Difference between revisions of "User:Maximilian Janisch/latexlist/latex/13"
(AUTOMATIC EDIT of page 13 out of 13 with 30 lines: Updated image/latex database (currently 3630 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 13 out of 14 with 300 lines: Updated image/latex database (currently 4097 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $D _ { \alpha }$ ; confidence 0.374 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240377.png ; $T ^ { 2 }$ ; confidence 0.373 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010139.png ; $i = 1 , \dots , r$ ; confidence 0.372 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s0870309.png ; $f _ { h } \in U _ { k }$ ; confidence 0.371 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060205.png ; $d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$ ; confidence 0.370 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102104.png ; $a _ { 1 } b _ { 1 } \ldots a _ { 8 } b _ { 8 }$ ; confidence 0.369 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640127.png ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029055.png ; $\overline { a } X = \beta a X = \alpha \beta X$ ; confidence 0.369 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010168.png ; $\hat { k } ( \alpha + \beta )$ ; confidence 0.369 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010206.png ; $z \leq | ( \hat { \lambda } I - \Lambda ) ^ { - 1 } | | T ^ { - 1 } | | \delta A | | T | z |$ ; confidence 0.368 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024056.png ; $i = 1 , \ldots , I$ ; confidence 0.368 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012023.png ; $A _ { r } ^ { \alpha }$ ; confidence 0.368 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010113.png ; $\delta b = H . | b$ ; confidence 0.368 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041070.png ; $K _ { X } ^ { v } \otimes L ^ { i }$ ; confidence 0.368 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $n \| < C$ ; confidence 0.368 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566043.png ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075190/p07519074.png ; $E _ { i j }$ ; confidence 0.366 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022067.png ; $m$ ; confidence 0.365 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012076.png ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } \alpha _ { \nu _ { k } } z ^ { \nu _ { k } }$ ; confidence 0.364 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010286.png ; $( \hat { \lambda } B - C ) ^ { - 1 } = P ( \hat { \lambda } I - \Lambda ) ^ { - 1 } Q$ ; confidence 0.363 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; $b _ { 0 }$ ; confidence 0.363 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008029.png ; $c u _ { x t } = u _ { t t } - \frac { 1 } { 2 } c ^ { 2 } u _ { y y }$ ; confidence 0.363 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010135.png ; $\| ( A + \delta A ) ^ { + } \| _ { 2 } \leq \frac { \| A ^ { + } \| _ { 2 } } { 1 - \| A ^ { + } \| _ { 2 } \| ^ { \delta A \| _ { 2 } } }$ ; confidence 0.362 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/j/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362 |
+ | |||
+ | 31. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361 | ||
+ | |||
+ | 32. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094440/t09444040.png ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360 | ||
+ | |||
+ | 33. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $\hat { V }$ ; confidence 0.359 | ||
+ | |||
+ | 34. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358 | ||
+ | |||
+ | 35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002013.png ; $g = d \cdot d ^ { \prime - 1 }$ ; confidence 0.357 | ||
+ | |||
+ | 36. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020079.png ; $\alpha = \text { Coker } ( \text { Ker } \alpha ) \theta \text { ker } ( \text { Coker } \alpha )$ ; confidence 0.357 | ||
+ | |||
+ | 37. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in G$ ; confidence 0.357 | ||
+ | |||
+ | 38. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357 | ||
+ | |||
+ | 39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356 | ||
+ | |||
+ | 40. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a1100408.png ; $A = \operatorname { Pic } ^ { 0 } ( A )$ ; confidence 0.355 | ||
+ | |||
+ | 41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355 | ||
+ | |||
+ | 42. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063760/m063760111.png ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355 | ||
+ | |||
+ | 43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354 | ||
+ | |||
+ | 44. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a11063032.png ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354 | ||
+ | |||
+ | 45. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354 | ||
+ | |||
+ | 46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352 | ||
+ | |||
+ | 47. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352 | ||
+ | |||
+ | 48. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065460/m06546014.png ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351 | ||
+ | |||
+ | 49. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348 | ||
+ | |||
+ | 50. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010288.png ; $| e ^ { A + \delta A } - e ^ { A } \| \leq k ( T ) \cdot \| W \|$ ; confidence 0.347 | ||
