Difference between revisions of "User:Maximilian Janisch/latexlist/latex/9"
(AUTOMATIC EDIT of page 9 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 9 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017045.png ; $E$ ; confidence 0.923 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150395.png ; $A \wedge B$ ; confidence 0.923 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012056.png ; $f ^ { \langle n _ { k } \rangle } ( \lambda _ { k } ) = 0$ ; confidence 0.923 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012071.png ; $f ^ { \langle \nu _ { k } \rangle } ( 1 ) = 0$ ; confidence 0.923 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001053.png ; $A = \left( \begin{array} { c c } { 10 ^ { 5 } } & { 0 } \\ { 0 } & { 10 ^ { - 5 } } \end{array} \right)$ ; confidence 0.923 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068048.png ; $Q ( n )$ ; confidence 0.923 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050157.png ; $c > 1$ ; confidence 0.923 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080109.png ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780128.png ; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a1100101.png ; $f ( \alpha , x ) = 0$ ; confidence 0.922 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240484.png ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040235.png ; $i \in I$ ; confidence 0.922 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007075.png ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n$ ; confidence 0.921 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610104.png ; $Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$ ; confidence 0.921 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034280/d03428088.png ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051360/i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040219.png ; $\varphi _ { L } : A \hookrightarrow P ^ { 7 }$ ; confidence 0.920 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032034.png ; $n _ { S } < n$ ; confidence 0.920 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040575.png ; $S 5 ^ { S }$ ; confidence 0.919 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040728.png ; $P \subseteq P ^ { \prime }$ ; confidence 0.919 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684025.png ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715028.png ; $3 N + k + m$ ; confidence 0.919 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120428.png ; $P _ { n } ( f )$ ; confidence 0.919 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006058.png ; $N \geq Z$ ; confidence 0.919 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010131.png ; $\epsilon A _ { 1 }$ ; confidence 0.919 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ]$ ; confidence 0.919 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016066.png ; $C _ { m }$ ; confidence 0.919 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png ; $\alpha$ ; confidence 0.918 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024089.png ; $g > 1$ ; confidence 0.918 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180158.png ; $\| T _ { M } \|$ ; confidence 0.918 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c0264808.png ; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031930/d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080020/r080020171.png ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001026.png ; $\| A ^ { - 1 } \delta A \| < 1$ ; confidence 0.918 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101009.png ; $U ^ { 0 }$ ; confidence 0.918 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024063.png ; $g \times 2 g$ ; confidence 0.917 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/a/a010/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020069.png ; $Q : \mathfrak { A } / \mathfrak { A } _ { 1 } \rightarrow \mathfrak { A }$ ; confidence 0.917 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023620/c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054070/j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210106.png ; $\int _ { \gamma } \omega _ { 3 } = \sum _ { k = 1 } ^ { g } ( l _ { k } A _ { k } + b _ { + k } B _ { k } ) + 2 \pi i \sum _ { j = 1 } ^ { n } m _ { j } c _ { j }$ ; confidence 0.916 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106701.png ; $Q ( y , . )$ ; confidence 0.916 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $a , b$ ; confidence 0.915 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046600/h0466006.png ; $\{ x : | x - y | < r \}$ ; confidence 0.915 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $31$ ; confidence 0.915 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021045.png ; $( \operatorname { Im } B _ { i j } )$ ; confidence 0.915 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024036.png ; $g \geq 1$ ; confidence 0.914 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022047.png ; $p \times 2 p$ ; confidence 0.914 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012013.png ; $h$ ; confidence 0.914 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082110/r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210101.png ; $A _ { k } , B _ { k }$ ; confidence 0.914 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300402.png ; $Fm$ ; confidence 0.913 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001051.png ; $| A |$ ; confidence 0.913 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060530/l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046083.png ; $0 \in D$ ; confidence 0.912 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022089.png ; $L ^ { 0 } ( H , m )$ ; confidence 0.911 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007017.png ; $1$ ; confidence 0.911 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png ; $P \rightarrow e$ ; confidence 0.910 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024048.png ; $F ^ { * }$ ; confidence 0.910 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029069.png ; $\pi x = f g$ ; confidence 0.909 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096770/v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006020.png ; $\pi ( x ) = \sum _ { n \leq x } P _ { N } ( n )$ ; confidence 0.909 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040205.png ; $T$ ; confidence 0.909 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026600/c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022028.png ; $C \in C$ ; confidence 0.908 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a1103306.png ; $U$ ; confidence 0.908 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008031.png ; $S ( t )$ ; confidence 0.907 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040801.png ; $C \subseteq D$ ; confidence 0.907 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $E = E$ ; confidence 0.907 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007026.png ; $c = 5$ ; confidence 0.907 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050268.png ; $k > 0$ ; confidence 0.907 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010137.png ; $\| A ^ { + } \| _ { 2 } = \frac { 1 } { \sigma _ { r } ( A ) }$ ; confidence 0.906 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $20$ ; confidence 0.906 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127050.png ; $x \in D ( A )$ ; confidence 0.906 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043330/g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075650/p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022085.png ; $g : R ^ { j } \rightarrow R$ ; confidence 0.906 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006043.png ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050134.png ; $( N \times N )$ ; confidence 0.905 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240177.png ; $\alpha$ ; confidence 0.905 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060970/l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309030.png ; $V \cap L$ ; confidence 0.905 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018032.png ; $A _ { n } = B n ^ { s _ { 1 } } ( \operatorname { ln } n ) ^ { \alpha } + O ( n ^ { \beta } )$ ; confidence 0.905 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050267.png ; $C > 0$ ; confidence 0.904 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076059.png ; $p ( \alpha )$ ; confidence 0.904 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240335.png ; $F = E X$ ; confidence 0.904 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/e/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a1103703.png ; $0 \leq t _ { 0 } < \ldots < t _ { n }$ ; confidence 0.903 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240223.png ; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040207.png ; $\sigma \in H ^ { 0 } ( P ^ { 4 } , F )$ ; confidence 0.902 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110330/s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104206.png ; $Y _ { n } = X _ { 1 } + \ldots + X _ { n } + c$ ; confidence 0.902 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016029.png ; $x _ { k + 1 } = ( D + \omega L ) ^ { - 1 } ( \omega b - ( ( 1 - \omega ) D - \omega U ) x _ { k } )$ ; confidence 0.902 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021056.png ; $n = 1$ ; confidence 0.901 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001071.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.901 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $N > 5$ ; confidence 0.901 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004037.png ; $\varphi \in T$ ; confidence 0.901 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006032.png ; $\operatorname { lim } _ { s \rightarrow \infty } \beta _ { X } ( s ) = 0$ ; confidence 0.900 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033012.png ; $\beta _ { \gamma } = \int _ { - \infty } ^ { + \infty } | x | ^ { r } p ( x ) d x$ ; confidence 0.900 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040132.png ; $IPC$ ; confidence 0.900 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040581.png ; $S 5 ^ { W }$ ; confidence 0.900 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002023.png ; $t \in I$ ; confidence 0.900 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071017.png ; $A B \subseteq Q , A \nsubseteq Q \Rightarrow B \subseteq \operatorname { pr } ( Q )$ ; confidence 0.899 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010185.png ; $\lambda$ ; confidence 0.899 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240496.png ; $s = 2$ ; confidence 0.899 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020027.png ; $3$ ; confidence 0.899 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $x$ ; confidence 0.899 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $S \square T$ ; confidence 0.898 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002046.png ; $GF ( q )$ ; confidence 0.897 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103305.png ; $\beta _ { r } = E | X | ^ { r }$ ; confidence 0.897 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046014.png ; $\delta f ( \alpha , h )$ ; confidence 0.897 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055049.png ; $1$ ; confidence 0.897 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018010.png ; $R \in [ 0 , \infty ]$ ; confidence 0.897 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002010.png ; $g \neq 1$ ; confidence 0.896 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051130/i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240363.png ; $SS _ { H }$ ; confidence 0.895 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085810/s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $X \in \Phi$ ; confidence 0.895 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016023.png ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018022.png ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431027.png ; $\exists x A$ ; confidence 0.894 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008029.png ; $v \in V$ ; confidence 0.893 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048046.png ; $D ^ { \perp }$ ; confidence 0.893 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $\Omega$ ; confidence 0.892 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $q = p ^ { r }$ ; confidence 0.892 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a01064019.png ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050182.png ; $a ( n )$ ; confidence 0.892 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100208.png ; $n = k - \lambda$ ; confidence 0.891 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040127.png ; $A$ ; confidence 0.891 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028067.png ; $x y \in E ( D )$ ; confidence 0.889 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020066.png ; $A \oplus B$ ; confidence 0.887 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747034.png ; $( i i + 1 )$ ; confidence 0.886 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $n \geq 12$ ; confidence 0.886 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/a/a110/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033014.png ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028069.png ; $x z \in E ( D )$ ; confidence 0.886 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068033.png ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015014.png ; $\alpha ( t )$ ; confidence 0.885 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240239.png ; $MS _ { e }$ ; confidence 0.884 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055037.png ; $G = Z _ { p }$ ; confidence 0.884 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070111.png ; $U _ { a }$ ; confidence 0.882 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882 |
Revision as of 08:35, 6 September 2019
List
1.
; $E$ ; confidence 0.923
2.
; $A \wedge B$ ; confidence 0.923
3.
; $f ^ { \langle n _ { k } \rangle } ( \lambda _ { k } ) = 0$ ; confidence 0.923
4.
; $f ^ { \langle \nu _ { k } \rangle } ( 1 ) = 0$ ; confidence 0.923
5.
; $A = \left( \begin{array} { c c } { 10 ^ { 5 } } & { 0 } \\ { 0 } & { 10 ^ { - 5 } } \end{array} \right)$ ; confidence 0.923
6.
; $Q ( n )$ ; confidence 0.923
7.
; $c > 1$ ; confidence 0.923
8.
; $U \geq f ( X ) / h ( X )$ ; confidence 0.922
9.
; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922
10.
; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922
11.
; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
12.
; $f ( \alpha , x ) = 0$ ; confidence 0.922
13.
; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922
14.
; $i \in I$ ; confidence 0.922
15.
; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921
16.
; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n$ ; confidence 0.921
17.
; $Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$ ; confidence 0.921
18.
; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921
19.
; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
20.
; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
21.
; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921
22.
; $\varphi _ { L } : A \hookrightarrow P ^ { 7 }$ ; confidence 0.920
23.
; $n _ { S } < n$ ; confidence 0.920
24.
; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
25.
; $\Gamma \subset M _ { A }$ ; confidence 0.920
26.
; $f : W \rightarrow R$ ; confidence 0.920
27.
; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
28.
; $S 5 ^ { S }$ ; confidence 0.919
29.
; $P \subseteq P ^ { \prime }$ ; confidence 0.919
30.
; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919
31.
; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919
32.
; $3 N + k + m$ ; confidence 0.919
33.
; $P _ { n } ( f )$ ; confidence 0.919
34.
; $N \geq Z$ ; confidence 0.919
35.
; $\epsilon A _ { 1 }$ ; confidence 0.919
36.
; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ]$ ; confidence 0.919
37.
; $C _ { m }$ ; confidence 0.919
38.
; $\alpha$ ; confidence 0.918
39.
; $g > 1$ ; confidence 0.918
40.
; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918
41.
; $\| T _ { M } \|$ ; confidence 0.918
42.
; $f \in C ^ { k }$ ; confidence 0.918
43.
; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918
44.
; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918
45.
; $K _ { X } ^ { - 1 }$ ; confidence 0.918
46.
; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918
47.
; $\| A ^ { - 1 } \delta A \| < 1$ ; confidence 0.918
48.
