Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/13"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 13 out of 14 with 300 lines: Updated image/latex database (currently 4097 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 13 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $D _ { \alpha }$ ; confidence 0.374
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240377.png ; $T ^ { 2 }$ ; confidence 0.373
+
2. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373
+
3. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
+
4. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010139.png ; $i = 1 , \dots , r$ ; confidence 0.372
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020026.png ; $D ( \phi ) = D ( \phi _ { 1 } ) \ldots D ( \phi _ { n } ) = D ( \psi _ { 1 } ) \ldots D ( \psi _ { m } ) = D ( \psi )$ ; confidence 0.490
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
  
7. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s0870309.png ; $f _ { h } \in U _ { k }$ ; confidence 0.371
+
7. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490
  
8. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060205.png ; $d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$ ; confidence 0.370
+
8. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102104.png ; $a _ { 1 } b _ { 1 } \ldots a _ { 8 } b _ { 8 }$ ; confidence 0.369
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640127.png ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
+
11. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023050.png ; $G ( u )$ ; confidence 0.489
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029055.png ; $\overline { a } X = \beta a X = \alpha \beta X$ ; confidence 0.369
+
12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $V \not \equiv W$ ; confidence 0.489
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010168.png ; $\hat { k } ( \alpha + \beta )$ ; confidence 0.369
+
13. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010206.png ; $z \leq | ( \hat { \lambda } I - \Lambda ) ^ { - 1 } | | T ^ { - 1 } | | \delta A | | T | z |$ ; confidence 0.368
+
14. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024056.png ; $i = 1 , \ldots , I$ ; confidence 0.368
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092720/t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012023.png ; $A _ { r } ^ { \alpha }$ ; confidence 0.368
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010184.png ; $| \hat { \lambda } - \lambda |$ ; confidence 0.488
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010113.png ; $\delta b = H . | b$ ; confidence 0.368
+
17. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041070.png ; $K _ { X } ^ { v } \otimes L ^ { i }$ ; confidence 0.368
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
  
19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $n \| < C$ ; confidence 0.368
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040146.png ; $i$ ; confidence 0.488
  
20. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566043.png ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
+
20. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240749.png ; $\prod x$ ; confidence 0.487
  
21. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075190/p07519074.png ; $E _ { i j }$ ; confidence 0.366
+
21. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083380/s08338085.png ; $d \in C$ ; confidence 0.487
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022067.png ; $m$ ; confidence 0.365
+
22. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012076.png ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } \alpha _ { \nu _ { k } } z ^ { \nu _ { k } }$ ; confidence 0.364
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021098.png ; $\sum _ { k = 1 } ^ { g } ( A _ { k } B _ { k } ^ { \prime } - B _ { k } A _ { k } ^ { \prime } ) = 2 \pi i \sum _ { j = 1 } ^ { N } c _ { j } \int _ { L _ { j } } \omega _ { 1 }$ ; confidence 0.487
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010286.png ; $( \hat { \lambda } B - C ) ^ { - 1 } = P ( \hat { \lambda } I - \Lambda ) ^ { - 1 } Q$ ; confidence 0.363
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022054.png ; $\overline { W } ^ { T }$ ; confidence 0.486
  
25. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; $b _ { 0 }$ ; confidence 0.363
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046051.png ; $h \in X$ ; confidence 0.486
  
26. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010189.png ; $i = 1 , \dots , n$ ; confidence 0.485
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008029.png ; $c u _ { x t } = u _ { t t } - \frac { 1 } { 2 } c ^ { 2 } u _ { y y }$ ; confidence 0.363
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010135.png ; $\| ( A + \delta A ) ^ { + } \| _ { 2 } \leq \frac { \| A ^ { + } \| _ { 2 } } { 1 - \| A ^ { + } \| _ { 2 } \| ^ { \delta A \| _ { 2 } } }$ ; confidence 0.362
+
28. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
  
29. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
+
29. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006049.png ; $\{ X _ { z } : z \in Z ^ { d } \}$ ; confidence 0.485
  
31. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010111.png ; $p < m$ ; confidence 0.484
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094440/t09444040.png ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484
  
33. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $\hat { V }$ ; confidence 0.359
+
33. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
  
34. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092250/t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002013.png ; $g = d \cdot d ^ { \prime - 1 }$ ; confidence 0.357
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010266.png ; $2$ ; confidence 0.484
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020079.png ; $\alpha = \text { Coker } ( \text { Ker } \alpha ) \theta \text { ker } ( \text { Coker } \alpha )$ ; confidence 0.357
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024035.png ; $w ^ { 2 } = a _ { 0 } z ^ { 2 } + a _ { 1 } z + \alpha _ { 2 }$ ; confidence 0.484
  
37. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in G$ ; confidence 0.357
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050237.png ; $v < 1$ ; confidence 0.483
  
38. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483
  
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356
+
39. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081110/r08111018.png ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a1100408.png ; $A = \operatorname { Pic } ^ { 0 } ( A )$ ; confidence 0.355
+
40. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922406.png ; $k = R / m$ ; confidence 0.483
  
41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483
  
42. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063760/m063760111.png ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354
+
43. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237023.png ; $N = L . L$ ; confidence 0.482
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a11063032.png ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
+
44. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482
  
45. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200609.png ; $\Omega$ ; confidence 0.482
  
47. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a1100609.png ; $\beta ( A , B ) = \operatorname { E } \operatorname { sup } _ { B \in B } | P ( B | A ) - P ( B ) |$ ; confidence 0.481
  
48. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065460/m06546014.png ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
  
49. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348
+
49. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010288.png ; $| e ^ { A + \delta A } - e ^ { A } \| \leq k ( T ) \cdot \| W \|$ ; confidence 0.347
+
50. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020036.png ; $M$ ; confidence 0.347
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240501.png ; $9$ ; confidence 0.481
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021080.png ; $w _ { 2 }$ ; confidence 0.347
+
52. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
+
53. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110130/k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022034.png ; $x _ { 1 } , \ldots , x _ { p }$ ; confidence 0.344
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480
  
56. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
+
56. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210142.png ; $w$ ; confidence 0.343
+
57. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p110230174.png ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479
  
58. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
+
58. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533026.png ; $18$ ; confidence 0.479
  
59. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010236.png ; $\hat { \lambda }$ ; confidence 0.479
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010140.png ; $\sigma _ { 1 } \geq \ldots \geq \sigma _ { \zeta }$ ; confidence 0.342
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021066.png ; $\omega 1,2$ ; confidence 0.479
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240488.png ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004074.png ; $5$ ; confidence 0.478
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007010.png ; $x _ { 1 } , \ldots , x _ { x } \in X$ ; confidence 0.338
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021054.png ; $a - x \neq 0$ ; confidence 0.478
  
63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024019.png ; $y$ ; confidence 0.478
  
64. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711048.png ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338
+
64. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006044.png ; $F | X _ { t } | ^ { 2 } + \delta$ ; confidence 0.338
+
65. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040515.png ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022038.png ; $A l ( z )$ ; confidence 0.477
  
67. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062360/m06236012.png ; $T _ { i j }$ ; confidence 0.337
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477
  
68. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780168.png ; $T _ { \nu }$ ; confidence 0.336
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033021.png ; $\beta \frac { 1 } { r } / r$ ; confidence 0.477
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104204.png ; $S _ { x } = X _ { 1 } + \ldots + X _ { x }$ ; confidence 0.335
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a11064014.png ; $\Omega$ ; confidence 0.477
  
70. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230379.png ; $\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$ ; confidence 0.335
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png ; $\phi$ ; confidence 0.476
  
71. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050123.png ; $c \rightarrow N$ ; confidence 0.335
+
71. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
  
72. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $\mu$ ; confidence 0.335
+
72. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020155.png ; $V \oplus \mathfrak { g }$ ; confidence 0.476
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001027.png ; $\frac { \| \delta x \| } { \| x \| } \leq \frac { \| A ^ { - 1 } \delta A \| + \frac { \| A ^ { - 1 } \delta b \| } { | x \| } } { 1 - \| A ^ { - 1 } \delta A \| }$ ; confidence 0.334
+
73. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240184.png ; $\eta _ { i } - \eta _ { s }$ ; confidence 0.334
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040518.png ; $\Omega$ ; confidence 0.476
  
75. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400325.png ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040144.png ; $R \subset P ^ { 2 }$ ; confidence 0.476
  
76. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240305.png ; $4$ ; confidence 0.475
  
77. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $x$ ; confidence 0.475
  
78. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332
+
78. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104207.png ; $n = 1,2 , \dots$ ; confidence 0.331
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040503.png ; $F \in C$ ; confidence 0.475
  
80. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040271.png ; $p ^ { 4 }$ ; confidence 0.330
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240470.png ; $n$ ; confidence 0.474
  
82. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
  
83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
+
83. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040349.png ; $8$ ; confidence 0.330
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png ; $L$ ; confidence 0.330
+
85. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474
  
86. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240499.png ; $X _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474
  
87. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $o = e K$ ; confidence 0.327
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473
  
88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
+
88. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
+
89. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012043.png ; $W _ { 0 }$ ; confidence 0.325
+
90. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043017.png ; $p _ { i k } ^ { * } ( t ) = P \{ \xi ^ { * } ( t ) = h | \xi ^ { * } ( 0 ) = i \} =$ ; confidence 0.325
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018026.png ; $\lambda _ { x } = n$ ; confidence 0.473
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031010.png ; $N$ ; confidence 0.325
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
+
93. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png ; $C$ ; confidence 0.323
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021032.png ; $A _ { 1 } ^ { \prime } , B _ { 1 } ^ { \prime } , \dots , A ^ { \prime } , B _ { g } ^ { \prime }$ ; confidence 0.471
  
95. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
+
95. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091010/s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007012.png ; $\{ x _ { k } , a \}$ ; confidence 0.323
+
96. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469
  
98. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040263.png ; $- 1 A$ ; confidence 0.469
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322
+
99. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110250/h11025012.png ; $T ^ { \aleph } x \in A$ ; confidence 0.469
  
100. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021040.png ; $i \neq i$ ; confidence 0.468
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010249.png ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467
  
102. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022097.png ; $\alpha + b \in C ^ { p }$ ; confidence 0.317
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $9 -$ ; confidence 0.467
  
104. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
+
104. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467
  
105. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
+
105. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007013.png ; $x \in X ^ { \prime }$ ; confidence 0.315
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010109.png ; $B N = \operatorname { max } _ { 1 \leq i \leq x } | b _ { i } |$ ; confidence 0.467
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
+
108. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466
  
109. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050262.png ; $N _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { C } ^ { \# } ( n )$ ; confidence 0.466
  
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z }$ ; confidence 0.465
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314
+
111. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465
  
112. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463
  
113. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
+
113. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463
  
114. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $M ^ { 0 }$ ; confidence 0.312
+
114. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002049.png ; $m = 2 ^ { a } 3 ^ { b } u ^ { 2 }$ ; confidence 0.311
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
  
116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021060.png ; $A _ { 1 } , \ldots , A _ { 8 }$ ; confidence 0.310
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
  
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310
+
118. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
  
119. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040249.png ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310136.png ; $A$ ; confidence 0.309
+
120. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010199.png ; $k ( T ) = \| T \| T ^ { - 1 } \|$ ; confidence 0.308
+
121. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
  
122. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
+
122. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461
  
123. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040285.png ; $\$ 4$ ; confidence 0.460
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050170.png ; $K ( n )$ ; confidence 0.460
  
125. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a0102008.png ; $\square _ { R } \Omega$ ; confidence 0.460
  
126. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
+
126. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $p _ { i }$ ; confidence 0.459
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010279.png ; $\frac { \| \delta X \| } { \| X \| } \leq \frac { \epsilon \cdot k ( A , B ) } { 1 - \epsilon \cdot k ( A , B ) }$ ; confidence 0.305
+
127. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040346.png ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021081.png ; $\omega ; 0$ ; confidence 0.458
  
130. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
  
131. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002053.png ; $2 ^ { a + 2 }$ ; confidence 0.302
+
132. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
  
133. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456
  
134. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
+
134. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024034.png ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455
  
136. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455
  
137. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
  
138. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
+
138. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
  
139. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
+
139. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { F }$ ; confidence 0.455
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { D }$ ; confidence 0.298
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002060.png ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012035.png ; $W _ { a }$ ; confidence 0.297
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012047.png ; $W _ { 1 }$ ; confidence 0.455
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040152.png ; $C \in | L$ ; confidence 0.296
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004025.png ; $L$ ; confidence 0.453
  
143. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021026.png ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010159.png ; $\alpha = \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } , \quad \hat { \kappa } = \frac { k ( A ) } { 1 - \alpha k ( A ) }$ ; confidence 0.294
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040553.png ; $G$ ; confidence 0.453
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $\{ A \rangle$ ; confidence 0.294
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010204.png ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452
  
146. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $\phi _ { im }$ ; confidence 0.294
+
146. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots$ ; confidence 0.294
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452
  
148. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010197.png ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451
  
149. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
  
150. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012064.png ; $n = 0,1 , \dots$ ; confidence 0.450
  
151. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450
  
152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
+
153. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
+
154. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
  
155. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285
+
155. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004048.png ; $d _ { 2 }$ ; confidence 0.284
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012054.png ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
+
157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
+
158. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047540/h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007026.png ; $\pi _ { p } ( \text { Id } : C ( K ) \rightarrow L _ { p } ( K , \mu ) ) = \mu ( K ) ^ { 1 / p }$ ; confidence 0.283
+
159. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090820/s0908209.png ; $X ^ { * }$ ; confidence 0.447
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
160. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010211.png ; $1 / S i$ ; confidence 0.280
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004017.png ; $\phi _ { L }$ ; confidence 0.446
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006033.png ; $\beta _ { X } ( s ) = \operatorname { sup } _ { t } \beta ( \sigma \{ X _ { z } : u \leq t \} , \sigma \{ X _ { z } : u \geq t + x \} )$ ; confidence 0.279
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040246.png ; $C ^ { M }$ ; confidence 0.446
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446
  
164. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001062.png ; $i$ ; confidence 0.446
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104203.png ; $n = 1,2 , . .$ ; confidence 0.277
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
+
166. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002054.png ; $( 4 m ^ { 2 n } \cdot \frac { m ^ { 2 n } - 1 } { m ^ { 2 } - 1 } , m ^ { 2 n - 1 } \cdot ( \frac { 2 ( m ^ { 2 n } - 1 ) } { m + 1 } + 1 )$ ; confidence 0.276
+
167. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
+
168. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086490/s086490118.png ; $d ^ { \prime }$ ; confidence 0.445
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029014.png ; $f = \pi \gamma f _ { \alpha } \pi \overline { x } ^ { 1 }$ ; confidence 0.274
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040214.png ; $K _ { A }$ ; confidence 0.444
  
171. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $99$ ; confidence 0.271
+
174. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040257.png ; $( H _ { 1 } , \ldots , H _ { k + m } ) : C ^ { N } \rightarrow C ^ { k + m }$ ; confidence 0.271
+
175. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
  
176. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270
+
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443
  
177. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
+
177. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
  
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a0104309.png ; $q _ { i k } = P \{ \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \} , \quad i \in S , \quad h \in H$ ; confidence 0.269
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y$ ; confidence 0.441
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040746.png ; $P \cup R$ ; confidence 0.441
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $21$ ; confidence 0.266
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d > 1$ ; confidence 0.441
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029051.png ; $\alpha X$ ; confidence 0.266
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $1$ ; confidence 0.266
+
183. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256041.png ; $300$ ; confidence 0.440
  
184. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
184. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440
  
185. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a1100801.png ; $u _ { t t } = c ^ { 2 } ( u _ { XX } + u _ { y y } )$ ; confidence 0.264
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\{ X , v \}$ ; confidence 0.439
  
187. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022079.png ; $\| \alpha _ { j k }$ ; confidence 0.264
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021057.png ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022051.png ; $U W ^ { T } = 0$ ; confidence 0.439
  
191. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210107.png ; $k , b + k$ ; confidence 0.439
  
192. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010241.png ; $x = T ( \Lambda - \hat { \lambda } I ) ^ { - 1 } T ^ { - 1 } r$ ; confidence 0.261
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
+
194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
+
195. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437
  
197. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
  
198. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
+
198. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042030/f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010158.png ; $\frac { \| \delta x \| _ { 2 } } { \| x \| _ { 2 } } \leq k [ ( 2 + \eta \hat { k } ) \alpha + \beta \gamma ]$ ; confidence 0.259
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001094.png ; $\overline { X } \rightarrow X$ ; confidence 0.437
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022029.png ; $u _ { 1 } = \int _ { c _ { 1 } } ^ { x } d u _ { 1 } , \ldots , u _ { p } = \int _ { \varphi } ^ { x } d u _ { p }$ ; confidence 0.258
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024030.png ; $n \times p$ ; confidence 0.435
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010258.png ; $r = H . | A | . | x$ ; confidence 0.258
+
201. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
  
202. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
+
202. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020058.png ; $\operatorname { Ker } \beta \in \mathfrak { A } _ { 1 }$ ; confidence 0.257
+
203. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102208.png ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435
  
204. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
  
205. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
+
205. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
  
206. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018040.png ; $s = s 1$ ; confidence 0.434
  
207. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101204.png ; $\{ A _ { N } \}$ ; confidence 0.433
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png ; $i , j = 1 , \dots , g$ ; confidence 0.255
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029080.png ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433
  
210. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
210. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010281.png ; $( A _ { x } \lambda ^ { x } + A _ { x - 1 } \lambda ^ { x - 1 } + \ldots + A _ { 0 } ) x = 0$ ; confidence 0.253
+
211. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
212. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073840/p0738407.png ; $A \supset B$ ; confidence 0.432
  
213. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
213. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077370/r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432
  
214. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
+
218. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430
  
219. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
+
219. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256016.png ; $1$ ; confidence 0.430
  
220. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $97$ ; confidence 0.250
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
  
222. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
+
222. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
  
223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
  
224. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d > 5$ ; confidence 0.427
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001043.png ; $\| \delta x \| f \| x \| \approx \epsilon . k ( A )$ ; confidence 0.247
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102405.png ; $\alpha ; ( z )$ ; confidence 0.427
  
227. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
227. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426
  
229. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425
  
230. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $c _ { q }$ ; confidence 0.425
  
231. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425
  
232. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $x <$ ; confidence 0.424
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
+
233. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010251.png ; $\| v \| = \| A x - \hat { \lambda } x \| _ { 2 } \leq \epsilon \| A \| _ { 2 } \| x \| _ { 2 }$ ; confidence 0.243
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010207.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \rho ( | T ^ { - 1 } | | \delta A | | T | )$ ; confidence 0.242
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024077.png ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010110.png ; $A N = \operatorname { max } _ { 1 } \leq i _ { j } \leq n | \alpha _ { \xi } j |$ ; confidence 0.241
+
237. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040240.png ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
+
240. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
  
241. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010267.png ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020064.png ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018018.png ; $Z 1,22$ ; confidence 0.419
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240370.png ; $2$ ; confidence 0.235
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
  
246. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
+
246. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700100.png ; $q ^ { 1 }$ ; confidence 0.419
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040163.png ; $\langle A , F \rangle$ ; confidence 0.234
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018063.png ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418
  
248. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010224.png ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418
  
249. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
+
249. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
+
250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
  
251. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010229.png ; $\frac { \| x ^ { 2 } - x ^ { i } \| } { \| x ^ { i } \| } \leq \frac { \psi } { \operatorname { min } _ { j \neq i } | \lambda _ { i } - \lambda _ { j } | - 2 \psi }$ ; confidence 0.233
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040434.png ; $F _ { 0 }$ ; confidence 0.417
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
  
254. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
+
254. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
+
255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004054.png ; $F \subset A$ ; confidence 0.416
  
257. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040242.png ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415
  
258. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415
  
259. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png ; $( \omega ) = P _ { 1 } ^ { \alpha _ { 1 } } 1 ^ { \square } \ldots P _ { n } ^ { \alpha _ { R } }$ ; confidence 0.228
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240536.png ; $Z _ { 23 }$ ; confidence 0.228
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
  
262. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
+
262. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
  
263. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
263. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
  
264. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040527.png ; $\{ A , C \}$ ; confidence 0.413
  
265. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
+
265. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012015.png ; $P _ { X } ( z ) = \frac { 1 } { n ! } ( z - \alpha ) ( z - \alpha - n h ) ^ { \gamma - 1 }$ ; confidence 0.226
+
266. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
267. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $v \in G$ ; confidence 0.413
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
268. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003012.png ; $x - a | < b - a$ ; confidence 0.223
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006040.png ; $40$ ; confidence 0.413
  
271. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a1100708.png ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012038.png ; $\{ \lambda _ { n } \} \in \Lambda _ { \alpha }$ ; confidence 0.221
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029078.png ; $( X _ { \delta } , \pi X )$ ; confidence 0.412
  
273. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043024.png ; $q i$ ; confidence 0.412
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
+
274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412
  
275. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
+
275. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012025.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } ( n ! ) ^ { - \alpha } a _ { n } z ^ { n } , \quad \underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } \leq r$ ; confidence 0.220
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021030.png ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040218.png ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
+
278. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020082.png ; $3$ ; confidence 0.218
+
279. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410
  
280. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409
  
281. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
+
281. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png ; $C _ { \psi }$ ; confidence 0.409
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012032.png ; $S _ { a }$ ; confidence 0.216
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408
  
283. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040120.png ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040808.png ; $^ { * } L D S$ ; confidence 0.214
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040225.png ; $\hat { K } _ { A }$ ; confidence 0.407
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020063.png ; $21 / 21$ ; confidence 0.212
+
286. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
+
287. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040661.png ; $= \{ M e _ { S _ { i } }$ ; confidence 0.212
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010213.png ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004085.png ; $\{ 21 , n \}$ ; confidence 0.211
+
289. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007015.png ; $x _ { k } \in X$ ; confidence 0.211
+
290. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
  
291. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040649.png ; $57$ ; confidence 0.404
  
292. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
+
292. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005069.png ; $0 , T$ ; confidence 0.403
  
294. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403
  
295. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
+
295. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020048.png ; $B \in Ob \mathfrak { A } _ { 1 }$ ; confidence 0.209
+
296. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png ; $21$ ; confidence 0.401
  
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020049.png ; $A , C \in Ob A _ { 1 }$ ; confidence 0.207
+
299. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040116.png ; $2$ ; confidence 0.401

Revision as of 17:47, 2 September 2019

List

1. a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492

2. i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491

3. o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491

4. o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491

5. a01020026.png ; $D ( \phi ) = D ( \phi _ { 1 } ) \ldots D ( \phi _ { n } ) = D ( \psi _ { 1 } ) \ldots D ( \psi _ { m } ) = D ( \psi )$ ; confidence 0.490

6. a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490

7. n0679601.png ; $12$ ; confidence 0.490

8. p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490

9. a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489

10. b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489

11. b13023050.png ; $G ( u )$ ; confidence 0.489

12. e120020102.png ; $V \not \equiv W$ ; confidence 0.489

13. m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489

14. s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489

15. t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489

16. a110010184.png ; $| \hat { \lambda } - \lambda |$ ; confidence 0.488

17. d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488

18. d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488

19. a110040146.png ; $i$ ; confidence 0.488

20. m063240749.png ; $\prod x$ ; confidence 0.487

21. s08338085.png ; $d \in C$ ; confidence 0.487

22. w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487

23. a01021098.png ; $\sum _ { k = 1 } ^ { g } ( A _ { k } B _ { k } ^ { \prime } - B _ { k } A _ { k } ^ { \prime } ) = 2 \pi i \sum _ { j = 1 } ^ { N } c _ { j } \int _ { L _ { j } } \omega _ { 1 }$ ; confidence 0.487

24. a01022054.png ; $\overline { W } ^ { T }$ ; confidence 0.486

25. a01046051.png ; $h \in X$ ; confidence 0.486

26. a110010189.png ; $i = 1 , \dots , n$ ; confidence 0.485

27. a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485

28. d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485

29. g0432802.png ; $x$ ; confidence 0.485

30. a11006049.png ; $\{ X _ { z } : z \in Z ^ { d } \}$ ; confidence 0.485

31. a110010111.png ; $p < m$ ; confidence 0.484

32. a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484

33. d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484

34. t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484

35. a110010266.png ; $2$ ; confidence 0.484

36. a01024035.png ; $w ^ { 2 } = a _ { 0 } z ^ { 2 } + a _ { 1 } z + \alpha _ { 2 }$ ; confidence 0.484

37. a130050237.png ; $v < 1$ ; confidence 0.483

38. a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483

39. r08111018.png ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483

40. t0922406.png ; $k = R / m$ ; confidence 0.483

41. a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483

42. a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483

43. c02237023.png ; $N = L . L$ ; confidence 0.482

44. i05241032.png ; $y = Arc$ ; confidence 0.482

45. a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482

46. a1200609.png ; $\Omega$ ; confidence 0.482

47. a1100609.png ; $\beta ( A , B ) = \operatorname { E } \operatorname { sup } _ { B \in B } | P ( B | A ) - P ( B ) |$ ; confidence 0.481