+ | |||
+ | 51. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020036.png ; $M$ ; confidence 0.347 | ||
+ | |||
+ | 52. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021080.png ; $w _ { 2 }$ ; confidence 0.347 | ||
+ | |||
+ | 53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345 | ||
+ | |||
+ | 54. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345 | ||
+ | |||
+ | 55. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022034.png ; $x _ { 1 } , \ldots , x _ { p }$ ; confidence 0.344 | ||
+ | |||
+ | 56. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344 | ||
+ | |||
+ | 57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210142.png ; $w$ ; confidence 0.343 | ||
+ | |||
+ | 58. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342 | ||
+ | |||
+ | 59. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342 | ||
+ | |||
+ | 60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010140.png ; $\sigma _ { 1 } \geq \ldots \geq \sigma _ { \zeta }$ ; confidence 0.342 | ||
+ | |||
+ | 61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240488.png ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339 | ||
+ | |||
+ | 62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007010.png ; $x _ { 1 } , \ldots , x _ { x } \in X$ ; confidence 0.338 | ||
+ | |||
+ | 63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338 | ||
+ | |||
+ | 64. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711048.png ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338 | ||
+ | |||
+ | 65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006044.png ; $F | X _ { t } | ^ { 2 } + \delta$ ; confidence 0.338 | ||
+ | |||
+ | 66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040515.png ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337 | ||
+ | |||
+ | 67. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062360/m06236012.png ; $T _ { i j }$ ; confidence 0.337 | ||
+ | |||
+ | 68. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780168.png ; $T _ { \nu }$ ; confidence 0.336 | ||
+ | |||
+ | 69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104204.png ; $S _ { x } = X _ { 1 } + \ldots + X _ { x }$ ; confidence 0.335 | ||
+ | |||
+ | 70. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230379.png ; $\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$ ; confidence 0.335 | ||
+ | |||
+ | 71. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050123.png ; $c \rightarrow N$ ; confidence 0.335 | ||
+ | |||
+ | 72. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $\mu$ ; confidence 0.335 | ||
+ | |||
+ | 73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001027.png ; $\frac { \| \delta x \| } { \| x \| } \leq \frac { \| A ^ { - 1 } \delta A \| + \frac { \| A ^ { - 1 } \delta b \| } { | x \| } } { 1 - \| A ^ { - 1 } \delta A \| }$ ; confidence 0.334 | ||
+ | |||
+ | 74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240184.png ; $\eta _ { i } - \eta _ { s }$ ; confidence 0.334 | ||
+ | |||
+ | 75. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400325.png ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333 | ||
+ | |||
+ | 76. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332 | ||
+ | |||
+ | 77. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332 | ||
+ | |||
+ | 78. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332 | ||
+ | |||
+ | 79. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104207.png ; $n = 1,2 , \dots$ ; confidence 0.331 | ||
+ | |||
+ | 80. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331 | ||
+ | |||
+ | 81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040271.png ; $p ^ { 4 }$ ; confidence 0.330 | ||
+ | |||
+ | 82. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330 | ||
+ | |||
+ | 83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330 | ||
+ | |||
+ | 84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040349.png ; $8$ ; confidence 0.330 | ||
+ | |||
+ | 85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png ; $L$ ; confidence 0.330 | ||
+ | |||
+ | 86. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329 | ||
+ | |||
+ | 87. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $o = e K$ ; confidence 0.327 | ||
+ | |||
+ | 88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326 | ||
+ | |||
+ | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326 | ||
+ | |||
+ | 90. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012043.png ; $W _ { 0 }$ ; confidence 0.325 | ||
+ | |||
+ | 91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043017.png ; $p _ { i k } ^ { * } ( t ) = P \{ \xi ^ { * } ( t ) = h | \xi ^ { * } ( 0 ) = i \} =$ ; confidence 0.325 | ||
+ | |||
+ | 92. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031010.png ; $N$ ; confidence 0.325 | ||
+ | |||
+ | 93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324 | ||
+ | |||
+ | 94. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png ; $C$ ; confidence 0.323 | ||
+ | |||
+ | 95. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323 | ||
+ | |||
+ | 96. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007012.png ; $\{ x _ { k } , a \}$ ; confidence 0.323 | ||
+ | |||
+ | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322 | ||
+ | |||
+ | 98. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322 | ||
+ | |||
