _ { \gamma }$ ; confidence 0.951

75. a01417023.png ; $\{ z \in C : \operatorname { Im } z > 0 \}$ ; confidence 0.951

76. a0109305.png ; $\rho \frac { d } { d t } ( \frac { V ^ { 2 } } { 2 } + U ) = \rho ( g , V ) - \operatorname { div } ( p V )$ ; confidence 0.950

77. a01070030.png ; $r \rightarrow r ^ { - 1 }$ ; confidence 0.950

78. a11040014.png ; $t \mapsto T ( t ) x$ ; confidence 0.950

79. a01121080.png ; $x _ { 0 } \leq x \leq b$ ; confidence 0.950

80. l05861049.png ; $SO ( 2 n + 1 )$ ; confidence 0.950

81. a010950135.png ; $T _ { X } ( M ) \rightarrow T _ { X } ( M )$ ; confidence 0.950

82. a01080027.png ; $B ( Z , \Delta T ( X , Y ) ) - B ( \Delta T ( Z , Y ) X ) =$ ; confidence 0.950

83. a13006083.png ; $\overline { H }$ ; confidence 0.950

84. b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950

85. d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950

86. h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950

87. k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950

88. n06708018.png ; $y ^ { * } = \alpha ( g ^ { * } )$ ; confidence 0.950

89. s0919603.png ; $R = \{ \pi ( i ) : \square i \in I \}$ ; confidence 0.950

90. v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950

91. a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.950

92. j05427088.png ; $Kan ^ { - 1 }$ ; confidence 0.950

93. a01105027.png ; $( S _ { \alpha } )$ ; confidence 0.950

94. a13018023.png ; $\Gamma , \Delta \subseteq Fm _ { L }$ ; confidence 0.950

95. a01145030.png ; $D > 0$ ; confidence 0.949

96. a130040800.png ; $g : B \mapsto D$ ; confidence 0.949

97. a11079027.png ; $M \subset G$ ; confidence 0.949

98. b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949

99. c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949

100. c1101705.png ; $D _ { p }$ ; confidence 0.949

101. e035550128.png ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949

102. t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949

103. a01149059.png ; $P _ { k } ( x _ { 0 } ) \neq 0$ ; confidence 0.949

104. c02333012.png ; $\{ X _ { i } : i \in I \}$ ; confidence 0.949

105. a01121099.png ; $13$ ; confidence 0.949

106. a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.948

107. a01164096.png ; $2 p _ { g } ( V ) + 1$ ; confidence 0.948

108. a01018056.png ; $A _ { n } = \sum _ { j = 1 } ^ { k } B _ { j } n ^ { s _ { j } } ( \operatorname { ln } n ) ^ { \alpha _ { j } } + O ( n ^ { \beta } )$ ; confidence 0.948

109. a01139029.png ; $\mu ^ { * } \mu = \mu$ ; confidence 0.948

110. a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0$ ; confidence 0.948

111. a1104401.png ; $( \Gamma , \prec )$ ; confidence 0.948

112. t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948

113. t12001064.png ; $s ^ { 3 }$ ; confidence 0.948

114. b12014039.png ; $a ( z )$ ; confidence 0.948

115. b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948

116. d032130311.png ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948

117. i050230228.png ; $D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$ ; confidence 0.948

118. m06442050.png ; $k = m / 2$ ; confidence 0.948

119. a01174011.png ; $P ^ { x }$ ; confidence 0.948

120. a01417028.png ; $\{ z \rightarrow z + n : n \in Z \}$ ; confidence 0.948

121. i05235023.png ; $n = r = 2$ ; confidence 0.948

122. a0109909.png ; $n = d ^ { 2 } r / d s ^ { 2 }$ ; confidence 0.948

123. a01081063.png ; $U _ { k } ( y ) = 0$ ; confidence 0.948

124. a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948

125. f040820128.png ; $\gamma ( T ) + F \delta ( T ) = F ( \gamma ( T ) , \delta ( T ) )$ ; confidence 0.948