48. a130240519.png ; $Z _ { 13 }$ ; confidence 0.481

49. p075560136.png ; $P Q = P \times Q$ ; confidence 0.481

50. s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481

51. a130240501.png ; $9$ ; confidence 0.481

52. g04301029.png ; $X \times F$ ; confidence 0.480

53. k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480

54. a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480

55. a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480

56. k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479

57. p110230174.png ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479

58. s08533026.png ; $18$ ; confidence 0.479

59. a110010236.png ; $\hat { \lambda }$ ; confidence 0.479

60. a01021066.png ; $\omega 1,2$ ; confidence 0.479

61. a13004074.png ; $5$ ; confidence 0.478

62. a01021054.png ; $a - x \neq 0$ ; confidence 0.478

63. a13024019.png ; $y$ ; confidence 0.478

64. b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478

65. u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478

66. a01022038.png ; $A l ( z )$ ; confidence 0.477

67. a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477

68. a01033021.png ; $\beta \frac { 1 } { r } / r$ ; confidence 0.477

69. a11064014.png ; $\Omega$ ; confidence 0.477

70. a13013032.png ; $\phi$ ; confidence 0.476

71. c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476

72. g043020155.png ; $V \oplus \mathfrak { g }$ ; confidence 0.476

73. s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476

74. a130040518.png ; $\Omega$ ; confidence 0.476

75. a110040144.png ; $R \subset P ^ { 2 }$ ; confidence 0.476

76. a130240305.png ; $4$ ; confidence 0.475

77. a0100803.png ; $x$ ; confidence 0.475

78. k12003033.png ; $E \neq \emptyset$ ; confidence 0.475

79. a130040503.png ; $F \in C$ ; confidence 0.475

80. a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474

81. a130240470.png ; $n$ ; confidence 0.474

82. a13013048.png ; $i$ ; confidence 0.474

83. b01738068.png ; $t \in S$ ; confidence 0.474

84. c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474

85. l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474

86. a130240499.png ; $X _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474

87. a130240343.png ; $2$ ; confidence 0.473

88. k1100801.png ; $W _ { C }$ ; confidence 0.473

89. l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473

90. m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473

91. a01018026.png ; $\lambda _ { x } = n$ ; confidence 0.473

92. a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472

93. l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472

94. a01021032.png ; $A _ { 1 } ^ { \prime } , B _ { 1 } ^ { \prime } , \dots , A ^ { \prime } , B _ { g } ^ { \prime }$ ; confidence 0.471

95. s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470

96. t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470

97. a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469

98. a130040263.png ; $- 1 A$ ; confidence 0.469

99. h11025012.png ; $T ^ { \aleph } x \in A$ ; confidence 0.469

100. a01021040.png ; $i \neq i$ ; confidence 0.468

101. a110010249.png ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467

102. a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467

103. b13020073.png ; $9 -$ ; confidence 0.467

104. c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467

105. o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467

106. a110010109.png ; $B N = \operatorname { max } _ { 1 \leq i \leq x } | b _ { i } |$ ; confidence 0.467

107. b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466

108. u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466

109. a130050262.png ; $N _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { C } ^ { \# } ( n )$ ; confidence 0.466

110. a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z }$ ; confidence 0.465