+ | 99. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322 | ||
+ | |||
+ | 100. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322 | ||
+ | |||
+ | 101. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321 | ||
+ | |||
+ | 102. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320 | ||
+ | |||
+ | 103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022097.png ; $\alpha + b \in C ^ { p }$ ; confidence 0.317 | ||
+ | |||
+ | 104. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316 | ||
+ | |||
+ | 105. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316 | ||
+ | |||
+ | 106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007013.png ; $x \in X ^ { \prime }$ ; confidence 0.315 | ||
+ | |||
+ | 107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315 | ||
+ | |||
+ | 108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315 | ||
+ | |||
+ | 109. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315 | ||
+ | |||
+ | 110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315 | ||
+ | |||
+ | 111. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314 | ||
+ | |||
+ | 112. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313 | ||
+ | |||
+ | 113. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312 | ||
+ | |||
+ | 114. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $M ^ { 0 }$ ; confidence 0.312 | ||
+ | |||
+ | 115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002049.png ; $m = 2 ^ { a } 3 ^ { b } u ^ { 2 }$ ; confidence 0.311 | ||
+ | |||
+ | 116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311 | ||
+ | |||
+ | 117. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021060.png ; $A _ { 1 } , \ldots , A _ { 8 }$ ; confidence 0.310 | ||
+ | |||
+ | 118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310 | ||
+ | |||
+ | 119. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310 | ||
+ | |||
+ | 120. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310136.png ; $A$ ; confidence 0.309 | ||
+ | |||
+ | 121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010199.png ; $k ( T ) = \| T \| T ^ { - 1 } \|$ ; confidence 0.308 | ||
+ | |||
+ | 122. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308 | ||
+ | |||
+ | 123. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308 | ||
+ | |||
+ | 124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307 | ||
+ | |||
+ | 125. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307 | ||
+ | |||
+ | 126. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307 | ||
+ | |||
+ | 127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010279.png ; $\frac { \| \delta X \| } { \| X \| } \leq \frac { \epsilon \cdot k ( A , B ) } { 1 - \epsilon \cdot k ( A , B ) }$ ; confidence 0.305 | ||
+ | |||
+ | 128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304 | ||
+ | |||
+ | 129. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304 | ||
+ | |||
+ | 130. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304 | ||
+ | |||
+ | 131. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303 | ||
+ | |||
+ | 132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002053.png ; $2 ^ { a + 2 }$ ; confidence 0.302 | ||
+ | |||
+ | 133. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301 | ||
+ | |||
+ | 134. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301 | ||
+ | |||
+ | 135. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300 | ||
+ | |||
+ | 136. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300 | ||
+ | |||
+ | 137. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300 | ||
+ | |||
+ | 138. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299 | ||
+ | |||
+ | 139. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299 | ||
+ | |||
+ | 140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { D }$ ; confidence 0.298 | ||
+ | |||
+ | 141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012035.png ; $W _ { a }$ ; confidence 0.297 | ||
+ | |||
+ | 142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040152.png ; $C \in | L$ ; confidence 0.296 | ||
+ | |||
+ | 143. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295 | ||
+ | |||
+ | 144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010159.png ; $\alpha = \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } , \quad \hat { \kappa } = \frac { k ( A ) } { 1 - \alpha k ( A ) }$ ; confidence 0.294 | ||
+ | |||
+ | 145. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $\{ A \rangle$ ; confidence 0.294 | ||
+ | |||
+ | 146. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $\phi _ { im }$ ; confidence 0.294 | ||
+ | |||
+ | 147. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots$ ; confidence 0.294 | ||
+ | |||
+ | 148. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291 | ||
+ | |||
+ | 149. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291 | ||
+ | |||
+ | 150. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290 | ||
+ | |||
+ | 151. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290 | ||
+ | |||
+ | 152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288 | ||
+ | |||
+ | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287 | ||
+ | |||
+ | 154. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287 | ||
+ | |||
+ | 155. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285 | ||
+ | |||
+ | 156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004048.png ; $d _ { 2 }$ ; confidence 0.284 | ||
