Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/10"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 10 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 10 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766
+
1. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541025.png ; $U _ { n } ( k )$ ; confidence 0.982
  
2. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029059.png ; $\pi x$ ; confidence 0.982
  
3. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121039.png ; $z ^ { 1 / 4 }$ ; confidence 0.982
  
4. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380177.png ; $\{ x \vee y , x \}$ ; confidence 0.982
  
5. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081067.png ; $U _ { k } ( y ) \equiv \sum _ { p = 1 } ^ { n } [ \alpha _ { k p } y ^ { ( p - 1 ) } ( t _ { 0 } ) + \beta _ { k p } y ^ { ( p - 1 ) } ( t _ { 1 } ) ]$ ; confidence 0.982
  
6. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png ; $P ( S )$ ; confidence 0.765
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046066.png ; $P ( x + \xi h ) = \sum _ { \nu = 0 } ^ { m } P _ { \nu } ( x , h ) \xi ^ { \nu }$ ; confidence 0.982
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101808.png ; $\rho < | z _ { 0 } - b |$ ; confidence 0.764
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018060.png ; $\sigma > \sigma _ { 1 }$ ; confidence 0.982
  
8. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110290/c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137037.png ; $f \in C ( X )$ ; confidence 0.982
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160024.png ; $x + y \sqrt { D }$ ; confidence 0.981
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\gamma$ ; confidence 0.764
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d03164028.png ; $( F , V )$ ; confidence 0.981
  
11. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f041890119.png ; $x \in R \cup \{ \infty \}$ ; confidence 0.764
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001060.png ; $| \delta A | \leq \epsilon | A |$ ; confidence 0.981
  
14. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047610/h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010021.png ; $C ( X )$ ; confidence 0.981
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010201.png ; $| \delta \lambda _ { i } | \leq k ( T ) \| \delta A \|$ ; confidence 0.981
  
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
+
16. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876017.png ; $\xi _ { i j } ( x ) = \partial f _ { j } / \partial g ( e , x )$ ; confidence 0.981
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104205.png ; $\{ Y _ { N } \}$ ; confidence 0.760
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981
  
20. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820173.png ; $F ( \overline { m } )$ ; confidence 0.760
+
20. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240517.png ; $V _ { j j ^ { \prime } } = Z _ { 3 j } ^ { \prime } Z _ { 3 j }$ ; confidence 0.760
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041069.png ; $u , v > 0$ ; confidence 0.981
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052067.png ; $\eta ^ { \prime } = f _ { y } ( x , y ) \eta + S$ ; confidence 0.981
  
23. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210102.png ; $k = 1 , \ldots , g$ ; confidence 0.759
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981
  
25. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $2 d \geq n$ ; confidence 0.758
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
  
26. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i050730155.png ; $\nu _ { S }$ ; confidence 0.758
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $A x = b$ ; confidence 0.981
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820124.png ; $M \times N$ ; confidence 0.757
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981
  
28. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831085.png ; $\alpha = a ( x )$ ; confidence 0.757
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981
  
29. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735065.png ; $K$ ; confidence 0.981
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a01367016.png ; $J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$ ; confidence 0.755
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H$ ; confidence 0.981
  
31. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755
+
31. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981
  
32. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302077.png ; $L ( R ) \otimes _ { K } H _ { n } ( R ) = R$ ; confidence 0.755
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085790/s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755
+
33. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d03321058.png ; $R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$ ; confidence 0.981
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004074.png ; $M$ ; confidence 0.754
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339309.png ; $p _ { 1 } / p _ { 2 }$ ; confidence 0.981
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101207.png ; $\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$ ; confidence 0.754
+
35. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754
+
36. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981
  
37. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754
+
37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981
  
38. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420330.png ; $B = B _ { E }$ ; confidence 0.754
+
38. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468042.png ; $\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$ ; confidence 0.981
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754
+
39. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048250/h04825025.png ; $O A M$ ; confidence 0.981
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040615.png ; $h = \operatorname { mng } s _ { P } , \mathfrak { N }$ ; confidence 0.754
+
40. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
+
41. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i051950193.png ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981
  
42. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
+
42. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753
+
43. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005058.png ; $u \in C ( [ 0 , T ] ; X ) \cap C ^ { 1 } ( ( 0 , T ] ; X )$ ; confidence 0.752
+
44. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544030.png ; $E = \{ e \}$ ; confidence 0.981
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752
+
45. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081550/r08155085.png ; $\psi d z$ ; confidence 0.981
  
46. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752
+
46. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092980/t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981
  
47. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160018.png ; $D > 1$ ; confidence 0.981
  
48. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370108.png ; $f ( x _ { 1 } ) \neq f ( x _ { 2 } )$ ; confidence 0.981
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a0102006.png ; $A ] [ B$ ; confidence 0.752
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006022.png ; $R ^ { p }$ ; confidence 0.981
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png ; $1$ ; confidence 0.751
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417027.png ; $e ^ { 2 \pi i z }$ ; confidence 0.981
  
52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559036.png ; $z = \phi _ { 2 } ( t )$ ; confidence 0.981
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640132.png ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
+
54. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981
  
55. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750
+
55. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981
  
56. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850279.png ; $V _ { 1 } ^ { * }$ ; confidence 0.750
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a0107601.png ; $\frac { d x } { d t } = v , \quad \frac { d v } { d t } = - \omega ^ { 2 } ( \epsilon t ) x$ ; confidence 0.981
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010058.png ; $w f$ ; confidence 0.750
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018012.png ; $z - b | > R$ ; confidence 0.981
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040127.png ; $\psi$ ; confidence 0.749
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149045.png ; $f _ { 0 } ^ { j } ( x _ { 0 } ) = y _ { 0 } ^ { j } , \quad F ( x , f _ { 0 } ^ { j } ( x ) ) = 0$ ; confidence 0.981
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006027.png ; $A u = \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981
  
60. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748
+
60. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851046.png ; $\alpha ( H _ { \alpha } ) = 2$ ; confidence 0.980
  
61. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980
  
62. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073980/p07398067.png ; $F \otimes S ^ { m } E$ ; confidence 0.748
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150012.png ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029043.png ; $\overline { a } X$ ; confidence 0.747
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018030.png ; $\lambda _ { n } = \operatorname { ln } n$ ; confidence 0.980
  
64. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980
  
65. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
+
65. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820153.png ; $\gamma ( T ) \in C ( F ; A )$ ; confidence 0.980
  
66. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011059.png ; $2 i$ ; confidence 0.747
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024051.png ; $p \geq 0$ ; confidence 0.980
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005092.png ; $B ( . )$ ; confidence 0.747
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010214.png ; $x ^ { i }$ ; confidence 0.980
  
68. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040202.png ; $\tilde { \Omega F }$ ; confidence 0.746
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082016.png ; $H _ { G }$ ; confidence 0.980
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240480.png ; $1 , \ldots , n _ { 1 }$ ; confidence 0.745
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145045.png ; $\pi = \operatorname { dim } H ^ { 1 } ( X , O _ { X } )$ ; confidence 0.980
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040525.png ; $FFi _ { D } A$ ; confidence 0.744
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024015.png ; $n > m$ ; confidence 0.980
  
74. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240220.png ; $n \times n$ ; confidence 0.980
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020057.png ; $\mu$ ; confidence 0.744
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330250.png ; $U ^ { N }$ ; confidence 0.743
+
76. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c0229306.png ; $\{ x _ { n } > 0 \}$ ; confidence 0.980
  
77. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $S \subset T$ ; confidence 0.743
+
77. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380197.png ; $F \subset U$ ; confidence 0.980
  
78. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020174.png ; $( US )$ ; confidence 0.980
  
79. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980
  
80. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743
+
80. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201064.png ; $( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$ ; confidence 0.980
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040795.png ; $K _ { 0 }$ ; confidence 0.742
+
81. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h0482005.png ; $Z = 1$ ; confidence 0.980
  
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $1$ ; confidence 0.742
+
82. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h0483101.png ; $\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$ ; confidence 0.980
  
83. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018097.png ; $\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$ ; confidence 0.742
+
83. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836089.png ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980
  
84. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
+
84. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262012.png ; $b \in R ^ { l - 1 }$ ; confidence 0.980
  
85. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742
+
85. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660207.png ; $\kappa : \Omega \rightarrow \Omega _ { 1 }$ ; confidence 0.980
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010103.png ; $A x - b | \leq \Delta A | x | + \Delta b$ ; confidence 0.741
+
86. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980
  
87. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
+
87. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086550/s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980
  
88. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r0811301.png ; $c \approx 3.10 ^ { 10 } cm / se$ ; confidence 0.741
+
88. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210108.png ; $m$ ; confidence 0.740
+
89. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032058.png ; $S ( L )$ ; confidence 0.980
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740
+
90. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150728.png ; $A ^ { * } = A \cup \{ \infty _ { A } \}$ ; confidence 0.980
  
91. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740
+
91. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090180/s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740
+
92. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747012.png ; $x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$ ; confidence 0.980
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430100.png ; $I Y \subset O$ ; confidence 0.739
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012014.png ; $( h \neq 0 )$ ; confidence 0.980
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008025.png ; $V = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.980
  
95. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $S h$ ; confidence 0.739
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070128.png ; $k > 8$ ; confidence 0.980
  
96. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739
+
96. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120120.png ; $H _ { n - r } ( M ^ { n } , X ^ { * } )$ ; confidence 0.980
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050236.png ; $q > 1$ ; confidence 0.980
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240485.png ; $B$ ; confidence 0.738
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070038.png ; $p \geq 2$ ; confidence 0.980
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240219.png ; $I$ ; confidence 0.738
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022022.png ; $\| w _ { p } \| = \sqrt { \sum _ { k = 1 } ^ { p } | \omega _ { k p } | ^ { 2 } } < \epsilon$ ; confidence 0.980
  
100. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018036.png ; $\sigma _ { 1 } = \operatorname { Re } s _ { 1 }$ ; confidence 0.980
  
101. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057640/l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980
  
102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980
  
103. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738
+
103. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055042.png ; $F ( 1 ) ( V )$ ; confidence 0.980
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005063.png ; $u _ { 0 } \in D ( A ( 0 ) )$ ; confidence 0.980
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220113.png ; $f \in L ^ { 1 } ( H , m )$ ; confidence 0.980
  
106. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $1 < m \leq n$ ; confidence 0.737
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980
  
107. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213015.png ; $\partial x ^ { i } / \partial v$ ; confidence 0.737
+
107. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759045.png ; $E ( Q )$ ; confidence 0.980
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050179.png ; $G$ ; confidence 0.737
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081080.png ; $n - k$ ; confidence 0.980
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012015.png ; $t > 4$ ; confidence 0.980
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110110/a1101108.png ; $\cap \operatorname { Reg }$ ; confidence 0.736
+
110. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797053.png ; $\{ e \} \rightarrow G$ ; confidence 0.980
  
111. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $x g$ ; confidence 0.734
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049020.png ; $F \in F _ { D }$ ; confidence 0.980
  
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979
  
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734
+
113. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d0316408.png ; $\omega V _ { M } ( m ) = V _ { M } ( \omega ^ { ( p ) } m )$ ; confidence 0.979
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002010.png ; $s ^ { 1 }$ ; confidence 0.733
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640116.png ; $p _ { 12 } > 1$ ; confidence 0.979
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050192.png ; $A ( p )$ ; confidence 0.733
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150029.png ; $\Omega ^ { \tau } [ X ]$ ; confidence 0.979
  
116. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010146.png ; $( A )$ ; confidence 0.979
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820110.png ; $f _ { i } ( X ) = X _ { i } + \ldots$ ; confidence 0.733
+
117. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696032.png ; $F _ { 0 } \subset F$ ; confidence 0.979
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240498.png ; $X _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040639.png ; $P , \mathfrak { M }$ ; confidence 0.733
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137078.png ; $f _ { 1 } ( x ) + \ldots + f _ { n } ( x ) \equiv 1$ ; confidence 0.979
  
120. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732
+
120. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008075.png ; $c _ { n } = \frac { 1 } { \sqrt { n } B ( \frac { n } { 2 } , \frac { 1 } { 2 } ) } = \frac { \Gamma ( \frac { n + 1 } { 2 } ) } { \sqrt { n \pi } \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.979
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024041.png ; $Y = X _ { 1 } B X _ { 2 } + E$ ; confidence 0.731
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064950/m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616036.png ; $0 < c < 1$ ; confidence 0.979
  
125. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r08245049.png ; $( \alpha b ) \alpha = \alpha ( b \alpha )$ ; confidence 0.731
+
125. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png ; $D \backslash K$ ; confidence 0.979
  
126. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661012.png ; $N _ { A }$ ; confidence 0.730
+
126. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810238.png ; $x u = 0$ ; confidence 0.979
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046073.png ; $P _ { N } ( x )$ ; confidence 0.729
+
127. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l05866027.png ; $G \subset N ( F )$ ; confidence 0.979
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $2$ ; confidence 0.729
+
128. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979
  
129. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729
+
129. https://www.encyclopediaofmath.org/legacyimages/n/n110/n110010/n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040614.png ; $\mathfrak { N } \in$ ; confidence 0.728
+
130. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728084.png ; $y ^ { \prime \prime \prime } = \lambda y$ ; confidence 0.979
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022040.png ; $= R [ x _ { 1 } ( z _ { 1 } , \ldots , z _ { p } ) , \ldots , x _ { p } ( z _ { 1 } , \ldots , z _ { p } ) ]$ ; confidence 0.727
+
131. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486040.png ; $0 \leq s _ { 0 } \leq l$ ; confidence 0.979
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
+
132. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080640/r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
+
133. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200143.png ; $V ^ { \prime } \subset R ^ { \prime }$ ; confidence 0.979
  
134. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $d f ^ { j }$ ; confidence 0.726
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087260/s08726044.png ; $\eta _ { 0 } ( i )$ ; confidence 0.979
  
135. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076071.png ; $l [ f ] = 0$ ; confidence 0.979
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
+
136. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301005.png ; $\square _ { H } T$ ; confidence 0.979
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016039.png ; $b A$ ; confidence 0.979
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024510/c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450202.png ; $y = \psi ( z )$ ; confidence 0.979
  
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724
+
139. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590522.png ; $x _ { 0 } \in H$ ; confidence 0.979
  
140. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q07684029.png ; $P \{ X _ { n } \in \Delta \} \rightarrow 0$ ; confidence 0.724
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600223.png ; $( \alpha / \beta ) _ { n }$ ; confidence 0.979
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300203.png ; $1$ ; confidence 0.724
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300163.png ; $\Delta _ { i } = 1$ ; confidence 0.979
  
142. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
+
142. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590646.png ; $x = x ( u , v )$ ; confidence 0.979
  
143. https://www.encyclopediaofmath.org/legacyimages/z/z110/z110010/z11001018.png ; $( f g f h )$ ; confidence 0.723
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008048.png ; $+ \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0$ ; confidence 0.979
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200404.png ; $x _ { 0 } \in X$ ; confidence 0.722
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116023.png ; $X$ ; confidence 0.979
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040202.png ; $\varphi _ { L } ( A )$ ; confidence 0.979
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018025.png ; $| \operatorname { arg } ( s - s _ { 0 } ) | \leq \theta < \pi / 2$ ; confidence 0.721
+
146. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018064.png ; $A _ { n }$ ; confidence 0.720
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a01107011.png ; $M _ { 1 }$ ; confidence 0.979
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130060.png ; $\gamma m$ ; confidence 0.719
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210121.png ; $\Omega ( a )$ ; confidence 0.979
  
150. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121079.png ; $y _ { 1 } ( x ) = Y _ { 1 } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] + Y _ { 0 } ( x ) O ( \frac { 1 } { \lambda } )$ ; confidence 0.979
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006011.png ; $P _ { A \otimes B }$ ; confidence 0.719
+
151. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540020.png ; $K = p > 0$ ; confidence 0.978
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
+
152. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978
  
153. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054250/j05425028.png ; $K ^ { * }$ ; confidence 0.718
+
153. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600157.png ; $m = 1$ ; confidence 0.978
  
155. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465066.png ; $\in M$ ; confidence 0.717
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055047.png ; $( g , x ) \rightarrow x$ ; confidence 0.978
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040253.png ; $X _ { i }$ ; confidence 0.716
+
156. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797062.png ; $p : G \rightarrow \{ e \}$ ; confidence 0.978
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925094.png ; $| K | = 2,3$ ; confidence 0.978
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
+
158. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978
  
159. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png ; $g = 1$ ; confidence 0.978
  
160. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
+
160. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249015.png ; $d ( p )$ ; confidence 0.978
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715
+
161. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763080.png ; $\phi _ { 1 } \otimes \ldots \otimes \phi _ { d }$ ; confidence 0.978
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
+
162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png ; $( S , g )$ ; confidence 0.978
  
163. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s08652091.png ; $| T | _ { p }$ ; confidence 0.714
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110450/c11045018.png ; $2 ^ { \lambda }$ ; confidence 0.978
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002036.png ; $8$ ; confidence 0.713
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015012.png ; $F ( . | S )$ ; confidence 0.978
  
165. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
+
165. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137017.png ; $\phi ^ { a }$ ; confidence 0.978
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png ; $31$ ; confidence 0.712
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004098.png ; $\theta = [ \Theta$ ; confidence 0.978
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png ; $4$ ; confidence 0.978
  
168. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022072.png ; $K _ { V V }$ ; confidence 0.711
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240349.png ; $23$ ; confidence 0.711
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068076.png ; $\alpha \geq b$ ; confidence 0.978
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978
  
173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150259.png ; $\beta \circ \beta = 0$ ; confidence 0.978
  
174. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547031.png ; $\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$ ; confidence 0.978
  
175. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087032.png ; $\pi ( \chi )$ ; confidence 0.978
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710
+
176. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045000/g04500031.png ; $( n \operatorname { ln } n ) / 2$ ; confidence 0.978
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $22$ ; confidence 0.710
+
177. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048300/h04830032.png ; $P _ { m } ( \xi + \tau N )$ ; confidence 0.978
  
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
+
178. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063080/m06308045.png ; $f ^ { ( m ) } ( x _ { 0 } ) < 0$ ; confidence 0.978
  
179. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
+
179. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063350/m0633503.png ; $\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$ ; confidence 0.978
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010219.png ; $\| \delta A \|$ ; confidence 0.710
+
180. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540018.png ; $F \subset G$ ; confidence 0.978
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024094.png ; $m$ ; confidence 0.709
+
181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
  
182. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
+
182. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083470/s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978
  
183. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
+
183. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541052.png ; $g ^ { p } = e$ ; confidence 0.978
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640155.png ; $p _ { g } \neq 1$ ; confidence 0.708
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018059.png ; $\sigma _ { k } - 1 < \beta < \sigma _ { k } < \ldots < \sigma _ { 1 }$ ; confidence 0.978
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
+
186. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015085.png ; $S ( A )$ ; confidence 0.978
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240366.png ; $M _ { H } = Z _ { 1 } ^ { \prime } Z _ { 1 }$ ; confidence 0.707
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007093.png ; $\alpha \leq 2$ ; confidence 0.978
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001013.png ; $A \in R ^ { n \times n }$ ; confidence 0.707
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650122.png ; $\Omega _ { f } \cup \Omega _ { p }$ ; confidence 0.978
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021088.png ; $\omega _ { 1 }$ ; confidence 0.707
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978
  
190. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010069.png ; $u = u _ { f } \in D ( \Delta )$ ; confidence 0.978
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010200.png ; $| \hat { \lambda } - \lambda _ { i } | = | \delta \lambda _ { i } |$ ; confidence 0.705
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040352.png ; $CPC$ ; confidence 0.705
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978
  
193. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066410/n06641020.png ; $x \in b M$ ; confidence 0.705
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040176.png ; $\{ a , b \}$ ; confidence 0.977
  
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370156.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) < 2$ ; confidence 0.977
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031019.png ; $M _ { sa }$ ; confidence 0.704
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010155.png ; $x + \delta x = ( A + \delta A ) ^ { + } ( b + \delta b )$ ; confidence 0.977
  
196. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703
+
196. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120492.png ; $X ^ { \prime } = F$ ; confidence 0.977
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a0107603.png ; $\omega ( s )$ ; confidence 0.977
  
198. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012041.png ; $( I - A ) v = c$ ; confidence 0.977
  
199. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $A / \eta$ ; confidence 0.702
+
199. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977
  
200. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120502.png ; $\{ H , G / H ^ { 0 } \}$ ; confidence 0.977
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004023.png ; $x _ { 0 }$ ; confidence 0.701
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png ; $x > 0$ ; confidence 0.700
+
203. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530603.png ; $g = k a n$ ; confidence 0.977
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021094.png ; $k , b _ { k }$ ; confidence 0.700
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146087.png ; $C _ { \tau } ( X )$ ; confidence 0.977
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234035.png ; $a \in V$ ; confidence 0.699
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076026.png ; $s = \epsilon t$ ; confidence 0.977
  
206. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058080/l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699
+
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090322.png ; $\Lambda ( V )$ ; confidence 0.977
  
207. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
+
207. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872010.png ; $( x + y ) ^ { [ p ] } = x ^ { [ p ] } + y ^ { [ p ] } + \Lambda _ { p } ( x , y )$ ; confidence 0.977
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002051.png ; $m = 2 ^ { a }$ ; confidence 0.699
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017035.png ; $< 1$ ; confidence 0.977
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018097.png ; $x = F ( x )$ ; confidence 0.977
  
210. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067400/n06740041.png ; $U$ ; confidence 0.698
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950117.png ; $S ( X , Y ) = \nabla _ { X } Y - \nabla _ { Y } X - [ X , Y ]$ ; confidence 0.977
  
211. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081034.png ; $A ^ { * } ( t )$ ; confidence 0.977
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006017.png ; $P _ { A }$ ; confidence 0.697
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004011.png ; $( 40 \lambda \varphi _ { 1 } )$ ; confidence 0.696
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z }$ ; confidence 0.696
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164040.png ; $q ( V )$ ; confidence 0.977
  
215. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680125.png ; $p / p$ ; confidence 0.977
  
216. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096450/v09645016.png ; $+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$ ; confidence 0.696
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068053.png ; $r ^ { \prime } < r$ ; confidence 0.977
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a0104303.png ; $P \{ \xi ( t ) = i | \xi ( s ) = i \} = 1 \quad \text { for any } t \geq s$ ; confidence 0.695
+
217. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102109.png ; $P _ { 0 } \in S$ ; confidence 0.695
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350101.png ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977
  
219. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
+
219. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259044.png ; $V _ { [ r ] }$ ; confidence 0.977
  
220. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
+
220. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620207.png ; $R _ { + } ^ { l }$ ; confidence 0.977
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539043.png ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694
+
221. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040404.png ; $P _ { SD } K$ ; confidence 0.693
+
222. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092530/t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977
  
223. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; $S ( p )$ ; confidence 0.693
+
223. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952109.png ; $f _ { \alpha } ( x ) \geq - c$ ; confidence 0.977
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040372.png ; $F \subset G$ ; confidence 0.693
+
224. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325016.png ; $\operatorname { Arg } f$ ; confidence 0.692
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566078.png ; $/ N = T$ ; confidence 0.692
+
226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
  
227. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444106.png ; $\alpha \equiv f ( x _ { 0 } - ) \leq f ( x _ { 0 } + ) \equiv b$ ; confidence 0.692
+
227. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820167.png ; $F _ { \pi } ( \overline { m } )$ ; confidence 0.977
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040171.png ; $\varphi _ { L } : A \rightarrow A \subset P ^ { 3 }$ ; confidence 0.691
+
228. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005089.png ; $t$ ; confidence 0.691
+
229. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
  
230. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430169.png ; $GL _ { 2 } ( R )$ ; confidence 0.691
+
230. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110240/s11024022.png ; $\lambda _ { m } ( t )$ ; confidence 0.691
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016081.png ; $A V i / P = x$ ; confidence 0.977
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040629.png ; $D S _ { F }$ ; confidence 0.691
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046075.png ; $P _ { n } ( \alpha x ) = \alpha ^ { n } P _ { n } ( x )$ ; confidence 0.690
+
233. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590525.png ; $( a x + b y ) d y = ( c x + e y ) d x$ ; confidence 0.977
  
234. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082040/r08204062.png ; $b \in \overline { C }$ ; confidence 0.690
+
234. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040466.png ; $D ( K )$ ; confidence 0.689
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086014.png ; $x ( \phi ) = x ( \phi )$ ; confidence 0.977
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014042.png ; $X \geq 3$ ; confidence 0.977
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066057.png ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.689
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016048.png ; $g ( W )$ ; confidence 0.977
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338044.png ; $x 0$ ; confidence 0.689
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046025.png ; $y ^ { \prime } ( f ( x + \xi h ) )$ ; confidence 0.977
  
239. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $\overline { Q } _ { p }$ ; confidence 0.689
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600257.png ; $A _ { 1 } / L _ { 1 }$ ; confidence 0.977
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040646.png ; $\operatorname { Th } _ { S _ { P } } \mathfrak { M } = \operatorname { Th } _ { S _ { P } } \mathfrak { N }$ ; confidence 0.689
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120383.png ; $F ^ { * } ( z )$ ; confidence 0.977
  
241. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046460/h04646046.png ; $p + q \leq \operatorname { dim } _ { C } M$ ; confidence 0.688
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977
  
242. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t09323048.png ; $H \rightarrow TOP$ ; confidence 0.688
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010239.png ; $r = A x - \hat { \lambda } x$ ; confidence 0.687
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820148.png ; $F \mapsto C ( F ; A )$ ; confidence 0.977
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c0254401.png ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110054.png ; $A _ { 1 }$ ; confidence 0.977
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025600/c02560048.png ; $u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$ ; confidence 0.687
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041082.png ; $\tau > n / 2 + 1$ ; confidence 0.977
  
246. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png ; $| X$ ; confidence 0.687
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130054.png ; $M ( k )$ ; confidence 0.977
  
247. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076080/q076080314.png ; $\mathfrak { F } \subset \mathfrak { P }$ ; confidence 0.687
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018012.png ; $1$ ; confidence 0.977
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006020.png ; $u \in P ( x )$ ; confidence 0.687
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d0316409.png ; $F _ { M } ( V _ { M } ( m ) ) = V _ { M } ( F _ { M } ( m ) ) = p m$ ; confidence 0.976
  
249. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444109.png ; $A < \alpha < b < B$ ; confidence 0.686
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018052.png ; $\beta > 0$ ; confidence 0.976
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022093.png ; $Z$ ; confidence 0.686
+
250. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040618.png ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040213.png ; $\varphi _ { L } : A \rightarrow K _ { A } \subset P ^ { 3 }$ ; confidence 0.976
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010106.png ; $\Delta b = \epsilon | b$ ; confidence 0.685
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081094.png ; $\lambda , \mu$ ; confidence 0.976
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
+
253. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859082.png ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024084.png ; $\beta$ ; confidence 0.683
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164048.png ; $= \chi ( V , O _ { V } ) - 1$ ; confidence 0.976
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png ; $D$ ; confidence 0.683
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976
  
256. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008047.png ; $m s$ ; confidence 0.683
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006055.png ; $\partial ( I )$ ; confidence 0.976
  
257. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004070.png ; $d _ { 1 } = 2$ ; confidence 0.976
  
258. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090590/s0905905.png ; $J ( y ) \leq J ( y )$ ; confidence 0.683
+
258. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851030.png ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040701.png ; $( X , x , v )$ ; confidence 0.683
+
259. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062025.png ; $R = \infty$ ; confidence 0.976
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022099.png ; $\alpha , b \in C ^ { p }$ ; confidence 0.683
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976
  
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
+
262. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041079.png ; $A ^ { * } B$ ; confidence 0.976
  
263. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744011.png ; $\lambda _ { 4 n }$ ; confidence 0.681
+
263. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976
  
264. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780230.png ; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681
+
264. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211024.png ; $z = \phi _ { i }$ ; confidence 0.976
  
265. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914024.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681
+
265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240397.png ; $M _ { E }$ ; confidence 0.680
+
266. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976
  
267. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
+
267. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090287.png ; $G _ { A B } ^ { ( n ) } ( E )$ ; confidence 0.976
  
268. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074150/p07415079.png ; $\underline { \mathfrak { U } } \square _ { \phi } = - \overline { \mathfrak { U } } _ { \phi }$ ; confidence 0.680
+
268. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008077.png ; $T f _ { n } \rightarrow 0$ ; confidence 0.976
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303027.png ; $\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$ ; confidence 0.679
+
269. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314205.png ; $k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$ ; confidence 0.679
+
270. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059340/l059340144.png ; $C _ { 0 } ( R )$ ; confidence 0.976
  
271. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833042.png ; $W _ { X } ^ { S }$ ; confidence 0.678
+
271. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png ; $\Omega _ { X }$ ; confidence 0.976
  
272. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086720/s08672038.png ; $\pi = n \sqrt { 1 + \sum p ^ { 2 } }$ ; confidence 0.678
+
272. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120376.png ; $E _ { i } ( x )$ ; confidence 0.976
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006015.png ; $3$ ; confidence 0.678
+
273. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820210.png ; $y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$ ; confidence 0.976
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040314.png ; $\epsilon _ { i , j } ^ { A } ( \alpha , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677
+
274. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900146.png ; $Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.976
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800161.png ; $\partial N$ ; confidence 0.677
+
275. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094420/t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020060.png ; $21$ ; confidence 0.676
+
276. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095070/u09507044.png ; $T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$ ; confidence 0.976
  
277. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072890/p07289041.png ; $p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$ ; confidence 0.676
+
277. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097060/w09706017.png ; $2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$ ; confidence 0.976
  
278. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676
+
278. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001021.png ; $J ( \phi )$ ; confidence 0.976
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012072.png ; $f ^ { \langle \mu _ { n } \rangle } ( 0 ) = 0$ ; confidence 0.675
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040081.png ; $x ^ { * } \in ( X ^ { \odot } ) ^ { d }$ ; confidence 0.976
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010107.png ; $| r | \leq \epsilon ( | A | | x | + | b | )$ ; confidence 0.675
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116032.png ; $X ( k )$ ; confidence 0.976
  
281. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470133.png ; $R _ { T ^ { \prime \prime } }$ ; confidence 0.675
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675
+
282. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240116.png ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160051.png ; $K \rightarrow R$ ; confidence 0.976
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018023.png ; $\lambda | > 1$ ; confidence 0.976
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240515.png ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017032.png ; $< 0$ ; confidence 0.976
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
+
286. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820100.png ; $Z \rightarrow A$ ; confidence 0.976
  
287. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d11002099.png ; $f : S \rightarrow C$ ; confidence 0.674
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010970/a01097016.png ; $e _ { 1 } , e _ { 2 } , e _ { 3 }$ ; confidence 0.976
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010060.png ; $p _ { \psi } ( f ) = \operatorname { sup } \{ | w f ( x ) | : x \in X \}$ ; confidence 0.674
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004027.png ; $C _ { 0 }$ ; confidence 0.674
+
289. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120415.png ; $x ^ { \prime } \in G$ ; confidence 0.976
  
290. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074010/p07401048.png ; $O _ { 3 } = O _ { 6 } \cap O _ { 7 }$ ; confidence 0.673
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004061.png ; $h ( \varphi )$ ; confidence 0.976
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $2$ ; confidence 0.672
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370155.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) \leq 2$ ; confidence 0.976
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015650/b01565010.png ; $B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$ ; confidence 0.672
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876065.png ; $\phi ( b )$ ; confidence 0.975
  
293. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374027.png ; $( \xi ) _ { R }$ ; confidence 0.672
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240186.png ; $b$ ; confidence 0.975
  
294. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
+
294. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054091.png ; $K _ { 2 } R$ ; confidence 0.975
  
295. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png ; $r \in F$ ; confidence 0.671
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310115.png ; $G$ ; confidence 0.975
  
296. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150013.png ; $\theta$ ; confidence 0.975
  
297. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703029.png ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671
+
297. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103038.png ; $W _ { k } ( G )$ ; confidence 0.975
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040479.png ; $C _ { \Gamma }$ ; confidence 0.670
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756018.png ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670
+
299. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055170/k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176012.png ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058017.png ; $y ^ { \prime } = - a y$ ; confidence 0.975