; $U ^ { 0 }$ ; confidence 0.918
49.
; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
50.
; $Z _ { 12 }$ ; confidence 0.917
51.
; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
52.
; $t _ { f } ( n )$ ; confidence 0.917
53.
; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
54.
; $g \times 2 g$ ; confidence 0.917
55.
; $Q : \mathfrak { A } / \mathfrak { A } _ { 1 } \rightarrow \mathfrak { A }$ ; confidence 0.917
56.
; $m > 3$ ; confidence 0.916
57.
; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
58.
; $| \alpha ( z ) |$ ; confidence 0.916
59.
; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
60.
; $\int _ { \gamma } \omega _ { 3 } = \sum _ { k = 1 } ^ { g } ( l _ { k } A _ { k } + b _ { + k } B _ { k } ) + 2 \pi i \sum _ { j = 1 } ^ { n } m _ { j } c _ { j }$ ; confidence 0.916
61.
; $Q ( y , . )$ ; confidence 0.916
62.
; $a , b$ ; confidence 0.915
63.
; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
64.
; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915
65.
; $\{ x : | x - y | < r \}$ ; confidence 0.915
66.
; $31$ ; confidence 0.915
67.
; $( \operatorname { Im } B _ { i j } )$ ; confidence 0.915
68.
; $g \geq 1$ ; confidence 0.914
69.
; $p \times 2 p$ ; confidence 0.914
70.
; $h$ ; confidence 0.914
71.
; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914
72.
; $X = 1 ^ { p }$ ; confidence 0.914
73.
; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
74.
; $h \in \Omega$ ; confidence 0.914
75.
; $\Pi ^ { \prime \prime }$ ; confidence 0.914
76.
; $T$ ; confidence 0.914
77.
; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
78.
; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914
79.
; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914
80.
; $A _ { k } , B _ { k }$ ; confidence 0.914
81.
; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914
82.
; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913
83.
; $Fm$ ; confidence 0.913
84.
; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
85.
; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913
86.
; $| A |$ ; confidence 0.913
87.
; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
88.
; $0 \in D$ ; confidence 0.912
89.
; $L ^ { 0 } ( H , m )$ ; confidence 0.911
90.
; $1$ ; confidence 0.911
91.
; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911
92.
; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
93.
; $\lambda = \lambda _ { j }$ ; confidence 0.911
94.
; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911
95.
; $\beta$ ; confidence 0.911
96.
; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911
97.
; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911
98.
; $SL _ { 2 } ( C )$ ; confidence 0.910
99.
; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
100.
; $P \rightarrow e$ ; confidence 0.910
101.
; $F ^ { * }$ ; confidence 0.910
102.
; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909
103.
; $K _ { 0 } \subseteq K$ ; confidence 0.909
104.
; $\pi x = f g$ ; confidence 0.909
105.
; $\omega ^ { - 1 }$ ; confidence 0.909
106.
; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909
107.
; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
108.
; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
109.
; $\pi ( x ) = \sum _ { n \leq x } P _ { N } ( n )$ ; confidence 0.909
110.
; $T$ ; confidence 0.909
111.
; $K _ { 0 } > 0$ ; confidence 0.908
112.
; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908
113.
; $x \in J$ ; confidence 0.908
114.
; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908
115.
; $S = o ( \# A )$ ; confidence 0.908
116.
; $C \in C$ ; confidence 0.908
117.
; $U$ ; confidence 0.908
118.
; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907
119.
; $S ( t )$ ; confidence 0.907
120.
; $C \subseteq D$ ; confidence 0.907
121.
; $6$ ; confidence 0.907
122.
; $K ( L )$ ; confidence 0.907
123.
; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907
124.
; $E = E$ ; confidence 0.907
125.
; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
126.
; $c = 5$ ; confidence 0.907
127.
; $k > 0$ ; confidence 0.907
128.
; $u \in D ( \Delta )$ ; confidence 0.907
129.
; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
130.
