Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/1"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 1 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 1 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
+
1. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010139.png ; $3$ ; confidence 1.000
  
2. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053
+
2. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png ; $( 4 n + 3 )$ ; confidence 1.000
  
3. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
+
3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010115.png ; $11$ ; confidence 1.000
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055
+
4. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001094.png ; $n + 2$ ; confidence 1.000
  
5. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056
+
5. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010118.png ; $4 n + 3$ ; confidence 1.000
  
6. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
+
6. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010129.png ; $15$ ; confidence 1.000
  
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
+
7. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001091.png ; $z$ ; confidence 1.000
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060
+
8. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png ; $2$ ; confidence 1.000
  
9. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087300/s08730040.png ; $Q _ { 1 }$ ; confidence 0.060
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420113.png ; $f ( G ^ { + } ) \subseteq R ^ { + }$ ; confidence 1.000
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420110.png ; $f$ ; confidence 1.000
  
11. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042089.png ; $\geq 0$ ; confidence 1.000
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420166.png ; $2 n$ ; confidence 1.000
  
13. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013092.png ; $( 2 \times 2 )$ ; confidence 1.000
  
14. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022025.png ; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000
  
15. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240348.png ; $( r - q ) \times p$ ; confidence 1.000
  
16. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240424.png ; $( 1 \times p )$ ; confidence 1.000
  
17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240423.png ; $q \times 1$ ; confidence 1.000
  
18. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240375.png ; $( n - r ) F$ ; confidence 1.000
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012800/a01280065.png ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004067.png ; $\psi \in \Gamma$ ; confidence 1.000
  
20. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220101.png ; $R ( f )$ ; confidence 1.000
  
21. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018084.png ; $10 ^ { 16 }$ ; confidence 1.000
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146020.png ; $( 2 n - 2 p )$ ; confidence 1.000
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225011.png ; $R > 0$ ; confidence 1.000
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110600/a11060013.png ; $0.96$ ; confidence 1.000
  
25. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070370/o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032031.png ; $p < .5$ ; confidence 1.000
  
26. https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021067.png ; $( L ( \lambda ) )$ ; confidence 1.000
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350251.png ; $\{ \xi _ { t } ( s ) \}$ ; confidence 1.000
  
28. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016013.png ; $f ( n ) \equiv 0 ( \operatorname { mod } p )$ ; confidence 1.000
  
29. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540062.png ; $s ( z ) = q ( z )$ ; confidence 1.000
  
30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540048.png ; $s ( z )$ ; confidence 1.000
  
31. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015630/b01563017.png ; $p \leq 2$ ; confidence 1.000
  
32. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
+
32. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301906.png ; $F ( x ) = f ( M x )$ ; confidence 1.000
  
33. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b016920121.png ; $( M )$ ; confidence 1.000
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330155.png ; $\Phi ( \theta )$ ; confidence 1.000
  
35. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b01762024.png ; $r ^ { 2 }$ ; confidence 1.000
  
36. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
+
36. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280124.png ; $E ( \lambda )$ ; confidence 1.000
  
37. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021060/c02106028.png ; $V ( t ) = - V ( s )$ ; confidence 1.000
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021480/c02148045.png ; $b \neq 0$ ; confidence 1.000
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150017.png ; $y ^ { \prime \prime } - y > f ( x )$ ; confidence 1.000
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
+
40. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c02240053.png ; $( k \times n )$ ; confidence 1.000
  
41. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
+
41. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022530/c02253039.png ; $[ \gamma ]$ ; confidence 1.000
  
42. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
+
42. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660281.png ; $f : D \rightarrow \Omega$ ; confidence 1.000
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
+
43. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022940/c02294010.png ; $M$ ; confidence 1.000
  
44. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180506.png ; $N = N \times \{ 1 \} \times \{ 0 \}$ ; confidence 1.000
  
45. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489056.png ; $\mu ( d )$ ; confidence 1.000
  
46. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106
+
46. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010588.png ; $J ( \alpha )$ ; confidence 1.000
  
47. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
+
47. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044082.png ; $C ( n ) = 0$ ; confidence 1.000
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030069.png ; $n = \infty$ ; confidence 1.000
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480102.png ; $( \sigma ^ { t } f ) ( t ^ { \prime } ) = f ( t + t ^ { \prime } )$ ; confidence 1.000
  
50. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
+
50. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005022.png ; $m - 2 r$ ; confidence 1.000
  
51. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $q _ { A }$ ; confidence 0.118
+
51. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185088.png ; $( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$ ; confidence 1.000
  
52. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018084.png ; $C ( G )$ ; confidence 1.000
  
53. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
+
53. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029018.png ; $f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$ ; confidence 1.000
  
54. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
+
54. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034260/d03426025.png ; $\delta ( t )$ ; confidence 1.000
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
+
55. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e035550163.png ; $b _ { 2 } = 0$ ; confidence 1.000
  
56. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
+
56. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015070.png ; $\lambda _ { 1 } = \lambda _ { 2 }$ ; confidence 1.000
  
57. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
+
57. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230210.png ; $R ( \delta ) = 1 - H ( \delta )$ ; confidence 1.000
  
58. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
+
58. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005048.png ; $w ( x ) = | f ( x ) | ^ { 2 }$ ; confidence 1.000
  
59. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
+
59. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040420/f04042034.png ; $\Phi ( \Phi ( x ) ) = x$ ; confidence 1.000
  
60. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
+
60. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850143.png ; $\{ \lambda \}$ ; confidence 1.000
  
61. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
+
61. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041140/f04114018.png ; $P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$ ; confidence 1.000
  
62. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
+
62. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010041.png ; $( 8 \times 8 )$ ; confidence 1.000
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
+
63. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015010.png ; $R ( A )$ ; confidence 1.000
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151086.png ; $( r \geq 1 )$ ; confidence 1.000
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
+
65. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f04206074.png ; $f ( - x ) = - f ( x )$ ; confidence 1.000
  
66. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
+
66. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003011.png ; $3 n + 2$ ; confidence 1.000
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
+
67. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350167.png ; $\alpha ( F ) = 1$ ; confidence 1.000
  
68. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138
+
68. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628046.png ; $\frac { d ^ { 2 } y } { d t ^ { 2 } } + P ( t ) y = 0$ ; confidence 1.000
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
+
69. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744030.png ; $f ( 0 ) = f ( 1 ) = 0$ ; confidence 1.000
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
+
70. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h04844022.png ; $\alpha - \beta$ ; confidence 1.000
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
+
71. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110020/i11002080.png ; $( A )$ ; confidence 1.000
  
72. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
+
72. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050310/i05031036.png ; $\delta _ { 0 } > 0$ ; confidence 1.000
  
73. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
+
73. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i05065016.png ; $B ( M )$ ; confidence 1.000
  
74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
+
74. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i05141060.png ; $h ( \lambda )$ ; confidence 1.000
  
75. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
+
75. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051940/i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000
  
76. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
+
76. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241017.png ; $\operatorname { cos } ^ { - 1 } x$ ; confidence 1.000
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
+
77. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090151.png ; $p < 12000000$ ; confidence 1.000
  
78. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
+
78. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001019.png ; $T ( s )$ ; confidence 1.000
  
79. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
+
79. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552076.png ; $\Omega ( \Gamma )$ ; confidence 1.000
  
80. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754082.png ; $| t | ^ { - 1 }$ ; confidence 1.000
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
+
81. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836011.png ; $( x y ) x = y ( y x )$ ; confidence 1.000
  
82. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
+
82. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859076.png ; $x ( 1 )$ ; confidence 1.000
  
83. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
+
83. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059020/l05902046.png ; $y = \operatorname { sin } ( 1 / x )$ ; confidence 1.000
  
84. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
+
84. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059540/l0595404.png ; $L ( 0 ) = 0$ ; confidence 1.000
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
+
85. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
+
86. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110050/m11005068.png ; $q ^ { - 1 } = 1 - p ^ { - 1 }$ ; confidence 1.000
  
87. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
+
87. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262048.png ; $c ( t ) \geq 0$ ; confidence 1.000
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
+
88. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062630/m06263022.png ; $\int _ { - \infty } ^ { \infty } x d F ( x )$ ; confidence 1.000
  
89. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
+
89. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471081.png ; $f ( z ) = f ( x + i y )$ ; confidence 1.000
  
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
90. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483029.png ; $f ( x ^ { \prime } ) < t$ ; confidence 1.000
  
91. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165
+
91. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021026.png ; $\alpha = 4 \pi$ ; confidence 1.000
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
+
92. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066560/n06656013.png ; $A ( u ) = 0$ ; confidence 1.000
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169
+
93. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007025.png ; $m ( B ) = 0$ ; confidence 1.000
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $L f \theta$ ; confidence 0.169
+
94. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520368.png ; $\phi _ { i } ( 0 ) = 0$ ; confidence 1.000
  
95. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
+
95. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n0679002.png ; $x y = 40$ ; confidence 1.000
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
+
96. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p11012025.png ; $\lambda < \mu$ ; confidence 1.000
  
97. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
+
97. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201308.png ; $\theta$ ; confidence 1.000
  
98. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073100/p07310032.png ; $\mu A = m > 0$ ; confidence 1.000
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
+
99. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073280/p07328015.png ; $2 \lambda$ ; confidence 1.000
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
100. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370015.png ; $f ( n ) \geq 0$ ; confidence 1.000
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
+
101. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p07416038.png ; $\mu _ { 1 } = \mu _ { 2 } = \mu > 0$ ; confidence 1.000
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
102. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469036.png ; $G = G ^ { \prime }$ ; confidence 1.000
  
103. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
+
103. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076090/q07609018.png ; $( n = 4 )$ ; confidence 1.000
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
+
104. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619068.png ; $\alpha = - 1 / 2$ ; confidence 1.000
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
+
105. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310117.png ; $R ^ { 12 }$ ; confidence 1.000
  
106. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
+
106. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077250/r07725048.png ; $( n - \mu _ { 1 } ) / 2$ ; confidence 1.000
  
107. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $_ { k }$ ; confidence 0.179
+
107. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077510/r0775103.png ; $T = T ( R )$ ; confidence 1.000
  
108. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
+
108. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077590/r07759075.png ; $R ( x )$ ; confidence 1.000
  
109. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
+
109. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080210/r08021025.png ; $f ( x ) = x + 1$ ; confidence 1.000
  
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
+
110. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081590/r08159047.png ; $A = \int _ { - \infty } ^ { \infty } \lambda d E _ { \lambda }$ ; confidence 1.000
  
111. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
+
111. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256054.png ; $19$ ; confidence 1.000
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
112. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r082590243.png ; $\lambda - \mu$ ; confidence 1.000
  
113. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
+
113. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r082590135.png ; $- 3$ ; confidence 1.000
  
114. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083380/s08338074.png ; $\Phi ( r - b + c )$ ; confidence 1.000
  
115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
+
115. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085820/s085820238.png ; $b ( x ) < 0$ ; confidence 1.000
  
116. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
+
116. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662031.png ; $( \pi )$ ; confidence 1.000
  
117. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s08681080.png ; $( 2 m - 2 )$ ; confidence 1.000
  
118. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
118. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764034.png ; $g \neq 0$ ; confidence 1.000
  
119. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
+
119. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090710/s09071014.png ; $f = 1$ ; confidence 1.000
  
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
120. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265012.png ; $x ^ { 3 } + x y ^ { 2 }$ ; confidence 1.000
  
121. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
+
121. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939808.png ; $V = f ^ { - 1 } ( X )$ ; confidence 1.000
  
122. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
+
122. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094000/t09400030.png ; $f ( x ) = g ( y )$ ; confidence 1.000
  
123. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
123. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094660/t09466060.png ; $\{ f ( z ) \}$ ; confidence 1.000
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
+
124. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095680/u09568015.png ; $( n \geq 0 )$ ; confidence 1.000
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
+
125. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097090/w0970903.png ; $F ( x )$ ; confidence 1.000
  
126. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
+
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000
  
127. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
+
127. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w0979106.png ; $B ( \lambda )$ ; confidence 1.000
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
+
128. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009083.png ; $( g ) = g ^ { \prime }$ ; confidence 1.000
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
129. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099030/y09903095.png ; $\sigma ( M ^ { 4 } )$ ; confidence 1.000
  
130. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001057.png ; $10$ ; confidence 1.000
  
131. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160016.png ; $- 1$ ; confidence 1.000
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070132.png ; $10 ^ { 4 }$ ; confidence 1.000
  
133. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007016.png ; $100$ ; confidence 1.000
  
134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040273.png ; $( 1,4 )$ ; confidence 1.000
  
135. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093012.png ; $10 ^ { 3 }$ ; confidence 1.000
  
136. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
+
136. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410100.png ; $90$ ; confidence 1.000
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148042.png ; $x ^ { 2 } + 1$ ; confidence 1.000
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040163.png ; $24$ ; confidence 1.000
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380171.png ; $1 + 1$ ; confidence 1.000
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010303.png ; $f ( \lambda )$ ; confidence 1.000
  
141. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014045.png ; $\sqrt { 2 }$ ; confidence 1.000
  
142. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040265.png ; $( 1,3 )$ ; confidence 1.000
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148040.png ; $x ^ { 2 } - 2$ ; confidence 1.000
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037044.png ; $\lambda ( t - s )$ ; confidence 1.000
  
145. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150026.png ; $3 p - 3$ ; confidence 1.000
  
146. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011180/a0111801.png ; $( 1,1 )$ ; confidence 1.000
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014041.png ; $\sqrt { 3 }$ ; confidence 1.000
  
148. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040145.png ; $18$ ; confidence 1.000
  
149. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093011.png ; $10 ^ { 2 }$ ; confidence 1.000
  
150. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018091.png ; $23$ ; confidence 1.000
  
151. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450258.png ; $75$ ; confidence 1.000
  
152. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008025.png ; $\sqrt { 1 - s ^ { 2 } }$ ; confidence 1.000
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022085.png ; $3 ( p - 1 )$ ; confidence 1.000
  
154. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007061.png ; $- 8$ ; confidence 1.000
  
155. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040209.png ; $( 1,5 )$ ; confidence 1.000
  
156. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040260.png ; $( 1,2 )$ ; confidence 1.000
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
+
157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090217.png ; $\nabla ( \lambda )$ ; confidence 1.000
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003018.png ; $[ 0 , \infty )$ ; confidence 1.000
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150017.png ; $\lambda ( \theta )$ ; confidence 1.000
  
160. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020026.png ; $p ( t )$ ; confidence 1.000
  
161. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018062.png ; $\lambda \neq 0$ ; confidence 1.000
  
162. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
+
162. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769089.png ; $\Gamma ( \pi )$ ; confidence 1.000
  
163. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148050.png ; $p ^ { 2 }$ ; confidence 1.000
  
164. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200604.png ; $\partial \Omega$ ; confidence 1.000
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018063.png ; $\lambda = 0$ ; confidence 1.000
  
166. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137029.png ; $f ^ { \prime } ( 0 ) = 0$ ; confidence 1.000
  
167. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037011.png ; $0 \leq s < t$ ; confidence 1.000
  
168. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040217.png ; $( 2,4 )$ ; confidence 1.000
  
169. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
169. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970110.png ; $x ^ { 2 } = 0$ ; confidence 1.000
  
170. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
+
170. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258308.png ; $\{ 0 \}$ ; confidence 1.000
  
171. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160137.png ; $13$ ; confidence 1.000
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012041.png ; $4 \mu$ ; confidence 1.000
  
173. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040238.png ; $( 3,3 )$ ; confidence 1.000
  
174. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160062.png ; $\pm 1$ ; confidence 1.000
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160175.png ; $\alpha \in ( 0,1 )$ ; confidence 1.000
  
176. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
+
176. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590466.png ; $f ( x , y ) = x ^ { 3 } + y ^ { 4 }$ ; confidence 1.000
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a1200308.png ; $f ( - x )$ ; confidence 1.000
  
178. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006014.png ; $\Omega \times \Omega$ ; confidence 1.000
  
179. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300112.png ; $( t - 1 ) ^ { \mu - 2 }$ ; confidence 1.000
  
180. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590469.png ; $f ( x , y ) = x ^ { 3 } + x y ^ { 3 }$ ; confidence 1.000
  
181. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018085.png ; $\operatorname { ln } 2$ ; confidence 1.000
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137031.png ; $f _ { 1 } ( z ) = z$ ; confidence 1.000
  
183. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012051.png ; $f ( \infty ) = 0$ ; confidence 1.000
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539057.png ; $\rho ( \theta , \delta )$ ; confidence 1.000
  
185. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
185. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010077.png ; $27$ ; confidence 1.000
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002015.png ; $\{ 1,2,4 \}$ ; confidence 1.000
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160034.png ; $6 = ( 1 + \sqrt { - 5 } ) ( 1 - \sqrt { - 5 } )$ ; confidence 1.000
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042088.png ; $( G , G ^ { + } )$ ; confidence 1.000
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540120.png ; $\{ - 1 , - 1 \}$ ; confidence 1.000
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016084.png ; $5$ ; confidence 1.000
  
191. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300120.png ; $\Delta ( 0 ) = + 1$ ; confidence 1.000
  
192. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010074.png ; $f ( x ) =$ ; confidence 1.000
  
193. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145010.png ; $f ( x , y )$ ; confidence 1.000
  
194. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005086.png ; $\lambda > \beta$ ; confidence 1.000
  
195. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189020.png ; $( \xi , \eta )$ ; confidence 1.000
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
196. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140126.png ; $p ^ { - 1 } ( b )$ ; confidence 1.000
  
197. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012057.png ; $\lambda ( x , y )$ ; confidence 1.000
  
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
198. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310118.png ; $R ^ { 13 }$ ; confidence 1.000
  
199. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018055.png ; $\lambda \neq 1$ ; confidence 1.000
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060105.png ; $( 0,1 )$ ; confidence 1.000
  
201. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021024.png ; $\lambda \leq \mu$ ; confidence 1.000
  
202. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012047.png ; $y = 0$ ; confidence 1.000
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
203. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090206.png ; $\mu - \lambda$ ; confidence 1.000
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040051.png ; $( \lambda - A ) ^ { - 1 }$ ; confidence 1.000
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040210.png ; $( 2,2 )$ ; confidence 1.000
  
206. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102203.png ; $T = [ 0 , \infty )$ ; confidence 1.000
  
207. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
+
207. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h04741012.png ; $f ( t , x ) = t - x ^ { 2 }$ ; confidence 1.000
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021052.png ; $f ( z )$ ; confidence 1.000
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013900/a0139002.png ; $\partial G$ ; confidence 1.000
  
210. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200409.png ; $( 0 , \infty )$ ; confidence 1.000
  
211. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007014.png ; $21$ ; confidence 1.000
  
212. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a1101703.png ; $t = 0$ ; confidence 1.000
  
213. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018046.png ; $\sigma > \beta$ ; confidence 1.000
  
214. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006039.png ; $f ( t )$ ; confidence 1.000
  
215. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005071.png ; $- A ( t )$ ; confidence 1.000
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018092.png ; $t = 2$ ; confidence 1.000
  
217. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008059.png ; $H ^ { 1 } ( \Omega )$ ; confidence 1.000
  
218. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149073.png ; $f ^ { \prime } ( x )$ ; confidence 1.000
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008027.png ; $1 - ( 1 / 2 ) s ^ { 2 }$ ; confidence 1.000
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022098.png ; $( p + 1 )$ ; confidence 1.000
  
221. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004027.png ; $\Gamma ^ { \prime } \subseteq \Gamma$ ; confidence 1.000
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020016.png ; $p ( T ) = 0$ ; confidence 1.000
  
223. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
+
223. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015540/b01554032.png ; $( 0,0 )$ ; confidence 1.000
  
224. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540101.png ; $G = E ( R )$ ; confidence 1.000
  
225. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
+
225. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120433.png ; $\sigma ( G , F )$ ; confidence 1.000
  
226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004071.png ; $\lambda = 2 \mu$ ; confidence 1.000
  
227. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a0109301.png ; $10 ^ { 6 }$ ; confidence 1.000
  
228. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370111.png ; $f ( x )$ ; confidence 1.000
  
229. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018086.png ; $10 ^ { - 16 }$ ; confidence 1.000
  
230. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539058.png ; $\rho ( \pi , \delta )$ ; confidence 1.000
  
231. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011023.png ; $n + 3$ ; confidence 1.000
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029026.png ; $\xi = \{ A \}$ ; confidence 1.000
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
+
233. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539041.png ; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $99$ ; confidence 0.271
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007025.png ; $b = 3$ ; confidence 1.000
  
235. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016092.png ; $\alpha + \beta$ ; confidence 1.000
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004072.png ; $\mu = [ M ]$ ; confidence 1.000
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008030.png ; $r ( s )$ ; confidence 1.000
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007067.png ; $- ( 1 / \sqrt { 12 } - \varepsilon )$ ; confidence 1.000
  
239. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733082.png ; $f _ { 1 } ( z )$ ; confidence 1.000
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
+
240. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002069.png ; $1 \leq k \leq n - 1$ ; confidence 1.000
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
241. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372059.png ; $U ( 0,1 )$ ; confidence 1.000
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017036.png ; $= 1$ ; confidence 1.000
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040221.png ; $( 2,6 )$ ; confidence 1.000
  
244. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021011.png ; $z = x + i y$ ; confidence 1.000
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016083.png ; $16$ ; confidence 1.000
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
+
246. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h04741044.png ; $3 g + 6$ ; confidence 1.000
  
247. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005080.png ; $\{ A ( t ) \}$ ; confidence 1.000
  
248. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040227.png ; $16$ ; confidence 1.000
  
249. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145094.png ; $2 g - 2$ ; confidence 1.000
  
250. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240109.png ; $( \alpha , \beta , \gamma ) ^ { \prime } = \beta$ ; confidence 1.000
  
251. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040225.png ; $\varphi \approx \psi$ ; confidence 1.000
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $\{ A \rangle$ ; confidence 0.294
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490145.png ; $y ^ { 2 } - x ^ { 2 } = 1$ ; confidence 1.000
  
253. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $\phi _ { im }$ ; confidence 0.294
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018075.png ; $\lambda = 1$ ; confidence 1.000
  
254. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068030.png ; $\{ p \}$ ; confidence 1.000
  
255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450155.png ; $3 g - 3$ ; confidence 1.000
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
+
256. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120158.png ; $( r + 1 )$ ; confidence 1.000
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040180.png ; $12$ ; confidence 1.000
  
258. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
+
258. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300209.png ; $\beta = - i$ ; confidence 1.000
  
259. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016038.png ; $f ( u ) ( 1 - A )$ ; confidence 1.000
  
260. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016031.png ; $\rho ( M ^ { - 1 } N )$ ; confidence 1.000
  
261. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
+
261. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080900/r08090012.png ; $\phi ( T , G )$ ; confidence 1.000
  
262. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007064.png ; $- ( \sqrt { 2 } + \varepsilon )$ ; confidence 1.000
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007066.png ; $- ( 1 - \varepsilon )$ ; confidence 1.000
  
264. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081092.png ; $\mu = \overline { \lambda }$ ; confidence 1.000
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
265. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301075.png ; $p = ( n + 1 ) / 2$ ; confidence 1.000
  
266. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021014.png ; $p ( z )$ ; confidence 1.000
  
267. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
+
267. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090107.png ; $( r - 1 )$ ; confidence 1.000
  
268. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
+
268. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120407.png ; $f ( x , y ) = ( x , y )$ ; confidence 1.000
  
269. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
+
269. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310119.png ; $R ^ { 23 }$ ; confidence 1.000
  
270. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310
+
270. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859090.png ; $G _ { 1 } \cong G _ { 2 }$ ; confidence 1.000
  
271. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022084.png ; $p > 3$ ; confidence 1.000
  
272. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a0115008.png ; $s ^ { 2 } = f ( t )$ ; confidence 1.000
  
273. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005037.png ; $\rho ( A ( t ) )$ ; confidence 1.000
  
274. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $M ^ { 0 }$ ; confidence 0.312
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010300.png ; $f ( \lambda _ { i } )$ ; confidence 1.000
  
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313
+
275. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016038.png ; $[ 0,1 ]$ ; confidence 1.000
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005073.png ; $D ( A ( t ) )$ ; confidence 1.000
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
+
277. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472051.png ; $\square ( \Gamma )$ ; confidence 1.000
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002015.png ; $\mu ( A ) = 0$ ; confidence 1.000
  
279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600224.png ; $( \alpha , \beta )$ ; confidence 1.000
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a1102809.png ; $r ( D )$ ; confidence 1.000
  
281. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
+
281. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070095.png ; $\delta \in D ( S )$ ; confidence 1.000
  
282. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013610/a0136105.png ; $- \infty$ ; confidence 1.000
  
283. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008067.png ; $A ( t ) ^ { 1 / 2 }$ ; confidence 1.000
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007029.png ; $b = 5$ ; confidence 1.000
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180166.png ; $( k - 1 )$ ; confidence 1.000
  
286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024670/c02467029.png ; $x$ ; confidence 1.000
  
287. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
+
287. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120475.png ; $\sigma ( F , F ^ { \prime } )$ ; confidence 1.000
  
288. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137069.png ; $f ( x ) = 1$ ; confidence 1.000
  
289. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300114.png ; $A ( k )$ ; confidence 1.000
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007075.png ; $\eta \in ( 0,1 ]$ ; confidence 1.000
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007071.png ; $\rho \in ( 0,1 ]$ ; confidence 1.000
  
292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a01067019.png ; $\eta ( t )$ ; confidence 1.000
  
293. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $o = e K$ ; confidence 0.327
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180103.png ; $F ^ { \prime } ( x ) \neq 1$ ; confidence 1.000
  
294. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
+
294. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w0975906.png ; $H ^ { 1 } ( k , A )$ ; confidence 1.000
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590115.png ; $U ( \zeta , R )$ ; confidence 1.000
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005056.png ; $\alpha \in ( 0,1 ]$ ; confidence 1.000
  
297. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a1106408.png ; $= 3$ ; confidence 1.000
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183093.png ; $\{ F \}$ ; confidence 1.000
  
299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149091.png ; $\tau = 0$ ; confidence 1.000
  
300. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012059.png ; $b > 0$ ; confidence 1.000

Latest revision as of 09:58, 17 October 2019

List

1. t120010139.png ; $3$ ; confidence 1.000

2. t120010134.png ; $( 4 n + 3 )$ ; confidence 1.000

3. t120010115.png ; $11$ ; confidence 1.000

4. t12001094.png ; $n + 2$ ; confidence 1.000

5. t120010118.png ; $4 n + 3$ ; confidence 1.000

6. t120010129.png ; $15$ ; confidence 1.000

7. t12001091.png ; $z$ ; confidence 1.000

8. t12001074.png ; $2$ ; confidence 1.000

9. a110420113.png ; $f ( G ^ { + } ) \subseteq R ^ { + }$ ; confidence 1.000

10. a110420110.png ; $f$ ; confidence 1.000

11. a11042089.png ; $\geq 0$ ; confidence 1.000

12. a110420166.png ; $2 n$ ; confidence 1.000

13. a13013092.png ; $( 2 \times 2 )$ ; confidence 1.000

14. a12022025.png ; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000

15. a130240348.png ; $( r - q ) \times p$ ; confidence 1.000

16. a130240424.png ; $( 1 \times p )$ ; confidence 1.000

17. a130240423.png ; $q \times 1$ ; confidence 1.000

18. a130240375.png ; $( n - r ) F$ ; confidence 1.000

19. a13004067.png ; $\psi \in \Gamma$ ; confidence 1.000

20. a110220101.png ; $R ( f )$ ; confidence 1.000

21. a12018084.png ; $10 ^ { 16 }$ ; confidence 1.000

22. a01146020.png ; $( 2 n - 2 p )$ ; confidence 1.000

23. a01225011.png ; $R > 0$ ; confidence 1.000

24. a11060013.png ; $0.96$ ; confidence 1.000

25. a13032031.png ; $p < .5$ ; confidence 1.000

26. b12021067.png ; $( L ( \lambda ) )$ ; confidence 1.000

27. b015350251.png ; $\{ \xi _ { t } ( s ) \}$ ; confidence 1.000

28. b11016013.png ; $f ( n ) \equiv 0 ( \operatorname { mod } p )$ ; confidence 1.000

29. b01540062.png ; $s ( z ) = q ( z )$ ; confidence 1.000

30. b01540048.png ; $s ( z )$ ; confidence 1.000

31. b01563017.png ; $p \leq 2$ ; confidence 1.000

32. b1301906.png ; $F ( x ) = f ( M x )$ ; confidence 1.000

33. b016920121.png ; $( M )$ ; confidence 1.000

34. b017330155.png ; $\Phi ( \theta )$ ; confidence 1.000

35. b01762024.png ; $r ^ { 2 }$ ; confidence 1.000

36. c020280124.png ; $E ( \lambda )$ ; confidence 1.000

37. c02106028.png ; $V ( t ) = - V ( s )$ ; confidence 1.000

38. c02148045.png ; $b \neq 0$ ; confidence 1.000

39. c02150017.png ; $y ^ { \prime \prime } - y > f ( x )$ ; confidence 1.000

40. c02240053.png ; $( k \times n )$ ; confidence 1.000

41. c02253039.png ; $[ \gamma ]$ ; confidence 1.000

42. c022660281.png ; $f : D \rightarrow \Omega$ ; confidence 1.000

43. c02294010.png ; $M$ ; confidence 1.000

44. c120180506.png ; $N = N \times \{ 1 \} \times \{ 0 \}$ ; confidence 1.000

45. c02489056.png ; $\mu ( d )$ ; confidence 1.000

46. c026010588.png ; $J ( \alpha )$ ; confidence 1.000

47. c11044082.png ; $C ( n ) = 0$ ; confidence 1.000

48. c12030069.png ; $n = \infty$ ; confidence 1.000

49. c027480102.png ; $( \sigma ^ { t } f ) ( t ^ { \prime } ) = f ( t + t ^ { \prime } )$ ; confidence 1.000

50. d13005022.png ; $m - 2 r$ ; confidence 1.000

51. d03185088.png ; $( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$ ; confidence 1.000

52. d12018084.png ; $C ( G )$ ; confidence 1.000

53. d12029018.png ; $f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$ ; confidence 1.000

54. d03426025.png ; $\delta ( t )$ ; confidence 1.000

55. e035550163.png ; $b _ { 2 } = 0$ ; confidence 1.000

56. e12015070.png ; $\lambda _ { 1 } = \lambda _ { 2 }$ ; confidence 1.000

57. e036230210.png ; $R ( \delta ) = 1 - H ( \delta )$ ; confidence 1.000

58. f11005048.png ; $w ( x ) = | f ( x ) | ^ { 2 }$ ; confidence 1.000

59. f04042034.png ; $\Phi ( \Phi ( x ) ) = x$ ; confidence 1.000

60. f040850143.png ; $\{ \lambda \}$ ; confidence 1.000

61. f04114018.png ; $P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$ ; confidence 1.000

