Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/10"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 10 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 10 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
+
1. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541025.png ; $U _ { n } ( k )$ ; confidence 0.982
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029059.png ; $\pi x$ ; confidence 0.982
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121039.png ; $z ^ { 1 / 4 }$ ; confidence 0.982
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380177.png ; $\{ x \vee y , x \}$ ; confidence 0.982
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081067.png ; $U _ { k } ( y ) \equiv \sum _ { p = 1 } ^ { n } [ \alpha _ { k p } y ^ { ( p - 1 ) } ( t _ { 0 } ) + \beta _ { k p } y ^ { ( p - 1 ) } ( t _ { 1 } ) ]$ ; confidence 0.982
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046066.png ; $P ( x + \xi h ) = \sum _ { \nu = 0 } ^ { m } P _ { \nu } ( x , h ) \xi ^ { \nu }$ ; confidence 0.982
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018060.png ; $\sigma > \sigma _ { 1 }$ ; confidence 0.982
  
8. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p07283021.png ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137037.png ; $f \in C ( X )$ ; confidence 0.982
  
9. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060090/l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160024.png ; $x + y \sqrt { D }$ ; confidence 0.981
  
10. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052150/i0521507.png ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d03164028.png ; $( F , V )$ ; confidence 0.981
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022033.png ; $5$ ; confidence 0.396
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png ; $25$ ; confidence 0.396
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981
  
13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050014.png ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001060.png ; $| \delta A | \leq \epsilon | A |$ ; confidence 0.981
  
14. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081560/r081560116.png ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010021.png ; $C ( X )$ ; confidence 0.981
  
15. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718064.png ; $H ( K )$ ; confidence 0.395
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010201.png ; $| \delta \lambda _ { i } | \leq k ( T ) \| \delta A \|$ ; confidence 0.981
  
16. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020144.png ; $\operatorname { gr } D _ { X }$ ; confidence 0.395
+
16. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876017.png ; $\xi _ { i j } ( x ) = \partial f _ { j } / \partial g ( e , x )$ ; confidence 0.981
  
17. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008028.png ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981
  
18. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093570/t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780377.png ; $1 B S G$ ; confidence 0.389
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240508.png ; $E ( Z _ { 13 } ) = 0$ ; confidence 0.388
+
20. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981
  
21. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041069.png ; $u , v > 0$ ; confidence 0.981
  
22. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004015.png ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052067.png ; $\eta ^ { \prime } = f _ { y } ( x , y ) \eta + S$ ; confidence 0.981
  
23. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099015.png ; $P _ { \alpha }$ ; confidence 0.384
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981
  
24. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132023.png ; $v _ { 0 } ^ { k }$ ; confidence 0.384
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981
  
25. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $X *$ ; confidence 0.383
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $A x = b$ ; confidence 0.981
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981
  
28. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050970/i05097047.png ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981
  
29. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025920/c02592019.png ; $631$ ; confidence 0.381
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735065.png ; $K$ ; confidence 0.981
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png ; $Q$ ; confidence 0.380
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H$ ; confidence 0.981
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778021.png ; $w ^ { \prime }$ ; confidence 0.380
+
31. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981
  
32. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635060.png ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378
+
33. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d03321058.png ; $R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$ ; confidence 0.981
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240236.png ; $n - r$ ; confidence 0.377
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339309.png ; $p _ { 1 } / p _ { 2 }$ ; confidence 0.981
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015019.png ; $( g )$ ; confidence 0.376
+
35. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981
  
36. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120321.png ; $4 x$ ; confidence 0.375
+
36. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981
  
37. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471603.png ; $H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$ ; confidence 0.374
+
37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981
  
38. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $D _ { \alpha }$ ; confidence 0.374
+
38. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468042.png ; $\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$ ; confidence 0.981
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
+
39. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048250/h04825025.png ; $O A M$ ; confidence 0.981
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373
+
40. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
+
41. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i051950193.png ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981
  
42. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
+
42. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s0870309.png ; $f _ { h } \in U _ { k }$ ; confidence 0.371
+
43. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981
  
44. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060205.png ; $d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$ ; confidence 0.370
+
44. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544030.png ; $E = \{ e \}$ ; confidence 0.981
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369
+
45. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081550/r08155085.png ; $\psi d z$ ; confidence 0.981
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640127.png ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
+
46. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092980/t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041070.png ; $K _ { X } ^ { v } \otimes L ^ { i }$ ; confidence 0.368
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160018.png ; $D > 1$ ; confidence 0.981
  
48. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $n \| < C$ ; confidence 0.368
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370108.png ; $f ( x _ { 1 } ) \neq f ( x _ { 2 } )$ ; confidence 0.981
  
49. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566043.png ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006022.png ; $R ^ { p }$ ; confidence 0.981
  
50. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075190/p07519074.png ; $E _ { i j }$ ; confidence 0.366
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981
  
51. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; $b _ { 0 }$ ; confidence 0.363
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417027.png ; $e ^ { 2 \pi i z }$ ; confidence 0.981
  
52. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559036.png ; $z = \phi _ { 2 } ( t )$ ; confidence 0.981
  
53. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640132.png ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
+
54. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
+
55. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094440/t09444040.png ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a0107601.png ; $\frac { d x } { d t } = v , \quad \frac { d v } { d t } = - \omega ^ { 2 } ( \epsilon t ) x$ ; confidence 0.981
  
57. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $\hat { V }$ ; confidence 0.359
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018012.png ; $z - b | > R$ ; confidence 0.981
  
58. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149045.png ; $f _ { 0 } ^ { j } ( x _ { 0 } ) = y _ { 0 } ^ { j } , \quad F ( x , f _ { 0 } ^ { j } ( x ) ) = 0$ ; confidence 0.981
  
59. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in G$ ; confidence 0.357
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981
  
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
+
60. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851046.png ; $\alpha ( H _ { \alpha } ) = 2$ ; confidence 0.980
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980
  
62. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063760/m063760111.png ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150012.png ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980
  
63. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018030.png ; $\lambda _ { n } = \operatorname { ln } n$ ; confidence 0.980
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a11063032.png ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
+
65. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820153.png ; $\gamma ( T ) \in C ( F ; A )$ ; confidence 0.980
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024051.png ; $p \geq 0$ ; confidence 0.980
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010214.png ; $x ^ { i }$ ; confidence 0.980
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980
  
69. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065460/m06546014.png ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082016.png ; $H _ { G }$ ; confidence 0.980
  
70. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145045.png ; $\pi = \operatorname { dim } H ^ { 1 } ( X , O _ { X } )$ ; confidence 0.980
  
72. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980
  
73. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024015.png ; $n > m$ ; confidence 0.980
  
74. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240220.png ; $n \times n$ ; confidence 0.980
  
75. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
  
76. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
+
76. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c0229306.png ; $\{ x _ { n } > 0 \}$ ; confidence 0.980
  
77. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711048.png ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338
+
77. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380197.png ; $F \subset U$ ; confidence 0.980
  
78. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062360/m06236012.png ; $T _ { i j }$ ; confidence 0.337
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020174.png ; $( US )$ ; confidence 0.980
  
79. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780168.png ; $T _ { \nu }$ ; confidence 0.336
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980
  
80. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230379.png ; $\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$ ; confidence 0.335
+
80. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201064.png ; $( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$ ; confidence 0.980
  
81. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050123.png ; $c \rightarrow N$ ; confidence 0.335
+
81. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h0482005.png ; $Z = 1$ ; confidence 0.980
  
82. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $\mu$ ; confidence 0.335
+
82. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h0483101.png ; $\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$ ; confidence 0.980
  
83. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400325.png ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
+
83. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836089.png ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
+
84. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262012.png ; $b \in R ^ { l - 1 }$ ; confidence 0.980
  
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332
+
85. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660207.png ; $\kappa : \Omega \rightarrow \Omega _ { 1 }$ ; confidence 0.980
  
86. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332
+
86. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980
  
87. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
+
87. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086550/s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980
  
88. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
+
88. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980
  
89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
+
89. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032058.png ; $S ( L )$ ; confidence 0.980
  
90. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
+
90. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150728.png ; $A ^ { * } = A \cup \{ \infty _ { A } \}$ ; confidence 0.980
  
91. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $o = e K$ ; confidence 0.327
+
91. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980
  
92. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
+
92. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747012.png ; $x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$ ; confidence 0.980
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012014.png ; $( h \neq 0 )$ ; confidence 0.980
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008025.png ; $V = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.980
  
95. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070128.png ; $k > 8$ ; confidence 0.980
  
96. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
+
96. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120120.png ; $H _ { n - r } ( M ^ { n } , X ^ { * } )$ ; confidence 0.980
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050236.png ; $q > 1$ ; confidence 0.980
  
98. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070038.png ; $p \geq 2$ ; confidence 0.980
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022022.png ; $\| w _ { p } \| = \sqrt { \sum _ { k = 1 } ^ { p } | \omega _ { k p } | ^ { 2 } } < \epsilon$ ; confidence 0.980
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018036.png ; $\sigma _ { 1 } = \operatorname { Re } s _ { 1 }$ ; confidence 0.980
  
101. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980
  
102. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980
  
103. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
+
103. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055042.png ; $F ( 1 ) ( V )$ ; confidence 0.980
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005063.png ; $u _ { 0 } \in D ( A ( 0 ) )$ ; confidence 0.980
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220113.png ; $f \in L ^ { 1 } ( H , m )$ ; confidence 0.980
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980
  
107. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
+
107. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759045.png ; $E ( Q )$ ; confidence 0.980
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081080.png ; $n - k$ ; confidence 0.980
  
109. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012015.png ; $t > 4$ ; confidence 0.980
  
110. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
+
110. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797053.png ; $\{ e \} \rightarrow G$ ; confidence 0.980
  
111. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $M ^ { 0 }$ ; confidence 0.312
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a11049020.png ; $F \in F _ { D }$ ; confidence 0.980
  
112. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979
  
113. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310
+
113. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d0316408.png ; $\omega V _ { M } ( m ) = V _ { M } ( \omega ^ { ( p ) } m )$ ; confidence 0.979
  
114. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640116.png ; $p _ { 12 } > 1$ ; confidence 0.979
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150029.png ; $\Omega ^ { \tau } [ X ]$ ; confidence 0.979
  
116. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010146.png ; $( A )$ ; confidence 0.979
  
117. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
+
117. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696032.png ; $F _ { 0 } \subset F$ ; confidence 0.979
  
118. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137078.png ; $f _ { 1 } ( x ) + \ldots + f _ { n } ( x ) \equiv 1$ ; confidence 0.979
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
+
120. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979
  
121. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008075.png ; $c _ { n } = \frac { 1 } { \sqrt { n } B ( \frac { n } { 2 } , \frac { 1 } { 2 } ) } = \frac { \Gamma ( \frac { n + 1 } { 2 } ) } { \sqrt { n \pi } \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.979
  
122. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979
  
123. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979
  
124. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616036.png ; $0 < c < 1$ ; confidence 0.979
  
125. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300
+
125. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png ; $D \backslash K$ ; confidence 0.979
  
126. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
+
126. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810238.png ; $x u = 0$ ; confidence 0.979
  
127. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
+
127. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l05866027.png ; $G \subset N ( F )$ ; confidence 0.979
  
128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
+
128. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979
  
129. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
+
129. https://www.encyclopediaofmath.org/legacyimages/n/n110/n110010/n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979
  
130. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
+
130. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728084.png ; $y ^ { \prime \prime \prime } = \lambda y$ ; confidence 0.979
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $\{ A \rangle$ ; confidence 0.294
+
131. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486040.png ; $0 \leq s _ { 0 } \leq l$ ; confidence 0.979
  
132. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $\phi _ { im }$ ; confidence 0.294
+
132. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080640/r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979
  
133. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
+
133. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200143.png ; $V ^ { \prime } \subset R ^ { \prime }$ ; confidence 0.979
  
134. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087260/s08726044.png ; $\eta _ { 0 } ( i )$ ; confidence 0.979
  
135. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076071.png ; $l [ f ] = 0$ ; confidence 0.979
  
136. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
+
136. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301005.png ; $\square _ { H } T$ ; confidence 0.979
  
137. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016039.png ; $b A$ ; confidence 0.979
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450202.png ; $y = \psi ( z )$ ; confidence 0.979
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
+
139. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590522.png ; $x _ { 0 } \in H$ ; confidence 0.979
  
140. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600223.png ; $( \alpha / \beta ) _ { n }$ ; confidence 0.979
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300163.png ; $\Delta _ { i } = 1$ ; confidence 0.979
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
+
142. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590646.png ; $x = x ( u , v )$ ; confidence 0.979
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008048.png ; $+ \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0$ ; confidence 0.979
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116023.png ; $X$ ; confidence 0.979
  
145. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040202.png ; $\varphi _ { L } ( A )$ ; confidence 0.979
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
+
146. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a01107011.png ; $M _ { 1 }$ ; confidence 0.979
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979
  
149. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210121.png ; $\Omega ( a )$ ; confidence 0.979
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121079.png ; $y _ { 1 } ( x ) = Y _ { 1 } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] + Y _ { 0 } ( x ) O ( \frac { 1 } { \lambda } )$ ; confidence 0.979
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $99$ ; confidence 0.271
+
151. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540020.png ; $K = p > 0$ ; confidence 0.978
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
+
152. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978
  
153. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270
+
153. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978
  
154. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600157.png ; $m = 1$ ; confidence 0.978
  
155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055047.png ; $( g , x ) \rightarrow x$ ; confidence 0.978
  
156. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268
+
156. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797062.png ; $p : G \rightarrow \{ e \}$ ; confidence 0.978
  
157. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925094.png ; $| K | = 2,3$ ; confidence 0.978
  
158. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
+
158. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978
  
159. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png ; $g = 1$ ; confidence 0.978
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
+
160. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249015.png ; $d ( p )$ ; confidence 0.978
  
161. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
+
161. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763080.png ; $\phi _ { 1 } \otimes \ldots \otimes \phi _ { d }$ ; confidence 0.978
  
162. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
+
162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png ; $( S , g )$ ; confidence 0.978
  
163. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110450/c11045018.png ; $2 ^ { \lambda }$ ; confidence 0.978
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015012.png ; $F ( . | S )$ ; confidence 0.978
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
+
165. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137017.png ; $\phi ^ { a }$ ; confidence 0.978
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004098.png ; $\theta = [ \Theta$ ; confidence 0.978
  
167. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png ; $4$ ; confidence 0.978
  
168. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978
  
169. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978
  
170. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068076.png ; $\alpha \geq b$ ; confidence 0.978
  
171. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
  
172. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978
  
173. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150259.png ; $\beta \circ \beta = 0$ ; confidence 0.978
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547031.png ; $\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$ ; confidence 0.978
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087032.png ; $\pi ( \chi )$ ; confidence 0.978
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
176. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045000/g04500031.png ; $( n \operatorname { ln } n ) / 2$ ; confidence 0.978
  
177. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
177. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048300/h04830032.png ; $P _ { m } ( \xi + \tau N )$ ; confidence 0.978
  
178. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
+
178. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063080/m06308045.png ; $f ^ { ( m ) } ( x _ { 0 } ) < 0$ ; confidence 0.978
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
+
179. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063350/m0633503.png ; $\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$ ; confidence 0.978
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
+
180. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540018.png ; $F \subset G$ ; confidence 0.978
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
+
182. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083470/s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978
  
183. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
+
183. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541052.png ; $g ^ { p } = e$ ; confidence 0.978
  
184. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978
  
185. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018059.png ; $\sigma _ { k } - 1 < \beta < \sigma _ { k } < \ldots < \sigma _ { 1 }$ ; confidence 0.978
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
186. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015085.png ; $S ( A )$ ; confidence 0.978
  
187. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007093.png ; $\alpha \leq 2$ ; confidence 0.978
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650122.png ; $\Omega _ { f } \cup \Omega _ { p }$ ; confidence 0.978
  
189. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010069.png ; $u = u _ { f } \in D ( \Delta )$ ; confidence 0.978
  
191. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978
  
192. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978
  
193. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040176.png ; $\{ a , b \}$ ; confidence 0.977
  
194. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370156.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) < 2$ ; confidence 0.977
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010155.png ; $x + \delta x = ( A + \delta A ) ^ { + } ( b + \delta b )$ ; confidence 0.977
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
+
196. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120492.png ; $X ^ { \prime } = F$ ; confidence 0.977
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a0107603.png ; $\omega ( s )$ ; confidence 0.977
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012041.png ; $( I - A ) v = c$ ; confidence 0.977
  
199. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
199. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120502.png ; $\{ H , G / H ^ { 0 } \}$ ; confidence 0.977
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977
  
203. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
+
203. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530603.png ; $g = k a n$ ; confidence 0.977
  
204. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146087.png ; $C _ { \tau } ( X )$ ; confidence 0.977
  
205. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076026.png ; $s = \epsilon t$ ; confidence 0.977
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
+
206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090322.png ; $\Lambda ( V )$ ; confidence 0.977
  
207. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
+
207. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872010.png ; $( x + y ) ^ { [ p ] } = x ^ { [ p ] } + y ^ { [ p ] } + \Lambda _ { p } ( x , y )$ ; confidence 0.977
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017035.png ; $< 1$ ; confidence 0.977
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018097.png ; $x = F ( x )$ ; confidence 0.977
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950117.png ; $S ( X , Y ) = \nabla _ { X } Y - \nabla _ { Y } X - [ X , Y ]$ ; confidence 0.977
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081034.png ; $A ^ { * } ( t )$ ; confidence 0.977
  
212. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977
  
213. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977
  
214. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164040.png ; $q ( V )$ ; confidence 0.977
  
215. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680125.png ; $p / p$ ; confidence 0.977
  
216. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068053.png ; $r ^ { \prime } < r$ ; confidence 0.977
  
217. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
217. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
  
218. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350101.png ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977
  
219. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
219. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259044.png ; $V _ { [ r ] }$ ; confidence 0.977
  
220. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
220. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620207.png ; $R _ { + } ^ { l }$ ; confidence 0.977
  
221. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
221. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
  
222. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
+
222. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092530/t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977
  
223. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
+
223. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952109.png ; $f _ { \alpha } ( x ) \geq - c$ ; confidence 0.977
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
+
224. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977
  
225. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
+
227. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820167.png ; $F _ { \pi } ( \overline { m } )$ ; confidence 0.977
  
228. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
+
228. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977
  
229. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
+
229. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
230. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016081.png ; $A V i / P = x$ ; confidence 0.977
  
232. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
+
233. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590525.png ; $( a x + b y ) d y = ( c x + e y ) d x$ ; confidence 0.977
  
234. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
+
234. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977
  
235. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086014.png ; $x ( \phi ) = x ( \phi )$ ; confidence 0.977
  
236. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014042.png ; $X \geq 3$ ; confidence 0.977
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016048.png ; $g ( W )$ ; confidence 0.977
  
238. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046025.png ; $y ^ { \prime } ( f ( x + \xi h ) )$ ; confidence 0.977
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600257.png ; $A _ { 1 } / L _ { 1 }$ ; confidence 0.977
  
240. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120383.png ; $F ^ { * } ( z )$ ; confidence 0.977
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977
  
243. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820148.png ; $F \mapsto C ( F ; A )$ ; confidence 0.977
  
244. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110054.png ; $A _ { 1 }$ ; confidence 0.977
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041082.png ; $\tau > n / 2 + 1$ ; confidence 0.977
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130054.png ; $M ( k )$ ; confidence 0.977
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018012.png ; $1$ ; confidence 0.977
  
248. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d0316409.png ; $F _ { M } ( V _ { M } ( m ) ) = V _ { M } ( F _ { M } ( m ) ) = p m$ ; confidence 0.976
  
249. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018052.png ; $\beta > 0$ ; confidence 0.976
  
250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
+
250. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040213.png ; $\varphi _ { L } : A \rightarrow K _ { A } \subset P ^ { 3 }$ ; confidence 0.976
  
252. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081094.png ; $\lambda , \mu$ ; confidence 0.976
  
253. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
+
253. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859082.png ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976
  
254. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164048.png ; $= \chi ( V , O _ { V } ) - 1$ ; confidence 0.976
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006055.png ; $\partial ( I )$ ; confidence 0.976
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004070.png ; $d _ { 1 } = 2$ ; confidence 0.976
  
258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
+
258. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851030.png ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976
  
259. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
+
259. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062025.png ; $R = \infty$ ; confidence 0.976
  
260. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976
  
261. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976
  
262. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
+
262. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041079.png ; $A ^ { * } B$ ; confidence 0.976
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
+
263. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976
  
264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
264. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211024.png ; $z = \phi _ { i }$ ; confidence 0.976
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976
  
266. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
+
266. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
+
267. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090287.png ; $G _ { A B } ^ { ( n ) } ( E )$ ; confidence 0.976
  
268. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
+
268. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008077.png ; $T f _ { n } \rightarrow 0$ ; confidence 0.976
  
269. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
+
269. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
+
270. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059340/l059340144.png ; $C _ { 0 } ( R )$ ; confidence 0.976
  
271. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
+
271. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png ; $\Omega _ { X }$ ; confidence 0.976
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
272. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120376.png ; $E _ { i } ( x )$ ; confidence 0.976
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
+
273. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820210.png ; $y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$ ; confidence 0.976
  
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
+
274. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900146.png ; $Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.976
  
275. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
+
275. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094420/t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976
  
276. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
+
276. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095070/u09507044.png ; $T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$ ; confidence 0.976
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
+
277. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097060/w09706017.png ; $2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$ ; confidence 0.976
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
+
278. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001021.png ; $J ( \phi )$ ; confidence 0.976
  
279. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040081.png ; $x ^ { * } \in ( X ^ { \odot } ) ^ { d }$ ; confidence 0.976
  
280. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $_ { k }$ ; confidence 0.179
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116032.png ; $X ( k )$ ; confidence 0.976
  
281. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
282. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976
  
283. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160051.png ; $K \rightarrow R$ ; confidence 0.976
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018023.png ; $\lambda | > 1$ ; confidence 0.976
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017032.png ; $< 0$ ; confidence 0.976
  
286. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
+
286. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820100.png ; $Z \rightarrow A$ ; confidence 0.976
  
287. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010970/a01097016.png ; $e _ { 1 } , e _ { 2 } , e _ { 3 }$ ; confidence 0.976
  
288. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976
  
289. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
+
289. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120415.png ; $x ^ { \prime } \in G$ ; confidence 0.976
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $L f \theta$ ; confidence 0.169
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004061.png ; $h ( \varphi )$ ; confidence 0.976
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370155.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) \leq 2$ ; confidence 0.976
  
292. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876065.png ; $\phi ( b )$ ; confidence 0.975
  
293. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240186.png ; $b$ ; confidence 0.975
  
294. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
294. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054091.png ; $K _ { 2 } R$ ; confidence 0.975
  
295. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310115.png ; $G$ ; confidence 0.975
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150013.png ; $\theta$ ; confidence 0.975
  
297. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
+
297. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103038.png ; $W _ { k } ( G )$ ; confidence 0.975
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
+
299. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055170/k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975
  
300. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058017.png ; $y ^ { \prime } = - a y$ ; confidence 0.975

Latest revision as of 09:58, 17 October 2019

List

1. u09541025.png ; $U _ { n } ( k )$ ; confidence 0.982

2. a01029059.png ; $\pi x$ ; confidence 0.982

3. a01121039.png ; $z ^ { 1 / 4 }$ ; confidence 0.982

4. a011380177.png ; $\{ x \vee y , x \}$ ; confidence 0.982

5. a01081067.png ; $U _ { k } ( y ) \equiv \sum _ { p = 1 } ^ { n } [ \alpha _ { k p } y ^ { ( p - 1 ) } ( t _ { 0 } ) + \beta _ { k p } y ^ { ( p - 1 ) } ( t _ { 1 } ) ]$ ; confidence 0.982

6. a01046066.png ; $P ( x + \xi h ) = \sum _ { \nu = 0 } ^ { m } P _ { \nu } ( x , h ) \xi ^ { \nu }$ ; confidence 0.982

7. a01018060.png ; $\sigma > \sigma _ { 1 }$ ; confidence 0.982

8. a01137037.png ; $f \in C ( X )$ ; confidence 0.982

9. a01160024.png ; $x + y \sqrt { D }$ ; confidence 0.981

10. d03164028.png ; $( F , V )$ ; confidence 0.981

11. a011600196.png ; $K / k$ ; confidence 0.981

12. a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981

13. a11001060.png ; $| \delta A | \leq \epsilon | A |$ ; confidence 0.981

14. a11010021.png ; $C ( X )$ ; confidence 0.981

15. a110010201.png ; $| \delta \lambda _ { i } | \leq k ( T ) \| \delta A \|$ ; confidence 0.981

16. l05876017.png ; $\xi _ { i j } ( x ) = \partial f _ { j } / \partial g ( e , x )$ ; confidence 0.981

17. a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981

18. a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981

19. a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981

20. g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981

21. a11041069.png ; $u , v > 0$ ; confidence 0.981

22. a01052067.png ; $\eta ^ { \prime } = f _ { y } ( x , y ) \eta + S$ ; confidence 0.981

23. a12012059.png ; $x > 0$ ; confidence 0.981

24. a13013075.png ; $( g )$ ; confidence 0.981

25. a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981

26. a110010117.png ; $A x = b$ ; confidence 0.981

27. b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981

28. b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981

29. b01735065.png ; $K$ ; confidence 0.981

30. b120440103.png ; $R [ H \times H$ ; confidence 0.981

31. c02604027.png ; $P Q$ ; confidence 0.981

32. d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981

33. d03321058.png ; $R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$ ; confidence 0.981

34. d0339309.png ; $p _ { 1 } / p _ { 2 }$ ; confidence 0.981

35. d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981

36. e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981

37. f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981

38. g04468042.png ; $\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$ ; confidence 0.981

39. h04825025.png ; $O A M$ ; confidence 0.981

40. i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981

41. i051950193.png ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981

42. l12006027.png ; $\phi \in H$ ; confidence 0.981

43. m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981

44. m06544030.png ; $E = \{ e \}$ ; confidence 0.981

45. r08155085.png ; $\psi d z$ ; confidence 0.981

46. t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981

47. a01160018.png ; $D > 1$ ; confidence 0.981

48. a011370108.png ; $f ( x _ { 1 } ) \neq f ( x _ { 2 } )$ ; confidence 0.981

49. a12006022.png ; $R ^ { p }$ ; confidence 0.981

50. a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981

51. a01417027.png ; $e ^ { 2 \pi i z }$ ; confidence 0.981

52. s08559036.png ; $z = \phi _ { 2 } ( t )$ ; confidence 0.981

53. a011640132.png ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981

54. s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981

55. g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981

56. a0107601.png ; $\frac { d x } { d t } = v , \quad \frac { d v } { d t } = - \omega ^ { 2 } ( \epsilon t ) x$ ; confidence 0.981