+ | |||
+ | 157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284 | ||
+ | |||
+ | 158. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284 | ||
+ | |||
+ | 159. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007026.png ; $\pi _ { p } ( \text { Id } : C ( K ) \rightarrow L _ { p } ( K , \mu ) ) = \mu ( K ) ^ { 1 / p }$ ; confidence 0.283 | ||
+ | |||
+ | 160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281 | ||
+ | |||
+ | 161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010211.png ; $1 / S i$ ; confidence 0.280 | ||
+ | |||
+ | 162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006033.png ; $\beta _ { X } ( s ) = \operatorname { sup } _ { t } \beta ( \sigma \{ X _ { z } : u \leq t \} , \sigma \{ X _ { z } : u \geq t + x \} )$ ; confidence 0.279 | ||
+ | |||
+ | 163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278 | ||
+ | |||
+ | 164. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278 | ||
+ | |||
+ | 165. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104203.png ; $n = 1,2 , . .$ ; confidence 0.277 | ||
+ | |||
+ | 166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277 | ||
+ | |||
+ | 167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002054.png ; $( 4 m ^ { 2 n } \cdot \frac { m ^ { 2 n } - 1 } { m ^ { 2 } - 1 } , m ^ { 2 n - 1 } \cdot ( \frac { 2 ( m ^ { 2 n } - 1 ) } { m + 1 } + 1 )$ ; confidence 0.276 | ||
+ | |||
+ | 168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275 | ||
+ | |||
+ | 169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029014.png ; $f = \pi \gamma f _ { \alpha } \pi \overline { x } ^ { 1 }$ ; confidence 0.274 | ||
+ | |||
+ | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273 | ||
+ | |||
+ | 171. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272 | ||
+ | |||
+ | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271 | ||
+ | |||
+ | 173. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271 | ||
+ | |||
+ | 174. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $99$ ; confidence 0.271 | ||
+ | |||
+ | 175. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040257.png ; $( H _ { 1 } , \ldots , H _ { k + m } ) : C ^ { N } \rightarrow C ^ { k + m }$ ; confidence 0.271 | ||
+ | |||
+ | 176. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270 | ||
+ | |||
+ | 177. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269 | ||
+ | |||
+ | 178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269 | ||
+ | |||
+ | 179. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a0104309.png ; $q _ { i k } = P \{ \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \} , \quad i \in S , \quad h \in H$ ; confidence 0.269 | ||
+ | |||
+ | 180. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268 | ||
+ | |||
+ | 181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $21$ ; confidence 0.266 | ||
+ | |||
+ | 182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029051.png ; $\alpha X$ ; confidence 0.266 | ||
+ | |||
+ | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $1$ ; confidence 0.266 | ||
+ | |||
+ | 184. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265 | ||
+ | |||
+ | 185. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265 | ||
+ | |||
+ | 186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a1100801.png ; $u _ { t t } = c ^ { 2 } ( u _ { XX } + u _ { y y } )$ ; confidence 0.264 | ||
+ | |||
+ | 187. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264 | ||
+ | |||
+ | 188. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022079.png ; $\| \alpha _ { j k }$ ; confidence 0.264 | ||
+ | |||
+ | 189. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263 | ||
+ | |||
+ | 190. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262 | ||
+ | |||
+ | 191. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262 | ||
+ | |||
+ | 192. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261 | ||
+ | |||
+ | 193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010241.png ; $x = T ( \Lambda - \hat { \lambda } I ) ^ { - 1 } T ^ { - 1 } r$ ; confidence 0.261 | ||
+ | |||
+ | 194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260 | ||
+ | |||
+ | 195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259 | ||
+ | |||
+ | 196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259 | ||
+ | |||
+ | 197. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259 | ||
+ | |||
+ | 198. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259 | ||
+ | |||
+ | 199. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010158.png ; $\frac { \| \delta x \| _ { 2 } } { \| x \| _ { 2 } } \leq k [ ( 2 + \eta \hat { k } ) \alpha + \beta \gamma ]$ ; confidence 0.259 | ||
+ | |||
+ | 200. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022029.png ; $u _ { 1 } = \int _ { c _ { 1 } } ^ { x } d u _ { 1 } , \ldots , u _ { p } = \int _ { \varphi } ^ { x } d u _ { p }$ ; confidence 0.258 | ||
+ | |||
+ | 201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010258.png ; $r = H . | A | . | x$ ; confidence 0.258 | ||
+ | |||
+ | 202. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258 | ||
+ | |||
+ | 203. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020058.png ; $\operatorname { Ker } \beta \in \mathfrak { A } _ { 1 }$ ; confidence 0.257 | ||
+ | |||
+ | 204. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256 | ||
+ | |||