62. f12010041.png ; $( 8 \times 8 )$ ; confidence 1.000

63. f12015010.png ; $R ( A )$ ; confidence 1.000

64. f04151086.png ; $( r \geq 1 )$ ; confidence 1.000

65. f04206074.png ; $f ( - x ) = - f ( x )$ ; confidence 1.000

66. g12003011.png ; $3 n + 2$ ; confidence 1.000

67. g044350167.png ; $\alpha ( F ) = 1$ ; confidence 1.000

68. h04628046.png ; $\frac { d ^ { 2 } y } { d t ^ { 2 } } + P ( t ) y = 0$ ; confidence 1.000

69. h04744030.png ; $f ( 0 ) = f ( 1 ) = 0$ ; confidence 1.000

70. h04844022.png ; $\alpha - \beta$ ; confidence 1.000

71. i11002080.png ; $( A )$ ; confidence 1.000

72. i05031036.png ; $\delta _ { 0 } > 0$ ; confidence 1.000

73. i05065016.png ; $B ( M )$ ; confidence 1.000

74. i05141060.png ; $h ( \lambda )$ ; confidence 1.000

75. i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000

76. i05241017.png ; $\operatorname { cos } ^ { - 1 } x$ ; confidence 1.000

77. i130090151.png ; $p < 12000000$ ; confidence 1.000

78. k13001019.png ; $T ( s )$ ; confidence 1.000

79. k05552076.png ; $\Omega ( \Gamma )$ ; confidence 1.000

80. l05754082.png ; $| t | ^ { - 1 }$ ; confidence 1.000

81. l05836011.png ; $( x y ) x = y ( y x )$ ; confidence 1.000

82. l05859076.png ; $x ( 1 )$ ; confidence 1.000

83. l05902046.png ; $y = \operatorname { sin } ( 1 / x )$ ; confidence 1.000

84. l0595404.png ; $L ( 0 ) = 0$ ; confidence 1.000

85. l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000

86. m11005068.png ; $q ^ { - 1 } = 1 - p ^ { - 1 }$ ; confidence 1.000

87. m06262048.png ; $c ( t ) \geq 0$ ; confidence 1.000

88. m06263022.png ; $\int _ { - \infty } ^ { \infty } x d F ( x )$ ; confidence 1.000

89. m06471081.png ; $f ( z ) = f ( x + i y )$ ; confidence 1.000

90. m06483029.png ; $f ( x ^ { \prime } ) < t$ ; confidence 1.000

91. m11021026.png ; $\alpha = 4 \pi$ ; confidence 1.000

92. n06656013.png ; $A ( u ) = 0$ ; confidence 1.000

93. n13007025.png ; $m ( B ) = 0$ ; confidence 1.000

94. n067520368.png ; $\phi _ { i } ( 0 ) = 0$ ; confidence 1.000

95. n0679002.png ; $x y = 40$ ; confidence 1.000

96. p11012025.png ; $\lambda < \mu$ ; confidence 1.000

97. p1201308.png ; $\theta$ ; confidence 1.000

98. p07310032.png ; $\mu A = m > 0$ ; confidence 1.000

99. p07328015.png ; $2 \lambda$ ; confidence 1.000

100. p07370015.png ; $f ( n ) \geq 0$ ; confidence 1.000

101. p07416038.png ; $\mu _ { 1 } = \mu _ { 2 } = \mu > 0$ ; confidence 1.000

102. p07469036.png ; $G = G ^ { \prime }$ ; confidence 1.000

103. q07609018.png ; $( n = 4 )$ ; confidence 1.000

104. q07619068.png ; $\alpha = - 1 / 2$ ; confidence 1.000

105. q076310117.png ; $R ^ { 12 }$ ; confidence 1.000

106. r07725048.png ; $( n - \mu _ { 1 } ) / 2$ ; confidence 1.000

107. r0775103.png ; $T = T ( R )$ ; confidence 1.000

108. r07759075.png ; $R ( x )$ ; confidence 1.000

109. r08021025.png ; $f ( x ) = x + 1$ ; confidence 1.000

110. r08159047.png ; $A = \int _ { - \infty } ^ { \infty } \lambda d E _ { \lambda }$ ; confidence 1.000