126. a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948

127. a13012049.png ; $d = 2$ ; confidence 0.948

128. a011300101.png ; $\overline { \Delta }$ ; confidence 0.947

129. a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947

130. d034120508.png ; $( f , g ) = \sum _ { \alpha } ( f _ { \alpha } , g _ { \alpha } ) _ { \alpha }$ ; confidence 0.947

131. a01024029.png ; $g = 0$ ; confidence 0.947

132. a01137019.png ; $A = L _ { 1 } ( Z )$ ; confidence 0.947

133. a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947

134. a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947

135. a0120907.png ; $\alpha \neq 0$ ; confidence 0.947

136. c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947

137. c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947

138. c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947

139. f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947

140. f04116031.png ; $\alpha = - b$ ; confidence 0.947

141. k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947

142. o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947

143. r0801808.png ; $t _ { k } \in R$ ; confidence 0.947

144. s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947

145. s085590534.png ; $X \in C ( G )$ ; confidence 0.947

146. d034120161.png ; $H _ { \Phi } ^ { p } ( X , F )$ ; confidence 0.947

147. u09540041.png ; $\sum _ { i = 1 } ^ { j } m _ { i } \geq \sum _ { i = 1 } ^ { j } l _ { i }$ ; confidence 0.947

148. a011650293.png ; $\neg \mathfrak { F }$ ; confidence 0.947

149. a01012021.png ; $l ( n )$ ; confidence 0.947

150. a11040052.png ; $\lambda \in \varrho ( A )$ ; confidence 0.947

151. a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946

152. a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946

153. a0106703.png ; $y \in Y$ ; confidence 0.946

154. l05868027.png ; $\Gamma _ { 0 } = \Gamma _ { 0 } ( \mathfrak { g } )$ ; confidence 0.946

155. w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946

156. c02333013.png ; $\prod _ { i \in I } X _ { i } \rightarrow Y$ ; confidence 0.946

157. t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946

158. p07471027.png ; $C ^ { G }$ ; confidence 0.946

159. a01146097.png ; $( X ) \cap C ^ { 1 } ( X )$ ; confidence 0.946

160. a13014020.png ; $R ^ { 3 }$ ; confidence 0.946

161. t12001029.png ; $C ( S )$ ; confidence 0.946

162. a130240218.png ; $z = \Gamma y$ ; confidence 0.946

163. b0153803.png ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946

164. i050030120.png ; $A \backslash I$ ; confidence 0.946

165. i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946

166. t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946

167. v0963509.png ; $( a + b ) + c = a + ( b + c )$ ; confidence 0.946

168. a11037026.png ; $\{ X _ { k } ^ { - } : k \geq 1 \}$ ; confidence 0.946

169. a13025024.png ; $i = 1,2$ ; confidence 0.946

170. a1103402.png ; $y ( . )$ ; confidence 0.946

171. a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946

172. a110680253.png ; $R = Z$ ; confidence 0.945

173. r08137020.png ; $\{ \rho ^ { \alpha } \}$ ; confidence 0.945

174. a01068036.png ; $A _ { 1 } = \ldots = A _ { k } = A$ ; confidence 0.945

175. c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945

176. a130240417.png ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945

177. a130240213.png ; $7$ ; confidence 0.945

178. b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945

179. b130300112.png ; $F _ { m }$ ; confidence 0.945

180. c11050032.png ; $H C ^ { 0 } ( A )$ ; confidence 0.945

181. d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945

182. m064430225.png ; $\operatorname { lm } A ( \tau )$ ; confidence 0.945

183. n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945

184. p07309060.png ; $R \times D$ ; confidence 0.945

185. a01012063.png ; $f ^ { ( n ) } ( \lambda _ { n } ) = 0$ ; confidence 0.945

186. a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945

187. a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945

188. l05851037.png ; $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ ; confidence 0.945