+ | 205. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256 | ||
+ | |||
+ | 206. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256 | ||
+ | |||
+ | 207. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255 | ||
+ | |||
+ | 208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png ; $i , j = 1 , \dots , g$ ; confidence 0.255 | ||
+ | |||
+ | 209. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254 | ||
+ | |||
+ | 210. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254 | ||
+ | |||
+ | 211. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010281.png ; $( A _ { x } \lambda ^ { x } + A _ { x - 1 } \lambda ^ { x - 1 } + \ldots + A _ { 0 } ) x = 0$ ; confidence 0.253 | ||
+ | |||
+ | 212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253 | ||
+ | |||
+ | 213. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252 | ||
+ | |||
+ | 214. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252 | ||
+ | |||
+ | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251 | ||
+ | |||
+ | 216. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251 | ||
+ | |||
+ | 217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251 | ||
+ | |||
+ | 218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250 | ||
+ | |||
+ | 219. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250 | ||
+ | |||
+ | 220. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250 | ||
+ | |||
+ | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $97$ ; confidence 0.250 | ||
+ | |||
+ | 222. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248 | ||
+ | |||
+ | 223. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248 | ||
+ | |||
+ | 224. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248 | ||
+ | |||
+ | 225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001043.png ; $\| \delta x \| f \| x \| \approx \epsilon . k ( A )$ ; confidence 0.247 | ||
+ | |||
+ | 226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247 | ||
+ | |||
+ | 227. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246 | ||
+ | |||
+ | 228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245 | ||
+ | |||
+ | 229. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245 | ||
+ | |||
+ | 230. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245 | ||
+ | |||
+ | 231. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245 | ||
+ | |||
+ | 232. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245 | ||
+ | |||
+ | 233. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244 | ||
+ | |||
+ | 234. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010251.png ; $\| v \| = \| A x - \hat { \lambda } x \| _ { 2 } \leq \epsilon \| A \| _ { 2 } \| x \| _ { 2 }$ ; confidence 0.243 | ||
+ | |||
+ | 235. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010207.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \rho ( | T ^ { - 1 } | | \delta A | | T | )$ ; confidence 0.242 | ||
+ | |||
+ | 236. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241 | ||
+ | |||
+ | 237. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010110.png ; $A N = \operatorname { max } _ { 1 } \leq i _ { j } \leq n | \alpha _ { \xi } j |$ ; confidence 0.241 | ||
+ | |||
+ | 238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240 | ||
+ | |||
+ | 239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239 | ||
+ | |||
+ | 240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239 | ||
+ | |||
+ | 241. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238 | ||
+ | |||
+ | 242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237 | ||
+ | |||
+ | 243. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237 | ||
+ | |||
+ | 244. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236 | ||
+ | |||
+ | 245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240370.png ; $2$ ; confidence 0.235 | ||
+ | |||
+ | 246. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235 | ||
+ | |||
+ | 247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040163.png ; $\langle A , F \rangle$ ; confidence 0.234 | ||
+ | |||
+ | 248. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234 | ||
+ | |||
+ | 249. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234 | ||
+ | |||
+ | 250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233 | ||
+ | |||
+ | 251. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233 | ||
+ | |||
+ | 252. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010229.png ; $\frac { \| x ^ { 2 } - x ^ { i } \| } { \| x ^ { i } \| } \leq \frac { \psi } { \operatorname { min } _ { j \neq i } | \lambda _ { i } - \lambda _ { j } | - 2 \psi }$ ; confidence 0.233 | ||
+ | |||
+ | 253. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232 | ||
+ | |||
+ | 254. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232 | ||
+ | |||
+ | 255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230 | ||
+ | |||
+ | 256. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230 | ||
+ | |||
+ | 257. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230 | ||
+ | |||
+ | 258. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229 | ||
+ | |||
+ | 259. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229 | ||
+ | |||
+ | 260. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png ; $( \omega ) = P _ { 1 } ^ { \alpha _ { 1 } } 1 ^ { \square } \ldots P _ { n } ^ { \alpha _ { R } }$ ; confidence 0.228 | ||
+ | |||