111. g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465

112. a13001015.png ; $S ^ { * } = S$ ; confidence 0.463

113. r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463

114. w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463

115. a13013017.png ; $P$ ; confidence 0.462

116. b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462

117. c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462

118. i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462

119. a110040249.png ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462

120. d03207031.png ; $2 \pi \alpha$ ; confidence 0.461

121. l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461

122. l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461

123. a130040285.png ; $\$ 4$ ; confidence 0.460

124. a130050170.png ; $K ( n )$ ; confidence 0.460

125. a0102008.png ; $\square _ { R } \Omega$ ; confidence 0.460

126. p07101037.png ; $p _ { i }$ ; confidence 0.459

127. y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459

128. a130040346.png ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459

129. a01021081.png ; $\omega ; 0$ ; confidence 0.458

130. a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458

131. a13024029.png ; $1$ ; confidence 0.458

132. p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458

133. a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456

134. p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456

135. a01024034.png ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455

136. a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455

137. a120050110.png ; $M$ ; confidence 0.455

138. i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455

139. l12003069.png ; $T _ { F }$ ; confidence 0.455

140. a11002060.png ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455

141. a01012047.png ; $W _ { 1 }$ ; confidence 0.455

142. a11004025.png ; $L$ ; confidence 0.453

143. a01021026.png ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453

144. a130040553.png ; $G$ ; confidence 0.453

145. a110010204.png ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452

146. e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452

147. a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452

148. a110010197.png ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451

149. b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451

150. a01012064.png ; $n = 0,1 , \dots$ ; confidence 0.450

151. a110420133.png ; $i$ ; confidence 0.450

152. a01294080.png ; $F _ { b }$ ; confidence 0.450

153. s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450

154. c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449

155. o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449

156. a01012054.png ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447

157. c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447

158. h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447

159. s0908209.png ; $X ^ { * }$ ; confidence 0.447

160. t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447

161. a11004017.png ; $\phi _ { L }$ ; confidence 0.446

162. a110040246.png ; $C ^ { M }$ ; confidence 0.446

163. a130240539.png ; $T _ { 1 }$ ; confidence 0.446

164. a11001062.png ; $i$ ; confidence 0.446

165. b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445

166. c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445

167. f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445

168. s086490118.png ; $d ^ { \prime }$ ; confidence 0.445

169. c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444

170. a110040214.png ; $K _ { A }$ ; confidence 0.444

171. a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443

172. a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443

173. b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443

174. c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443

175. c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443

176. c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443

177. q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443

178. a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441

179. a13029066.png ; $Y$ ; confidence 0.441

180. a130040746.png ; $P \cup R$ ; confidence 0.441

181. a11004095.png ; $d > 1$ ; confidence 0.441

182. a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440

183. r08256041.png ; $300$ ; confidence 0.440

184. s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440

185. t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440

186. a130040671.png ; $\{ X , v \}$ ; confidence 0.439

187. a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439

188. a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439

189. a01021057.png ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439

190. a01022051.png ; $U W ^ { T } = 0$ ; confidence 0.439

191. a010210107.png ; $k , b + k$ ; confidence 0.439

192. a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438

193. a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438

194. f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438

195. w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438

196. a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437

197. c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437

198. f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437

199. a11001094.png ; $\overline { X } \rightarrow X$ ; confidence 0.437

200. a13024030.png ; $n \times p$ ; confidence 0.435

201. d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435

202. h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435

203. a0102208.png ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435

204. a13013098.png ; $\pi$ ; confidence 0.434

205. i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434

206. a01018040.png ; $s = s 1$ ; confidence 0.434

207. a0101204.png ; $\{ A _ { N } \}$ ; confidence 0.433

208. a01029080.png ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433

209. b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433

210. q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433

211. p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432

212. p0738407.png ; $A \supset B$ ; confidence 0.432

213. r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432

214. a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431

215. a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431

216. a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431

217. a1202206.png ; $\varepsilon \in X$ ; confidence 0.430

218. e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430

219. r08256016.png ; $1$ ; confidence 0.430

220. a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430

221. a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429

222. d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429

223. a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428

224. a11004090.png ; $d > 5$ ; confidence 0.427

225. b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427

226. a0102405.png ; $\alpha ; ( z )$ ; confidence 0.427

227. w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426

228. a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426

229. a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425

230. a12023068.png ; $c _ { q }$ ; confidence 0.425

231. s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425

232. a01233050.png ; $x <$ ; confidence 0.424

233. c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424

234. a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424

235. a01024077.png ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423

236. c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422

237. o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422

238. a110040240.png ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422

239. b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421

240. m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421

241. a110010267.png ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420

242. b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420

243. a01020064.png ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420

244. a01018018.png ; $Z 1,22$ ; confidence 0.419

245. b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419

246. p075700100.png ; $q ^ { 1 }$ ; confidence 0.419

247. a01018063.png ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418

248. a110010224.png ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418

249. t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418

250. f130290181.png ; $LOC$ ; confidence 0.417

251. a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417

252. a130040434.png ; $F _ { 0 }$ ; confidence 0.417

253. a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416

254. g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416

255. n06728058.png ; $\pi / \rho$ ; confidence 0.416

256. a13004054.png ; $F \subset A$ ; confidence 0.416

257. a110040242.png ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415

258. a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415

259. b11052027.png ; $x \in G _ { n }$ ; confidence 0.415

260. a130240152.png ; $X \beta$ ; confidence 0.414

261. a11006029.png ; $B _ { j } \in B$ ; confidence 0.414

262. c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414

263. p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414

264. a130040527.png ; $\{ A , C \}$ ; confidence 0.413

265. c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413

266. m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413

267. o13005095.png ; $v \in G$ ; confidence 0.413

268. w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413

269. a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413

270. a12006040.png ; $40$ ; confidence 0.413

271. a1100708.png ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412

272. a01029078.png ; $( X _ { \delta } , \pi X )$ ; confidence 0.412

273. a01043024.png ; $q i$ ; confidence 0.412

274. f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412

275. h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412

276. a01021030.png ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412

277. a110040218.png ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411

278. g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411

279. f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410

280. a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409

281. o13008026.png ; $C _ { \psi }$ ; confidence 0.409

282. b12031064.png ; $\tau ^ { n }$ ; confidence 0.408

283. a110040120.png ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408

284. a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407

285. a110040225.png ; $\hat { K } _ { A }$ ; confidence 0.407

286. c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406

287. p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406

288. a110010213.png ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406

289. g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405

290. l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405

291. a130040649.png ; $57$ ; confidence 0.404

292. s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404

293. a12005069.png ; $0 , T$ ; confidence 0.403

294. a130240452.png ; $P$ ; confidence 0.403

295. c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403

296. c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402

297. a11002050.png ; $21$ ; confidence 0.401

298. a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401

299. i05226072.png ; $Z \in G$ ; confidence 0.401

300. a130040116.png ; $2$ ; confidence 0.401

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/13&oldid=43888