; $\| A ^ { + } \| _ { 2 } = \frac { 1 } { \sigma _ { r } ( A ) }$ ; confidence 0.906
131.
; $x , y \in A$ ; confidence 0.906
132.
; $SO ( 4 n + 3 )$ ; confidence 0.906
133.
; $20$ ; confidence 0.906
134.
; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
135.
; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
136.
; $x \in D ( A )$ ; confidence 0.906
137.
; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
138.
; $\mathfrak { A } ^ { - }$ ; confidence 0.906
139.
; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
140.
; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906
141.
; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
142.
; $g : R ^ { j } \rightarrow R$ ; confidence 0.906
143.
; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905
144.
; $( N \times N )$ ; confidence 0.905
145.
; $\alpha$ ; confidence 0.905
146.
; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
147.
; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
148.
; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905
149.
; $V \cap L$ ; confidence 0.905
150.
; $\oplus R ( S _ { n } )$ ; confidence 0.905
151.
; $w = \operatorname { sin }$ ; confidence 0.905
152.
; $A _ { n } = B n ^ { s _ { 1 } } ( \operatorname { ln } n ) ^ { \alpha } + O ( n ^ { \beta } )$ ; confidence 0.905
153.
; $C > 0$ ; confidence 0.904
154.
; $0 \notin f ( \partial D )$ ; confidence 0.904
155.
; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
156.
; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
157.
; $p ( \alpha )$ ; confidence 0.904
158.
; $\alpha \geq A _ { 0 }$ ; confidence 0.904
159.
; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904
160.
; $F = E X$ ; confidence 0.904
161.
; $h ^ { * } ( pt )$ ; confidence 0.903
162.
; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
163.
; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
164.
; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903
165.
; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
166.
; $0 \leq t _ { 0 } < \ldots < t _ { n }$ ; confidence 0.903
167.
; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903
168.
; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903
169.
; $\sigma \in H ^ { 0 } ( P ^ { 4 } , F )$ ; confidence 0.902
170.
; $\hat { \eta } \Omega$ ; confidence 0.902
171.
; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902
172.
; $Y _ { n } = X _ { 1 } + \ldots + X _ { n } + c$ ; confidence 0.902
173.
; $x _ { k + 1 } = ( D + \omega L ) ^ { - 1 } ( \omega b - ( ( 1 - \omega ) D - \omega U ) x _ { k } )$ ; confidence 0.902
174.
; $n = 1$ ; confidence 0.901
175.
; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.901
176.
; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
177.
; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
178.
; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901
179.
; $N > 5$ ; confidence 0.901
180.
; $\varphi \in T$ ; confidence 0.901
181.
; $\operatorname { lim } _ { s \rightarrow \infty } \beta _ { X } ( s ) = 0$ ; confidence 0.900
182.
; $\beta _ { \gamma } = \int _ { - \infty } ^ { + \infty } | x | ^ { r } p ( x ) d x$ ; confidence 0.900
183.
; $IPC$ ; confidence 0.900
184.
; $S 5 ^ { W }$ ; confidence 0.900
185.
; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900
186.
; $\delta _ { i k } = 0$ ; confidence 0.900
187.
; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
188.
; $T p ( A _ { y } ) = A$ ; confidence 0.900
189.
; $t \in I$ ; confidence 0.900
190.
; $A B \subseteq Q , A \nsubseteq Q \Rightarrow B \subseteq \operatorname { pr } ( Q )$ ; confidence 0.899
191.
; $\lambda$ ; confidence 0.899
192.
; $s = 2$ ; confidence 0.899
193.
; $3$ ; confidence 0.899
194.
; $\pi _ { k } ( x )$ ; confidence 0.899
195.
; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
196.
; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
197.
; $x$ ; confidence 0.899
198.
; $q$ ; confidence 0.899
199.
; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898
200.
; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
201.
; $f \in H _ { c } ( D )$ ; confidence 0.898
202.
; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
203.
; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
204.
; $S \square T$ ; confidence 0.898
205.