Latest revision as of 09:58, 17 October 2019

List

1. u09541025.png ; $U _ { n } ( k )$ ; confidence 0.982

2. a01029059.png ; $\pi x$ ; confidence 0.982

3. a01121039.png ; $z ^ { 1 / 4 }$ ; confidence 0.982

4. a011380177.png ; $\{ x \vee y , x \}$ ; confidence 0.982

5. a01081067.png ; $U _ { k } ( y ) \equiv \sum _ { p = 1 } ^ { n } [ \alpha _ { k p } y ^ { ( p - 1 ) } ( t _ { 0 } ) + \beta _ { k p } y ^ { ( p - 1 ) } ( t _ { 1 } ) ]$ ; confidence 0.982

6. a01046066.png ; $P ( x + \xi h ) = \sum _ { \nu = 0 } ^ { m } P _ { \nu } ( x , h ) \xi ^ { \nu }$ ; confidence 0.982

7. a01018060.png ; $\sigma > \sigma _ { 1 }$ ; confidence 0.982

8. a01137037.png ; $f \in C ( X )$ ; confidence 0.982

9. a01160024.png ; $x + y \sqrt { D }$ ; confidence 0.981

10. d03164028.png ; $( F , V )$ ; confidence 0.981

11. a011600196.png ; $K / k$ ; confidence 0.981

12. a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981

13. a11001060.png ; $| \delta A | \leq \epsilon | A |$ ; confidence 0.981

14. a11010021.png ; $C ( X )$ ; confidence 0.981

15. a110010201.png ; $| \delta \lambda _ { i } | \leq k ( T ) \| \delta A \|$ ; confidence 0.981

16. l05876017.png ; $\xi _ { i j } ( x ) = \partial f _ { j } / \partial g ( e , x )$ ; confidence 0.981

17. a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981

18. a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981

19. a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981

20. g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981

21. a11041069.png ; $u , v > 0$ ; confidence 0.981

22. a01052067.png ; $\eta ^ { \prime } = f _ { y } ( x , y ) \eta + S$ ; confidence 0.981

23. a12012059.png ; $x > 0$ ; confidence 0.981

24. a13013075.png ; $( g )$ ; confidence 0.981

25. a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981

26. a110010117.png ; $A x = b$ ; confidence 0.981

27. b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981

28. b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981

29. b01735065.png ; $K$ ; confidence 0.981

30. b120440103.png ; $R [ H \times H$ ; confidence 0.981

31. c02604027.png ; $P Q$ ; confidence 0.981

32. d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981

33. d03321058.png ; $R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$ ; confidence 0.981

34. d0339309.png ; $p _ { 1 } / p _ { 2 }$ ; confidence 0.981

35. d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981

36. e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981

37. f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981

38. g04468042.png ; $\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$ ; confidence 0.981

39. h04825025.png ; $O A M$ ; confidence 0.981

40. i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981

41. i051950193.png ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981

42. l12006027.png ; $\phi \in H$ ; confidence 0.981

43. m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981

44. m06544030.png ; $E = \{ e \}$ ; confidence 0.981

45. r08155085.png ; $\psi d z$ ; confidence 0.981

46. t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981

47. a01160018.png ; $D > 1$ ; confidence 0.981

48. a011370108.png ; $f ( x _ { 1 } ) \neq f ( x _ { 2 } )$ ; confidence 0.981

49. a12006022.png ; $R ^ { p }$ ; confidence 0.981

50. a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981

51. a01417027.png ; $e ^ { 2 \pi i z }$ ; confidence 0.981

52. s08559036.png ; $z = \phi _ { 2 } ( t )$ ; confidence 0.981

53. a011640132.png ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981

54. s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981

55. g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981

56. a0107601.png ; $\frac { d x } { d t } = v , \quad \frac { d v } { d t } = - \omega ^ { 2 } ( \epsilon t ) x$ ; confidence 0.981

57. a01018012.png ; $z - b | > R$ ; confidence 0.981

58. a01149045.png ; $f _ { 0 } ^ { j } ( x _ { 0 } ) = y _ { 0 } ^ { j } , \quad F ( x , f _ { 0 } ^ { j } ( x ) ) = 0$ ; confidence 0.981

59. a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981

60. l05851046.png ; $\alpha ( H _ { \alpha } ) = 2$ ; confidence 0.980

61. a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980

62. a01150012.png ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980

63. a01018030.png ; $\lambda _ { n } = \operatorname { ln } n$ ; confidence 0.980

64. a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980

65. f040820153.png ; $\gamma ( T ) \in C ( F ; A )$ ; confidence 0.980

66. a12024051.png ; $p \geq 0$ ; confidence 0.980

67. a110010214.png ; $x ^ { i }$ ; confidence 0.980

68. a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980

69. a01082016.png ; $H _ { G }$ ; confidence 0.980

70. a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980

71. a01145045.png ; $\pi = \operatorname { dim } H ^ { 1 } ( X , O _ { X } )$ ; confidence 0.980

72. a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980

73. a13024015.png ; $n > m$ ; confidence 0.980

74. a130240220.png ; $n \times n$ ; confidence 0.980

75. c12016016.png ; $j = 1 : n$ ; confidence 0.980

76. c0229306.png ; $\{ x _ { n } > 0 \}$ ; confidence 0.980

77. c023380197.png ; $F \subset U$ ; confidence 0.980

78. d120020174.png ; $( US )$ ; confidence 0.980

79. d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980

80. d03201064.png ; $( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$ ; confidence 0.980

81. h0482005.png ; $Z = 1$ ; confidence 0.980

82. h0483101.png ; $\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$ ; confidence 0.980

83. l05836089.png ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980

84. m06262012.png ; $b \in R ^ { l - 1 }$ ; confidence 0.980

85. p075660207.png ; $\kappa : \Omega \rightarrow \Omega _ { 1 }$ ; confidence 0.980

86. r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980

87. s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980

88. s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980

89. s12032058.png ; $S ( L )$ ; confidence 0.980

90. t093150728.png ; $A ^ { * } = A \cup \{ \infty _ { A } \}$ ; confidence 0.980

91. w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980

92. w09747012.png ; $x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$ ; confidence 0.980

93. a01012014.png ; $( h \neq 0 )$ ; confidence 0.980

94. a12008025.png ; $V = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.980

95. a130070128.png ; $k > 8$ ; confidence 0.980

96. d034120120.png ; $H _ { n - r } ( M ^ { n } , X ^ { * } )$ ; confidence 0.980

97. a130050236.png ; $q > 1$ ; confidence 0.980

98. a11070038.png ; $p \geq 2$ ; confidence 0.980

99. a01022022.png ; $\| w _ { p } \| = \sqrt { \sum _ { k = 1 } ^ { p } | \omega _ { k p } | ^ { 2 } } < \epsilon$ ; confidence 0.980

100. a01018036.png ; $\sigma _ { 1 } = \operatorname { Re } s _ { 1 }$ ; confidence 0.980