189. a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945

190. a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945

191. a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945

192. a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945

193. a110010163.png ; $( A ) = n < m$ ; confidence 0.944

194. a01082030.png ; $F - G$ ; confidence 0.944

195. a110010167.png ; $\operatorname { rank } ( A ) = m = n$ ; confidence 0.944

196. a13007045.png ; $d < n$ ; confidence 0.944

197. u09541037.png ; $U _ { 2 } ( K )$ ; confidence 0.944

198. a010950130.png ; $\frac { d ^ { 2 } x ^ { i } } { d t ^ { 2 } } + \Gamma _ { j k } ^ { i } \frac { d x ^ { j } } { d t } \frac { d x ^ { k } } { d t } = 0$ ; confidence 0.944

199. a110010248.png ; $x ^ { ( i ) } \rightarrow x$ ; confidence 0.944

200. c12002073.png ; $R ^ { k }$ ; confidence 0.944

201. b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944

202. c02485065.png ; $A . B$ ; confidence 0.944

203. h048420118.png ; $F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$ ; confidence 0.944

204. k11007019.png ; $- w _ { 0 } ( \chi )$ ; confidence 0.944

205. l05715026.png ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944

206. w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944

207. b01566013.png ; $X$ ; confidence 0.944

208. b11004012.png ; $\theta _ { 0 }$ ; confidence 0.944

209. b01695036.png ; $q - 1$ ; confidence 0.944

210. a11010062.png ; $W = \{ 1 \}$ ; confidence 0.944

211. b11096050.png ; $G ( K )$ ; confidence 0.944

212. a01068034.png ; $d ( A _ { i } ) = \operatorname { inf } _ { n } A _ { i } ( n ) / n$ ; confidence 0.944

213. d030700190.png ; $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ ; confidence 0.944

214. q07631093.png ; $( A _ { j } )$ ; confidence 0.944

215. a120160129.png ; $W E$ ; confidence 0.943

216. a01164076.png ; $H ^ { p } ( V , \Omega ^ { q } ) = \operatorname { dim } H ^ { q } ( V , \Omega ^ { p } )$ ; confidence 0.943

217. a1100707.png ; $c > 0$ ; confidence 0.943

218. a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943

219. a0107006.png ; $r : A \rightarrow B$ ; confidence 0.943

220. a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943

221. e03581038.png ; $\Phi \Psi$ ; confidence 0.943

222. f04061036.png ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943

223. q07643044.png ; $f \in W _ { 2 } ^ { 1 }$ ; confidence 0.943

224. c13005045.png ; $( G )$ ; confidence 0.943

225. a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943

226. a0125405.png ; $S \subset G$ ; confidence 0.943

227. d0332802.png ; $y \in X$ ; confidence 0.943

228. d034120178.png ; $H _ { c } ^ { n } ( X , \Omega )$ ; confidence 0.942

229. p07304033.png ; $X$ ; confidence 0.942

230. a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942

231. e03696090.png ; $c \in F \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.942

232. a12010072.png ; $\partial \phi$ ; confidence 0.942

233. a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942

234. t12001075.png ; $s ^ { 2 }$ ; confidence 0.942

235. f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942

236. s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942

237. w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942

238. a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942

239. d031830297.png ; $= \partial A / \partial u _ { A }$ ; confidence 0.942

240. t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942

241. a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942

242. a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942

243. l058720119.png ; $S _ { n } = n ( p ^ { n + 1 } - 1 )$ ; confidence 0.942

244. a11010034.png ; $T _ { n } ( f )$ ; confidence 0.942

245. s085590410.png ; $\pi : X \rightarrow X$ ; confidence 0.941

246. r08123020.png ; $f ( z ) =$ ; confidence 0.941

247. a11033037.png ; $\frac { 1.20 } { \sqrt { b } }$ ; confidence 0.941

248. a01121011.png ; $w _ { 1 } ( z ) = 2 e ^ { i \pi / 6 } v ( \omega z )$ ; confidence 0.941