; $GF ( q )$ ; confidence 0.897
206.
; $\beta _ { r } = E | X | ^ { r }$ ; confidence 0.897
207.
; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897
208.
; $\delta f ( \alpha , h )$ ; confidence 0.897
209.
; $1$ ; confidence 0.897
210.
; $\Lambda _ { G } = 1$ ; confidence 0.897
211.
; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
212.
; $R \in [ 0 , \infty ]$ ; confidence 0.897
213.
; $g \neq 1$ ; confidence 0.896
214.
; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
215.
; $\overline { \rho } _ { L }$ ; confidence 0.896
216.
; $\operatorname { det } S \neq 0$ ; confidence 0.896
217.
; $SS _ { H }$ ; confidence 0.895
218.
; $B$ ; confidence 0.895
219.
; $t$ ; confidence 0.895
220.
; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
221.
; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895
222.
; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895
223.
; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
224.
; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895
225.
; $X \in \Phi$ ; confidence 0.895
226.
; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895
227.
; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894
228.
; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894
229.
; $Y$ ; confidence 0.894
230.
; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894
231.
; $\exists x A$ ; confidence 0.894
232.
; $v \in V$ ; confidence 0.893
233.
; $D ^ { \perp }$ ; confidence 0.893
234.
; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
235.
; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892
236.
; $\Omega$ ; confidence 0.892
237.
; $q = p ^ { r }$ ; confidence 0.892
238.
; $L \mapsto E ( L )$ ; confidence 0.892
239.
; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
240.
; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
241.
; $\tau \cup A C \cup B C$ ; confidence 0.892
242.
; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
243.
; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892
244.
; $a ( n )$ ; confidence 0.892
245.
; $3$ ; confidence 0.891
246.
; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
247.
; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
248.
; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
249.
; $L ( t , x , D _ { x } )$ ; confidence 0.891
250.
; $n = k - \lambda$ ; confidence 0.891
251.
; $A$ ; confidence 0.891
252.
; $3 ^ { 3 } .5 .79$ ; confidence 0.891
253.
; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890
254.
; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
255.
; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
256.
; $i$ ; confidence 0.889
257.
; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
258.
; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
259.
; $x y \in E ( D )$ ; confidence 0.889
260.
; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889
261.
; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888
262.
; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888
263.
; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887
264.
; $A \oplus B$ ; confidence 0.887
265.
; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
266.
; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
267.
; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
268.
; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
269.
; $\tau _ { j } < 0$ ; confidence 0.887
270.
; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
271.
; $\Omega \subset R ^ { m }$ ; confidence 0.887
272.
; $( i i + 1 )$ ; confidence 0.886
273.
; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
274.
; $P _ { n } ( R )$ ; confidence 0.886
275.
; $n \geq 12$ ; confidence 0.886
276.
; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886
277.
; $x z \in E ( D )$ ; confidence 0.886
278.
; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886
279.
; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
280.
; $5$ ; confidence 0.885
281.
; $t \subset v$ ; confidence 0.885
282.
; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
283.
; $\alpha ( t )$ ; confidence 0.885
284.
; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885
285.
; $\gamma _ { i j }$ ; confidence 0.884
286.
; $\Gamma = B X$ ; confidence 0.884
287.
; $MS _ { e }$ ; confidence 0.884
288.
; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
289.
; $T ( M )$ ; confidence 0.884
290.
; $G = Z _ { p }$ ; confidence 0.884
291.
; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
292.
; $H _ { n - 2 }$ ; confidence 0.883
293.
; $K _ { 0 } > 1$ ; confidence 0.883
294.
; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883
295.
; $U _ { a }$ ; confidence 0.882
296.
; $e ^ { x _ { i } } - 1$ ; confidence 0.882
297.
; $\Gamma ( C ) = V$ ; confidence 0.882
298.
; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
299.
; $\epsilon$ ; confidence 0.882
300.
; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
Maximilian Janisch/latexlist/latex/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/9&oldid=43899