57. a01018012.png ; $z - b | > R$ ; confidence 0.981

58. a01149045.png ; $f _ { 0 } ^ { j } ( x _ { 0 } ) = y _ { 0 } ^ { j } , \quad F ( x , f _ { 0 } ^ { j } ( x ) ) = 0$ ; confidence 0.981

59. a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981

60. l05851046.png ; $\alpha ( H _ { \alpha } ) = 2$ ; confidence 0.980

61. a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980

62. a01150012.png ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980

63. a01018030.png ; $\lambda _ { n } = \operatorname { ln } n$ ; confidence 0.980

64. a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980

65. f040820153.png ; $\gamma ( T ) \in C ( F ; A )$ ; confidence 0.980

66. a12024051.png ; $p \geq 0$ ; confidence 0.980

67. a110010214.png ; $x ^ { i }$ ; confidence 0.980

68. a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980

69. a01082016.png ; $H _ { G }$ ; confidence 0.980

70. a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980

71. a01145045.png ; $\pi = \operatorname { dim } H ^ { 1 } ( X , O _ { X } )$ ; confidence 0.980

72. a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980

73. a13024015.png ; $n > m$ ; confidence 0.980

74. a130240220.png ; $n \times n$ ; confidence 0.980

75. c12016016.png ; $j = 1 : n$ ; confidence 0.980

76. c0229306.png ; $\{ x _ { n } > 0 \}$ ; confidence 0.980

77. c023380197.png ; $F \subset U$ ; confidence 0.980

78. d120020174.png ; $( US )$ ; confidence 0.980

79. d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980

80. d03201064.png ; $( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$ ; confidence 0.980

81. h0482005.png ; $Z = 1$ ; confidence 0.980

82. h0483101.png ; $\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$ ; confidence 0.980

83. l05836089.png ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980

84. m06262012.png ; $b \in R ^ { l - 1 }$ ; confidence 0.980

85. p075660207.png ; $\kappa : \Omega \rightarrow \Omega _ { 1 }$ ; confidence 0.980

86. r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980

87. s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980

88. s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980

89. s12032058.png ; $S ( L )$ ; confidence 0.980

90. t093150728.png ; $A ^ { * } = A \cup \{ \infty _ { A } \}$ ; confidence 0.980

91. w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980

92. w09747012.png ; $x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$ ; confidence 0.980

93. a01012014.png ; $( h \neq 0 )$ ; confidence 0.980

94. a12008025.png ; $V = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.980

95. a130070128.png ; $k > 8$ ; confidence 0.980

96. d034120120.png ; $H _ { n - r } ( M ^ { n } , X ^ { * } )$ ; confidence 0.980

97. a130050236.png ; $q > 1$ ; confidence 0.980

98. a11070038.png ; $p \geq 2$ ; confidence 0.980

99. a01022022.png ; $\| w _ { p } \| = \sqrt { \sum _ { k = 1 } ^ { p } | \omega _ { k p } | ^ { 2 } } < \epsilon$ ; confidence 0.980

100. a01018036.png ; $\sigma _ { 1 } = \operatorname { Re } s _ { 1 }$ ; confidence 0.980

101. a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980

102. a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980

103. f04055042.png ; $F ( 1 ) ( V )$ ; confidence 0.980

104. a12005063.png ; $u _ { 0 } \in D ( A ( 0 ) )$ ; confidence 0.980

105. a110220113.png ; $f \in L ^ { 1 } ( H , m )$ ; confidence 0.980

106. a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980

107. w09759045.png ; $E ( Q )$ ; confidence 0.980

108. a01081080.png ; $n - k$ ; confidence 0.980

109. a13012015.png ; $t > 4$ ; confidence 0.980

110. h04797053.png ; $\{ e \} \rightarrow G$ ; confidence 0.980

111. a11049020.png ; $F \in F _ { D }$ ; confidence 0.980

112. a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979

113. d0316408.png ; $\omega V _ { M } ( m ) = V _ { M } ( \omega ^ { ( p ) } m )$ ; confidence 0.979

114. a011640116.png ; $p _ { 12 } > 1$ ; confidence 0.979

115. a01150029.png ; $\Omega ^ { \tau } [ X ]$ ; confidence 0.979

116. a110010146.png ; $( A )$ ; confidence 0.979

117. e03696032.png ; $F _ { 0 } \subset F$ ; confidence 0.979

118. a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979

119. a01137078.png ; $f _ { 1 } ( x ) + \ldots + f _ { n } ( x ) \equiv 1$ ; confidence 0.979

120. g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979

121. a13008075.png ; $c _ { n } = \frac { 1 } { \sqrt { n } B ( \frac { n } { 2 } , \frac { 1 } { 2 } ) } = \frac { \Gamma ( \frac { n + 1 } { 2 } ) } { \sqrt { n \pi } \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.979

122. a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979

123. b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979

124. b01616036.png ; $0 < c < 1$ ; confidence 0.979

125. d03379012.png ; $D \backslash K$ ; confidence 0.979

126. g043810238.png ; $x u = 0$ ; confidence 0.979

127. l05866027.png ; $G \subset N ( F )$ ; confidence 0.979

128. l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979

129. n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979

130. n06728084.png ; $y ^ { \prime \prime \prime } = \lambda y$ ; confidence 0.979