249. s085590362.png ; $H _ { n } ( X _ { \epsilon } , Z )$ ; confidence 0.941

250. d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941

251. h1102204.png ; $h : E ^ { m } \rightarrow R$ ; confidence 0.941

252. m120120128.png ; $C = Z ( Q )$ ; confidence 0.941

253. r08250029.png ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941

254. s11004082.png ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941

255. a13007099.png ; $n ^ { 10 }$ ; confidence 0.941

256. b01695087.png ; $R ( G )$ ; confidence 0.941

257. a01018048.png ; $A _ { x } = n$ ; confidence 0.941

258. s08559089.png ; $\{ M \}$ ; confidence 0.941

259. a13007082.png ; $H ( x )$ ; confidence 0.941

260. a11022096.png ; $\{ R ( f \circ \pi _ { n } ) \}$ ; confidence 0.941

261. f040820159.png ; $\mathfrak { m } = ( \pi )$ ; confidence 0.941

262. a01417066.png ; $x _ { 0 } \in \partial X$ ; confidence 0.941

263. b12004090.png ; $f ^ { * }$ ; confidence 0.941

264. a130240546.png ; $7$ ; confidence 0.941

265. a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941

266. a11041047.png ; $L ^ { \prime } = ( \pi * L ) ^ { * * }$ ; confidence 0.941

267. a01130049.png ; $\gamma _ { \nu } ( x _ { i } ) = 1$ ; confidence 0.940

268. a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940

269. a01081046.png ; $C ( I )$ ; confidence 0.940

270. s08559054.png ; $\tau _ { 2 } - \epsilon < \tau ^ { \prime \prime } < \tau _ { 2 }$ ; confidence 0.940

271. t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940

272. a01076032.png ; $v _ { \perp } ^ { 2 } / H$ ; confidence 0.940

273. a130040802.png ; $g \circ h = f$ ; confidence 0.940

274. s085590407.png ; $1 / n 1$ ; confidence 0.940

275. a13008047.png ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }$ ; confidence 0.940

276. t12001034.png ; $SO ( 3 )$ ; confidence 0.940

277. f04008010.png ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940

278. n067860258.png ; $V \subset \rho U$ ; confidence 0.940

279. s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940

280. a01165068.png ; $B = \langle B , O ^ { \prime } , R ^ { \prime } \rangle$ ; confidence 0.940

281. a12006032.png ; $u \in C ( [ 0 , T ] ; D ( A ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940

282. a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940

283. a01130040.png ; $A _ { \mu }$ ; confidence 0.940

284. a01150040.png ; $F ( m ) = \sum \alpha _ { j k } m _ { j } m _ { k } , \quad \alpha _ { j k } = \alpha _ { k j }$ ; confidence 0.940

285. a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940

286. a011380184.png ; $f _ { 5 }$ ; confidence 0.940

287. b12053030.png ; $f _ { n } \rightarrow f$ ; confidence 0.940

288. a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940

289. a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939

290. a01138051.png ; $x \sim y = ( x \& y ) \vee ( x \& \overline { y } )$ ; confidence 0.939

291. a01165046.png ; $A ^ { \prime }$ ; confidence 0.939

292. s085590350.png ; $X _ { S } \rightarrow X _ { S }$ ; confidence 0.939

293. s085590510.png ; $x _ { 0 } \in G \backslash H$ ; confidence 0.939

294. q076310148.png ; $z _ { \gamma } \in A$ ; confidence 0.939

295. c02411026.png ; $d = ( d _ { n } )$ ; confidence 0.939

296. i05077064.png ; $A = \operatorname { lim } _ { \rightarrow } F ( D )$ ; confidence 0.939

297. s12026061.png ; $\partial _ { s }$ ; confidence 0.939

298. c02347035.png ; $\mu ( g )$ ; confidence 0.939

299. a011480100.png ; $d ( x )$ ; confidence 0.939

300. a01052053.png ; $1$ ; confidence 0.939

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/13&oldid=43903