111. r08256054.png ; $19$ ; confidence 1.000

112. r082590243.png ; $\lambda - \mu$ ; confidence 1.000

113. r082590135.png ; $- 3$ ; confidence 1.000

114. s08338074.png ; $\Phi ( r - b + c )$ ; confidence 1.000

115. s085820238.png ; $b ( x ) < 0$ ; confidence 1.000

116. s08662031.png ; $( \pi )$ ; confidence 1.000

117. s08681080.png ; $( 2 m - 2 )$ ; confidence 1.000

118. s08764034.png ; $g \neq 0$ ; confidence 1.000

119. s09071014.png ; $f = 1$ ; confidence 1.000

120. t09265012.png ; $x ^ { 3 } + x y ^ { 2 }$ ; confidence 1.000

121. t0939808.png ; $V = f ^ { - 1 } ( X )$ ; confidence 1.000

122. t09400030.png ; $f ( x ) = g ( y )$ ; confidence 1.000

123. t09466060.png ; $\{ f ( z ) \}$ ; confidence 1.000

124. u09568015.png ; $( n \geq 0 )$ ; confidence 1.000

125. w0970903.png ; $F ( x )$ ; confidence 1.000

126. w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000

127. w0979106.png ; $B ( \lambda )$ ; confidence 1.000

128. w13009083.png ; $( g ) = g ^ { \prime }$ ; confidence 1.000

129. y09903095.png ; $\sigma ( M ^ { 4 } )$ ; confidence 1.000

130. a11001057.png ; $10$ ; confidence 1.000

131. a01160016.png ; $- 1$ ; confidence 1.000

132. a130070132.png ; $10 ^ { 4 }$ ; confidence 1.000

133. a13007016.png ; $100$ ; confidence 1.000

134. a110040273.png ; $( 1,4 )$ ; confidence 1.000

135. a01093012.png ; $10 ^ { 3 }$ ; confidence 1.000

136. h047410100.png ; $90$ ; confidence 1.000

137. a01148042.png ; $x ^ { 2 } + 1$ ; confidence 1.000

138. a110040163.png ; $24$ ; confidence 1.000

139. a011380171.png ; $1 + 1$ ; confidence 1.000

140. a110010303.png ; $f ( \lambda )$ ; confidence 1.000

141. a13014045.png ; $\sqrt { 2 }$ ; confidence 1.000

142. a110040265.png ; $( 1,3 )$ ; confidence 1.000

143. a01148040.png ; $x ^ { 2 } - 2$ ; confidence 1.000

144. a11037044.png ; $\lambda ( t - s )$ ; confidence 1.000

145. a01150026.png ; $3 p - 3$ ; confidence 1.000

146. a0111801.png ; $( 1,1 )$ ; confidence 1.000

147. a13014041.png ; $\sqrt { 3 }$ ; confidence 1.000

148. a110040145.png ; $18$ ; confidence 1.000

149. a01093011.png ; $10 ^ { 2 }$ ; confidence 1.000

150. a12018091.png ; $23$ ; confidence 1.000

151. a011450258.png ; $75$ ; confidence 1.000

152. a11008025.png ; $\sqrt { 1 - s ^ { 2 } }$ ; confidence 1.000

153. a01022085.png ; $3 ( p - 1 )$ ; confidence 1.000

154. a13007061.png ; $- 8$ ; confidence 1.000

155. a110040209.png ; $( 1,5 )$ ; confidence 1.000

156. a110040260.png ; $( 1,2 )$ ; confidence 1.000

157. w120090217.png ; $\nabla ( \lambda )$ ; confidence 1.000

158. a12003018.png ; $[ 0 , \infty )$ ; confidence 1.000

159. a01150017.png ; $\lambda ( \theta )$ ; confidence 1.000

160. a12020026.png ; $p ( t )$ ; confidence 1.000

161. a12018062.png ; $\lambda \neq 0$ ; confidence 1.000

162. h04769089.png ; $\Gamma ( \pi )$ ; confidence 1.000

163. a01148050.png ; $p ^ { 2 }$ ; confidence 1.000

164. a1200604.png ; $\partial \Omega$ ; confidence 1.000

165. a12018063.png ; $\lambda = 0$ ; confidence 1.000

166. a01137029.png ; $f ^ { \prime } ( 0 ) = 0$ ; confidence 1.000

167. a11037011.png ; $0 \leq s < t$ ; confidence 1.000

168. a110040217.png ; $( 2,4 )$ ; confidence 1.000

169. h047970110.png ; $x ^ { 2 } = 0$ ; confidence 1.000

170. c0258308.png ; $\{ 0 \}$ ; confidence 1.000

171. a120160137.png ; $13$ ; confidence 1.000

172. a13012041.png ; $4 \mu$ ; confidence 1.000

173. a110040238.png ; $( 3,3 )$ ; confidence 1.000

174. a01160062.png ; $\pm 1$ ; confidence 1.000

175. a120160175.png ; $\alpha \in ( 0,1 )$ ; confidence 1.000

176. s085590466.png ; $f ( x , y ) = x ^ { 3 } + y ^ { 4 }$ ; confidence 1.000

177. a1200308.png ; $f ( - x )$ ; confidence 1.000

178. a11006014.png ; $\Omega \times \Omega$ ; confidence 1.000

179. a011300112.png ; $( t - 1 ) ^ { \mu - 2 }$ ; confidence 1.000

180. s085590469.png ; $f ( x , y ) = x ^ { 3 } + x y ^ { 3 }$ ; confidence 1.000

181. a12018085.png ; $\operatorname { ln } 2$ ; confidence 1.000

182. a01137031.png ; $f _ { 1 } ( z ) = z$ ; confidence 1.000

183. a01012051.png ; $f ( \infty ) = 0$ ; confidence 1.000

184. b01539057.png ; $\rho ( \theta , \delta )$ ; confidence 1.000

185. f12010077.png ; $27$ ; confidence 1.000

186. a11002015.png ; $\{ 1,2,4 \}$ ; confidence 1.000

187. a01160034.png ; $6 = ( 1 + \sqrt { - 5 } ) ( 1 - \sqrt { - 5 } )$ ; confidence 1.000