131. p07486040.png ; $0 \leq s _ { 0 } \leq l$ ; confidence 0.979

132. r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979

133. r082200143.png ; $V ^ { \prime } \subset R ^ { \prime }$ ; confidence 0.979

134. s08726044.png ; $\eta _ { 0 } ( i )$ ; confidence 0.979

135. s09076071.png ; $l [ f ] = 0$ ; confidence 0.979

136. t1301005.png ; $\square _ { H } T$ ; confidence 0.979

137. a12016039.png ; $b A$ ; confidence 0.979

138. a011450202.png ; $y = \psi ( z )$ ; confidence 0.979

139. s085590522.png ; $x _ { 0 } \in H$ ; confidence 0.979

140. a011600223.png ; $( \alpha / \beta ) _ { n }$ ; confidence 0.979

141. a011300163.png ; $\Delta _ { i } = 1$ ; confidence 0.979

142. s085590646.png ; $x = x ( u , v )$ ; confidence 0.979

143. a13008048.png ; $+ \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0$ ; confidence 0.979

144. a01116023.png ; $X$ ; confidence 0.979

145. a110040202.png ; $\varphi _ { L } ( A )$ ; confidence 0.979

146. d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979

147. a01107011.png ; $M _ { 1 }$ ; confidence 0.979

148. a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979

149. a010210121.png ; $\Omega ( a )$ ; confidence 0.979

150. a01121079.png ; $y _ { 1 } ( x ) = Y _ { 1 } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] + Y _ { 0 } ( x ) O ( \frac { 1 } { \lambda } )$ ; confidence 0.979

151. u09540020.png ; $K = p > 0$ ; confidence 0.978

152. g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978

153. w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978

154. a011600157.png ; $m = 1$ ; confidence 0.978

155. a01055047.png ; $( g , x ) \rightarrow x$ ; confidence 0.978

156. h04797062.png ; $p : G \rightarrow \{ e \}$ ; confidence 0.978

157. l05925094.png ; $| K | = 2,3$ ; confidence 0.978

158. u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978

159. a010210133.png ; $g = 1$ ; confidence 0.978

160. d03249015.png ; $d ( p )$ ; confidence 0.978

161. r07763080.png ; $\phi _ { 1 } \otimes \ldots \otimes \phi _ { d }$ ; confidence 0.978

162. t12001048.png ; $( S , g )$ ; confidence 0.978

163. c11045018.png ; $2 ^ { \lambda }$ ; confidence 0.978

164. a11015012.png ; $F ( . | S )$ ; confidence 0.978

165. r08137017.png ; $\phi ^ { a }$ ; confidence 0.978

166. a11004098.png ; $\theta = [ \Theta$ ; confidence 0.978

167. a11042078.png ; $4$ ; confidence 0.978

168. a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978

169. a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978

170. a11068076.png ; $\alpha \geq b$ ; confidence 0.978

171. b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978

172. b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978

173. c023150259.png ; $\beta \circ \beta = 0$ ; confidence 0.978

174. c02547031.png ; $\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$ ; confidence 0.978

175. d03087032.png ; $\pi ( \chi )$ ; confidence 0.978

176. g04500031.png ; $( n \operatorname { ln } n ) / 2$ ; confidence 0.978

177. h04830032.png ; $P _ { m } ( \xi + \tau N )$ ; confidence 0.978

178. m06308045.png ; $f ^ { ( m ) } ( x _ { 0 } ) < 0$ ; confidence 0.978

179. m0633503.png ; $\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$ ; confidence 0.978

180. p07540018.png ; $F \subset G$ ; confidence 0.978

181. s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978

182. s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978

183. u09541052.png ; $g ^ { p } = e$ ; confidence 0.978

184. a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978

185. a01018059.png ; $\sigma _ { k } - 1 < \beta < \sigma _ { k } < \ldots < \sigma _ { 1 }$ ; confidence 0.978

186. f11015085.png ; $S ( A )$ ; confidence 0.978

187. a13007093.png ; $\alpha \leq 2$ ; confidence 0.978

188. a011650122.png ; $\Omega _ { f } \cup \Omega _ { p }$ ; confidence 0.978

189. a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978

190. a12010069.png ; $u = u _ { f } \in D ( \Delta )$ ; confidence 0.978

191. a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978

192. a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978

193. a130040176.png ; $\{ a , b \}$ ; confidence 0.977

194. a011370156.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) < 2$ ; confidence 0.977

195. a110010155.png ; $x + \delta x = ( A + \delta A ) ^ { + } ( b + \delta b )$ ; confidence 0.977

196. d034120492.png ; $X ^ { \prime } = F$ ; confidence 0.977

197. a0107603.png ; $\omega ( s )$ ; confidence 0.977

198. a12012041.png ; $( I - A ) v = c$ ; confidence 0.977

199. h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977

200. d034120502.png ; $\{ H , G / H ^ { 0 } \}$ ; confidence 0.977

201. s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977

202. a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977

203. i0530603.png ; $g = k a n$ ; confidence 0.977

204. a01146087.png ; $C _ { \tau } ( X )$ ; confidence 0.977

205. a01076026.png ; $s = \epsilon t$ ; confidence 0.977

206. w120090322.png ; $\Lambda ( V )$ ; confidence 0.977

207. l05872010.png ; $( x + y ) ^ { [ p ] } = x ^ { [ p ] } + y ^ { [ p ] } + \Lambda _ { p } ( x , y )$ ; confidence 0.977

208. a12017035.png ; $< 1$ ; confidence 0.977

209. a12018097.png ; $x = F ( x )$ ; confidence 0.977

210. a010950117.png ; $S ( X , Y ) = \nabla _ { X } Y - \nabla _ { Y } X - [ X , Y ]$ ; confidence 0.977