101. a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980

102. a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980

103. f04055042.png ; $F ( 1 ) ( V )$ ; confidence 0.980

104. a12005063.png ; $u _ { 0 } \in D ( A ( 0 ) )$ ; confidence 0.980

105. a110220113.png ; $f \in L ^ { 1 } ( H , m )$ ; confidence 0.980

106. a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980

107. w09759045.png ; $E ( Q )$ ; confidence 0.980

108. a01081080.png ; $n - k$ ; confidence 0.980

109. a13012015.png ; $t > 4$ ; confidence 0.980

110. h04797053.png ; $\{ e \} \rightarrow G$ ; confidence 0.980

111. a11049020.png ; $F \in F _ { D }$ ; confidence 0.980

112. a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979

113. d0316408.png ; $\omega V _ { M } ( m ) = V _ { M } ( \omega ^ { ( p ) } m )$ ; confidence 0.979

114. a011640116.png ; $p _ { 12 } > 1$ ; confidence 0.979

115. a01150029.png ; $\Omega ^ { \tau } [ X ]$ ; confidence 0.979

116. a110010146.png ; $( A )$ ; confidence 0.979

117. e03696032.png ; $F _ { 0 } \subset F$ ; confidence 0.979

118. a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979

119. a01137078.png ; $f _ { 1 } ( x ) + \ldots + f _ { n } ( x ) \equiv 1$ ; confidence 0.979

120. g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979

121. a13008075.png ; $c _ { n } = \frac { 1 } { \sqrt { n } B ( \frac { n } { 2 } , \frac { 1 } { 2 } ) } = \frac { \Gamma ( \frac { n + 1 } { 2 } ) } { \sqrt { n \pi } \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.979

122. a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979

123. b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979

124. b01616036.png ; $0 < c < 1$ ; confidence 0.979

125. d03379012.png ; $D \backslash K$ ; confidence 0.979

126. g043810238.png ; $x u = 0$ ; confidence 0.979

127. l05866027.png ; $G \subset N ( F )$ ; confidence 0.979

128. l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979

129. n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979

130. n06728084.png ; $y ^ { \prime \prime \prime } = \lambda y$ ; confidence 0.979

131. p07486040.png ; $0 \leq s _ { 0 } \leq l$ ; confidence 0.979

132. r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979

133. r082200143.png ; $V ^ { \prime } \subset R ^ { \prime }$ ; confidence 0.979

134. s08726044.png ; $\eta _ { 0 } ( i )$ ; confidence 0.979

135. s09076071.png ; $l [ f ] = 0$ ; confidence 0.979

136. t1301005.png ; $\square _ { H } T$ ; confidence 0.979

137. a12016039.png ; $b A$ ; confidence 0.979

138. a011450202.png ; $y = \psi ( z )$ ; confidence 0.979

139. s085590522.png ; $x _ { 0 } \in H$ ; confidence 0.979

140. a011600223.png ; $( \alpha / \beta ) _ { n }$ ; confidence 0.979

141. a011300163.png ; $\Delta _ { i } = 1$ ; confidence 0.979

142. s085590646.png ; $x = x ( u , v )$ ; confidence 0.979

143. a13008048.png ; $+ \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0$ ; confidence 0.979

144. a01116023.png ; $X$ ; confidence 0.979

145. a110040202.png ; $\varphi _ { L } ( A )$ ; confidence 0.979

146. d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979

147. a01107011.png ; $M _ { 1 }$ ; confidence 0.979

148. a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979

149. a010210121.png ; $\Omega ( a )$ ; confidence 0.979

150. a01121079.png ; $y _ { 1 } ( x ) = Y _ { 1 } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] + Y _ { 0 } ( x ) O ( \frac { 1 } { \lambda } )$ ; confidence 0.979

151. u09540020.png ; $K = p > 0$ ; confidence 0.978

152. g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978

153. w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978

154. a011600157.png ; $m = 1$ ; confidence 0.978

155. a01055047.png ; $( g , x ) \rightarrow x$ ; confidence 0.978

156. h04797062.png ; $p : G \rightarrow \{ e \}$ ; confidence 0.978

157. l05925094.png ; $| K | = 2,3$ ; confidence 0.978

158. u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978

159. a010210133.png ; $g = 1$ ; confidence 0.978

160. d03249015.png ; $d ( p )$ ; confidence 0.978

161. r07763080.png ; $\phi _ { 1 } \otimes \ldots \otimes \phi _ { d }$ ; confidence 0.978

162. t12001048.png ; $( S , g )$ ; confidence 0.978

163. c11045018.png ; $2 ^ { \lambda }$ ; confidence 0.978

164. a11015012.png ; $F ( . | S )$ ; confidence 0.978

165. r08137017.png ; $\phi ^ { a }$ ; confidence 0.978

166. a11004098.png ; $\theta = [ \Theta$ ; confidence 0.978

167. a11042078.png ; $4$ ; confidence 0.978

168. a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978

169. a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978

170. a11068076.png ; $\alpha \geq b$ ; confidence 0.978

171. b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978

172. b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978

173. c023150259.png ; $\beta \circ \beta = 0$ ; confidence 0.978

174. c02547031.png ; $\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$ ; confidence 0.978

175. d03087032.png ; $\pi ( \chi )$ ; confidence 0.978

176. g04500031.png ; $( n \operatorname { ln } n ) / 2$ ; confidence 0.978

177. h04830032.png ; $P _ { m } ( \xi + \tau N )$ ; confidence 0.978

178. m06308045.png ; $f ^ { ( m ) } ( x _ { 0 } ) < 0$ ; confidence 0.978

179. m0633503.png ; $\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$ ; confidence 0.978

180. p07540018.png ; $F \subset G$ ; confidence 0.978

181. s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978

182. s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978

183. u09541052.png ; $g ^ { p } = e$ ; confidence 0.978

184. a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978

185. a01018059.png ; $\sigma _ { k } - 1 < \beta < \sigma _ { k } < \ldots < \sigma _ { 1 }$ ; confidence 0.978

186. f11015085.png ; $S ( A )$ ; confidence 0.978

187. a13007093.png ; $\alpha \leq 2$ ; confidence 0.978

188. a011650122.png ; $\Omega _ { f } \cup \Omega _ { p }$ ; confidence 0.978

189. a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978

190. a12010069.png ; $u = u _ { f } \in D ( \Delta )$ ; confidence 0.978

191. a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978

192. a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978

193. a130040176.png ; $\{ a , b \}$ ; confidence 0.977

194. a011370156.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) < 2$ ; confidence 0.977

195. a110010155.png ; $x + \delta x = ( A + \delta A ) ^ { + } ( b + \delta b )$ ; confidence 0.977