188. a11042088.png ; $( G , G ^ { + } )$ ; confidence 1.000

189. s130540120.png ; $\{ - 1 , - 1 \}$ ; confidence 1.000

190. a12016084.png ; $5$ ; confidence 1.000

191. a011300120.png ; $\Delta ( 0 ) = + 1$ ; confidence 1.000

192. a11010074.png ; $f ( x ) =$ ; confidence 1.000

193. a01145010.png ; $f ( x , y )$ ; confidence 1.000

194. a12005086.png ; $\lambda > \beta$ ; confidence 1.000

195. d03189020.png ; $( \xi , \eta )$ ; confidence 1.000

196. c025140126.png ; $p ^ { - 1 } ( b )$ ; confidence 1.000

197. a12012057.png ; $\lambda ( x , y )$ ; confidence 1.000

198. q076310118.png ; $R ^ { 13 }$ ; confidence 1.000

199. a12018055.png ; $\lambda \neq 1$ ; confidence 1.000

200. a130060105.png ; $( 0,1 )$ ; confidence 1.000

201. s12021024.png ; $\lambda \leq \mu$ ; confidence 1.000

202. a12012047.png ; $y = 0$ ; confidence 1.000

203. w120090206.png ; $\mu - \lambda$ ; confidence 1.000

204. a11040051.png ; $( \lambda - A ) ^ { - 1 }$ ; confidence 1.000

205. a110040210.png ; $( 2,2 )$ ; confidence 1.000

206. a1102203.png ; $T = [ 0 , \infty )$ ; confidence 1.000

207. h04741012.png ; $f ( t , x ) = t - x ^ { 2 }$ ; confidence 1.000

208. a01021052.png ; $f ( z )$ ; confidence 1.000

209. a0139002.png ; $\partial G$ ; confidence 1.000

210. a1200409.png ; $( 0 , \infty )$ ; confidence 1.000

211. a13007014.png ; $21$ ; confidence 1.000

212. a1101703.png ; $t = 0$ ; confidence 1.000

213. a01018046.png ; $\sigma > \beta$ ; confidence 1.000

214. a12006039.png ; $f ( t )$ ; confidence 1.000

215. a12005071.png ; $- A ( t )$ ; confidence 1.000

216. a12018092.png ; $t = 2$ ; confidence 1.000

217. a12008059.png ; $H ^ { 1 } ( \Omega )$ ; confidence 1.000

218. a01149073.png ; $f ^ { \prime } ( x )$ ; confidence 1.000

219. a11008027.png ; $1 - ( 1 / 2 ) s ^ { 2 }$ ; confidence 1.000

220. a01022098.png ; $( p + 1 )$ ; confidence 1.000

221. a13004027.png ; $\Gamma ^ { \prime } \subseteq \Gamma$ ; confidence 1.000

222. a12020016.png ; $p ( T ) = 0$ ; confidence 1.000

223. b01554032.png ; $( 0,0 )$ ; confidence 1.000

224. s130540101.png ; $G = E ( R )$ ; confidence 1.000

225. d034120433.png ; $\sigma ( G , F )$ ; confidence 1.000

226. a11004071.png ; $\lambda = 2 \mu$ ; confidence 1.000

227. a0109301.png ; $10 ^ { 6 }$ ; confidence 1.000

228. a011370111.png ; $f ( x )$ ; confidence 1.000

229. a12018086.png ; $10 ^ { - 16 }$ ; confidence 1.000

230. b01539058.png ; $\rho ( \pi , \delta )$ ; confidence 1.000

231. a12011023.png ; $n + 3$ ; confidence 1.000

232. a01029026.png ; $\xi = \{ A \}$ ; confidence 1.000

233. b01539041.png ; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000

234. a13007025.png ; $b = 3$ ; confidence 1.000

235. a12016092.png ; $\alpha + \beta$ ; confidence 1.000

236. a11004072.png ; $\mu = [ M ]$ ; confidence 1.000

237. a11008030.png ; $r ( s )$ ; confidence 1.000

238. a13007067.png ; $- ( 1 / \sqrt { 12 } - \varepsilon )$ ; confidence 1.000

239. b01733082.png ; $f _ { 1 } ( z )$ ; confidence 1.000

240. c12002069.png ; $1 \leq k \leq n - 1$ ; confidence 1.000

241. c02372059.png ; $U ( 0,1 )$ ; confidence 1.000

242. a12017036.png ; $= 1$ ; confidence 1.000

243. a110040221.png ; $( 2,6 )$ ; confidence 1.000

244. a01021011.png ; $z = x + i y$ ; confidence 1.000

245. a12016083.png ; $16$ ; confidence 1.000

246. h04741044.png ; $3 g + 6$ ; confidence 1.000

247. a12005080.png ; $\{ A ( t ) \}$ ; confidence 1.000

248. a110040227.png ; $16$ ; confidence 1.000

249. a01145094.png ; $2 g - 2$ ; confidence 1.000

250. a130240109.png ; $( \alpha , \beta , \gamma ) ^ { \prime } = \beta$ ; confidence 1.000

251. a130040225.png ; $\varphi \approx \psi$ ; confidence 1.000

252. a011490145.png ; $y ^ { 2 } - x ^ { 2 } = 1$ ; confidence 1.000

253. a12018075.png ; $\lambda = 1$ ; confidence 1.000

254. a01068030.png ; $\{ p \}$ ; confidence 1.000

255. a011450155.png ; $3 g - 3$ ; confidence 1.000

256. d034120158.png ; $( r + 1 )$ ; confidence 1.000

257. a110040180.png ; $12$ ; confidence 1.000

258. g1300209.png ; $\beta = - i$ ; confidence 1.000

259. a12016038.png ; $f ( u ) ( 1 - A )$ ; confidence 1.000

260. a11016031.png ; $\rho ( M ^ { - 1 } N )$ ; confidence 1.000

261. r08090012.png ; $\phi ( T , G )$ ; confidence 1.000

262. a13007064.png ; $- ( \sqrt { 2 } + \varepsilon )$ ; confidence 1.000

263. a13007066.png ; $- ( 1 - \varepsilon )$ ; confidence 1.000

264. a01081092.png ; $\mu = \overline { \lambda }$ ; confidence 1.000

265. m06301075.png ; $p = ( n + 1 ) / 2$ ; confidence 1.000

266. a01021014.png ; $p ( z )$ ; confidence 1.000

267. f130090107.png ; $( r - 1 )$ ; confidence 1.000

268. d034120407.png ; $f ( x , y ) = ( x , y )$ ; confidence 1.000

269. q076310119.png ; $R ^ { 23 }$ ; confidence 1.000

270. l05859090.png ; $G _ { 1 } \cong G _ { 2 }$ ; confidence 1.000

271. a01022084.png ; $p > 3$ ; confidence 1.000

272. a0115008.png ; $s ^ { 2 } = f ( t )$ ; confidence 1.000

273. a12005037.png ; $\rho ( A ( t ) )$ ; confidence 1.000

274. a110010300.png ; $f ( \lambda _ { i } )$ ; confidence 1.000

275. c11016038.png ; $[ 0,1 ]$ ; confidence 1.000

276. a12005073.png ; $D ( A ( t ) )$ ; confidence 1.000

277. p07472051.png ; $\square ( \Gamma )$ ; confidence 1.000

278. a13002015.png ; $\mu ( A ) = 0$ ; confidence 1.000

279. a011600224.png ; $( \alpha , \beta )$ ; confidence 1.000

280. a1102809.png ; $r ( D )$ ; confidence 1.000

281. d03070095.png ; $\delta \in D ( S )$ ; confidence 1.000

282. a0136105.png ; $- \infty$ ; confidence 1.000

283. a12008067.png ; $A ( t ) ^ { 1 / 2 }$ ; confidence 1.000

284. a13007029.png ; $b = 5$ ; confidence 1.000

285. a013180166.png ; $( k - 1 )$ ; confidence 1.000

286. c02467029.png ; $x$ ; confidence 1.000

287. d034120475.png ; $\sigma ( F , F ^ { \prime } )$ ; confidence 1.000

288. a01137069.png ; $f ( x ) = 1$ ; confidence 1.000

289. a011300114.png ; $A ( k )$ ; confidence 1.000

290. a12007075.png ; $\eta \in ( 0,1 ]$ ; confidence 1.000

291. a12007071.png ; $\rho \in ( 0,1 ]$ ; confidence 1.000

292. a01067019.png ; $\eta ( t )$ ; confidence 1.000

293. a120180103.png ; $F ^ { \prime } ( x ) \neq 1$ ; confidence 1.000

294. w0975906.png ; $H ^ { 1 } ( k , A )$ ; confidence 1.000

295. s085590115.png ; $U ( \zeta , R )$ ; confidence 1.000

296. a12005056.png ; $\alpha \in ( 0,1 ]$ ; confidence 1.000

297. a1106408.png ; $= 3$ ; confidence 1.000

298. d03183093.png ; $\{ F \}$ ; confidence 1.000

299. a01149091.png ; $\tau = 0$ ; confidence 1.000

300. a01012059.png ; $b > 0$ ; confidence 1.000

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/1&oldid=43830