211. a01081034.png ; $A ^ { * } ( t )$ ; confidence 0.977

212. a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977

213. a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977

214. a01164040.png ; $q ( V )$ ; confidence 0.977

215. a110680125.png ; $p / p$ ; confidence 0.977

216. a11068053.png ; $r ^ { \prime } < r$ ; confidence 0.977

217. k12003040.png ; $E = \emptyset$ ; confidence 0.977

218. l059350101.png ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977

219. m06259044.png ; $V _ { [ r ] }$ ; confidence 0.977

220. m062620207.png ; $R _ { + } ^ { l }$ ; confidence 0.977

221. s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977

222. t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977

223. u0952109.png ; $f _ { \alpha } ( x ) \geq - c$ ; confidence 0.977

224. v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977

225. w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977

226. z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977

227. f040820167.png ; $F _ { \pi } ( \overline { m } )$ ; confidence 0.977

228. l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977

229. g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977

230. s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977

231. a12016081.png ; $A V i / P = x$ ; confidence 0.977

232. a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977

233. s085590525.png ; $( a x + b y ) d y = ( c x + e y ) d x$ ; confidence 0.977

234. d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977

235. a01086014.png ; $x ( \phi ) = x ( \phi )$ ; confidence 0.977

236. a13014042.png ; $X \geq 3$ ; confidence 0.977

237. a12016048.png ; $g ( W )$ ; confidence 0.977

238. a01046025.png ; $y ^ { \prime } ( f ( x + \xi h ) )$ ; confidence 0.977

239. a011600257.png ; $A _ { 1 } / L _ { 1 }$ ; confidence 0.977

240. d034120383.png ; $F ^ { * } ( z )$ ; confidence 0.977

241. b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977

242. a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977

243. f040820148.png ; $F \mapsto C ( F ; A )$ ; confidence 0.977

244. a01110054.png ; $A _ { 1 }$ ; confidence 0.977

245. a11041082.png ; $\tau > n / 2 + 1$ ; confidence 0.977

246. a01130054.png ; $M ( k )$ ; confidence 0.977

247. a13018012.png ; $1$ ; confidence 0.977

248. d0316409.png ; $F _ { M } ( V _ { M } ( m ) ) = V _ { M } ( F _ { M } ( m ) ) = p m$ ; confidence 0.976

249. a01018052.png ; $\beta > 0$ ; confidence 0.976

250. m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976

251. a110040213.png ; $\varphi _ { L } : A \rightarrow K _ { A } \subset P ^ { 3 }$ ; confidence 0.976

252. a01081094.png ; $\lambda , \mu$ ; confidence 0.976

253. l05859082.png ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976

254. a01164048.png ; $= \chi ( V , O _ { V } ) - 1$ ; confidence 0.976

255. s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976

256. a13006055.png ; $\partial ( I )$ ; confidence 0.976

257. a11004070.png ; $d _ { 1 } = 2$ ; confidence 0.976

258. l05851030.png ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976

259. d03062025.png ; $R = \infty$ ; confidence 0.976

260. a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976

261. a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976

262. c11041079.png ; $A ^ { * } B$ ; confidence 0.976

263. d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976

264. d03211024.png ; $z = \phi _ { i }$ ; confidence 0.976

265. f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976

266. f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976

267. g045090287.png ; $G _ { A B } ^ { ( n ) } ( E )$ ; confidence 0.976

268. i11008077.png ; $T f _ { n } \rightarrow 0$ ; confidence 0.976

269. l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976

270. l059340144.png ; $C _ { 0 } ( R )$ ; confidence 0.976

271. n06764043.png ; $\Omega _ { X }$ ; confidence 0.976

272. p110120376.png ; $E _ { i } ( x )$ ; confidence 0.976

273. s087820210.png ; $y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$ ; confidence 0.976

274. t093900146.png ; $Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.976

275. t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976

276. u09507044.png ; $T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$ ; confidence 0.976

277. w09706017.png ; $2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$ ; confidence 0.976

278. y11001021.png ; $J ( \phi )$ ; confidence 0.976

279. a11040081.png ; $x ^ { * } \in ( X ^ { \odot } ) ^ { d }$ ; confidence 0.976

280. a01116032.png ; $X ( k )$ ; confidence 0.976

281. a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976

282. g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976

283. a01160051.png ; $K \rightarrow R$ ; confidence 0.976

284. a12018023.png ; $\lambda | > 1$ ; confidence 0.976

285. a12017032.png ; $< 0$ ; confidence 0.976

286. f040820100.png ; $Z \rightarrow A$ ; confidence 0.976

287. a01097016.png ; $e _ { 1 } , e _ { 2 } , e _ { 3 }$ ; confidence 0.976

288. a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976

289. d034120415.png ; $x ^ { \prime } \in G$ ; confidence 0.976

290. a13004061.png ; $h ( \varphi )$ ; confidence 0.976

291. a011370155.png ; $\rho _ { A } ( x _ { 1 } , x _ { 2 } ) \leq 2$ ; confidence 0.976

292. l05876065.png ; $\phi ( b )$ ; confidence 0.975

293. a130240186.png ; $b$ ; confidence 0.975

294. s13054091.png ; $K _ { 2 } R$ ; confidence 0.975

295. a120310115.png ; $G$ ; confidence 0.975

296. a01150013.png ; $\theta$ ; confidence 0.975

297. r08103038.png ; $W _ { k } ( G )$ ; confidence 0.975

298. a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975

299. k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975

300. a01058017.png ; $y ^ { \prime } = - a y$ ; confidence 0.975

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/10&oldid=43840