196. d034120492.png ; $X ^ { \prime } = F$ ; confidence 0.977

197. a0107603.png ; $\omega ( s )$ ; confidence 0.977

198. a12012041.png ; $( I - A ) v = c$ ; confidence 0.977

199. h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977

200. d034120502.png ; $\{ H , G / H ^ { 0 } \}$ ; confidence 0.977

201. s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977

202. a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977

203. i0530603.png ; $g = k a n$ ; confidence 0.977

204. a01146087.png ; $C _ { \tau } ( X )$ ; confidence 0.977

205. a01076026.png ; $s = \epsilon t$ ; confidence 0.977

206. w120090322.png ; $\Lambda ( V )$ ; confidence 0.977

207. l05872010.png ; $( x + y ) ^ { [ p ] } = x ^ { [ p ] } + y ^ { [ p ] } + \Lambda _ { p } ( x , y )$ ; confidence 0.977

208. a12017035.png ; $< 1$ ; confidence 0.977

209. a12018097.png ; $x = F ( x )$ ; confidence 0.977

210. a010950117.png ; $S ( X , Y ) = \nabla _ { X } Y - \nabla _ { Y } X - [ X , Y ]$ ; confidence 0.977

211. a01081034.png ; $A ^ { * } ( t )$ ; confidence 0.977

212. a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977

213. a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977

214. a01164040.png ; $q ( V )$ ; confidence 0.977

215. a110680125.png ; $p / p$ ; confidence 0.977

216. a11068053.png ; $r ^ { \prime } < r$ ; confidence 0.977

217. k12003040.png ; $E = \emptyset$ ; confidence 0.977

218. l059350101.png ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977

219. m06259044.png ; $V _ { [ r ] }$ ; confidence 0.977

220. m062620207.png ; $R _ { + } ^ { l }$ ; confidence 0.977

221. s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977

222. t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977

223. u0952109.png ; $f _ { \alpha } ( x ) \geq - c$ ; confidence 0.977

224. v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977

225. w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977

226. z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977

227. f040820167.png ; $F _ { \pi } ( \overline { m } )$ ; confidence 0.977

228. l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977

229. g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977

230. s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977

231. a12016081.png ; $A V i / P = x$ ; confidence 0.977

232. a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977

233. s085590525.png ; $( a x + b y ) d y = ( c x + e y ) d x$ ; confidence 0.977

234. d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977

235. a01086014.png ; $x ( \phi ) = x ( \phi )$ ; confidence 0.977

236. a13014042.png ; $X \geq 3$ ; confidence 0.977

237. a12016048.png ; $g ( W )$ ; confidence 0.977

238. a01046025.png ; $y ^ { \prime } ( f ( x + \xi h ) )$ ; confidence 0.977

239. a011600257.png ; $A _ { 1 } / L _ { 1 }$ ; confidence 0.977

240. d034120383.png ; $F ^ { * } ( z )$ ; confidence 0.977

241. b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977

242. a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977

243. f040820148.png ; $F \mapsto C ( F ; A )$ ; confidence 0.977

244. a01110054.png ; $A _ { 1 }$ ; confidence 0.977

245. a11041082.png ; $\tau > n / 2 + 1$ ; confidence 0.977

246. a01130054.png ; $M ( k )$ ; confidence 0.977

247. a13018012.png ; $1$ ; confidence 0.977

248. d0316409.png ; $F _ { M } ( V _ { M } ( m ) ) = V _ { M } ( F _ { M } ( m ) ) = p m$ ; confidence 0.976

249. a01018052.png ; $\beta > 0$ ; confidence 0.976

250. m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976

251. a110040213.png ; $\varphi _ { L } : A \rightarrow K _ { A } \subset P ^ { 3 }$ ; confidence 0.976

252. a01081094.png ; $\lambda , \mu$ ; confidence 0.976

253. l05859082.png ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976

254. a01164048.png ; $= \chi ( V , O _ { V } ) - 1$ ; confidence 0.976

255. s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976

256. a13006055.png ; $\partial ( I )$ ; confidence 0.976

257. a11004070.png ; $d _ { 1 } = 2$ ; confidence 0.976

258. l05851030.png ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976

259. d03062025.png ; $R = \infty$ ; confidence 0.976

260. a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976

261. a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976

262. c11041079.png ; $A ^ { * } B$ ; confidence 0.976

263. d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976

264. d03211024.png ; $z = \phi _ { i }$ ; confidence 0.976

265. f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976

266. f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976

267. g045090287.png ; $G _ { A B } ^ { ( n ) } ( E )$ ; confidence 0.976

268. i11008077.png ; $T f _ { n } \rightarrow 0$ ; confidence 0.976

269. l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976

270. l059340144.png ; $C _ { 0 } ( R )$ ; confidence 0.976

271. n06764043.png ; $\Omega _ { X }$ ; confidence 0.976

272. p110120376.png ; $E _ { i } ( x )$ ; confidence 0.976

273. s087820210.png ; $y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$ ; confidence 0.976

274. t093900146.png ; $Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.976

275. t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976

276. u09507044.png ; $T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$ ; confidence 0.976

277. w09706017.png ; $2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$ ; confidence 0.976

278. y11001021.png ; $J ( \phi )$ ; confidence 0.976

279. a11040081.png ; $x ^ { * } \in ( X ^ { \odot } ) ^ { d }$ ; confidence 0.976

280. a01116032.png ; $X ( k )$ ; confidence 0.976

281. a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976

282. g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976

283. a01160051.png ; $K \rightarrow R$ ; confidence 0.976

284. a12018023.png ; $\lambda | > 1$ ; confidence 0.976

285. a12017032.png ; $< 0$ ; confidence 0.976

286. f040820100.png ; $Z \rightarrow A$ ; confidence 0.976

287. a01097016.png ; $e _ { 1 } , e _ { 2 } , e _ { 3 }$ ; confidence 0.976

288. a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976

289. d034120415.png ; $x ^ { \prime } \in G$ ; confidence 0.976

290. a13004061.png ; $h ( \varphi )$ ; confidence 0.976

291. a011370155.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) \leq 2$ ; confidence 0.976

292. l05876065.png ; $\phi ( b )$ ; confidence 0.975

293. a130240186.png ; $b$ ; confidence 0.975

294. s13054091.png ; $K _ { 2 } R$ ; confidence 0.975

295. a120310115.png ; $G$ ; confidence 0.975

296. a01150013.png ; $\theta$ ; confidence 0.975

297. r08103038.png ; $W _ { k } ( G )$ ; confidence 0.975

298. a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975

299. k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975

300. a01058017.png ; $y ^ { \prime } = - a y$ ; confidence 0.975

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/10&oldid=43900