+ | 261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240536.png ; $Z _ { 23 }$ ; confidence 0.228 | ||
+ | |||
+ | 262. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228 | ||
+ | |||
+ | 263. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228 | ||
+ | |||
+ | 264. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226 | ||
+ | |||
+ | 265. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226 | ||
+ | |||
+ | 266. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012015.png ; $P _ { X } ( z ) = \frac { 1 } { n ! } ( z - \alpha ) ( z - \alpha - n h ) ^ { \gamma - 1 }$ ; confidence 0.226 | ||
+ | |||
+ | 267. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225 | ||
+ | |||
+ | 268. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225 | ||
+ | |||
+ | 269. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223 | ||
+ | |||
+ | 270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003012.png ; $x - a | < b - a$ ; confidence 0.223 | ||
+ | |||
+ | 271. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222 | ||
+ | |||
+ | 272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012038.png ; $\{ \lambda _ { n } \} \in \Lambda _ { \alpha }$ ; confidence 0.221 | ||
+ | |||
+ | 273. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221 | ||
+ | |||
+ | 274. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220 | ||
+ | |||
+ | 275. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220 | ||
+ | |||
+ | 276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012025.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } ( n ! ) ^ { - \alpha } a _ { n } z ^ { n } , \quad \underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } \leq r$ ; confidence 0.220 | ||
+ | |||
+ | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219 | ||
+ | |||
+ | 278. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219 | ||
+ | |||
+ | 279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020082.png ; $3$ ; confidence 0.218 | ||
+ | |||
+ | 280. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217 | ||
+ | |||
+ | 281. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216 | ||
+ | |||
+ | 282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012032.png ; $S _ { a }$ ; confidence 0.216 | ||
+ | |||
+ | 283. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215 | ||
+ | |||
+ | 284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040808.png ; $^ { * } L D S$ ; confidence 0.214 | ||
+ | |||
+ | 285. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213 | ||
+ | |||
+ | 286. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020063.png ; $21 / 21$ ; confidence 0.212 | ||
+ | |||
+ | 287. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212 | ||
+ | |||
+ | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040661.png ; $= \{ M e _ { S _ { i } }$ ; confidence 0.212 | ||
+ | |||
+ | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004085.png ; $\{ 21 , n \}$ ; confidence 0.211 | ||
+ | |||
+ | 290. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007015.png ; $x _ { k } \in X$ ; confidence 0.211 | ||
+ | |||
+ | 291. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210 | ||
+ | |||
+ | 292. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210 | ||
+ | |||
+ | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209 | ||
+ | |||
+ | 294. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209 | ||
+ | |||
+ | 295. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209 | ||
+ | |||
+ | 296. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020048.png ; $B \in Ob \mathfrak { A } _ { 1 }$ ; confidence 0.209 | ||
+ | |||
+ | 297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208 | ||
+ | |||
+ | 298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208 | ||
+ | |||
+ | 299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020049.png ; $A , C \in Ob A _ { 1 }$ ; confidence 0.207 | ||
+ | |||
+ | 300. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207 |
Revision as of 10:28, 2 September 2019
List
1. ; $D _ { \alpha }$ ; confidence 0.374
2. ; $T ^ { 2 }$ ; confidence 0.373
3. ; $\mathfrak { M } _ { n }$ ; confidence 0.373
4. ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
5. ; $i = 1 , \dots , r$ ; confidence 0.372
6. ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
7. ; $f _ { h } \in U _ { k }$ ; confidence 0.371
8. ; $d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$ ; confidence 0.370
9. ; $a _ { 1 } b _ { 1 } \ldots a _ { 8 } b _ { 8 }$ ; confidence 0.369
10. ; $z \in C$ ; confidence 0.369
11. ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
12. ; $\overline { a } X = \beta a X = \alpha \beta X$ ; confidence 0.369
13. ; $\hat { k } ( \alpha + \beta )$ ; confidence 0.369
14. ; $z \leq | ( \hat { \lambda } I - \Lambda ) ^ { - 1 } | | T ^ { - 1 } | | \delta A | | T | z |$ ; confidence 0.368
15. ; $i = 1 , \ldots , I$ ; confidence 0.368
16. ; $A _ { r } ^ { \alpha }$ ; confidence 0.368
17. ; $\delta b = H . | b$ ; confidence 0.368
18. ; $K _ { X } ^ { v } \otimes L ^ { i }$ ; confidence 0.368
19. ; $n \| < C$ ; confidence 0.368
20. ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
21. ; $E _ { i j }$ ; confidence 0.366
22. ; $m$ ; confidence 0.365
23. ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } \alpha _ { \nu _ { k } } z ^ { \nu _ { k } }$ ; confidence 0.364
24. ; $( \hat { \lambda } B - C ) ^ { - 1 } = P ( \hat { \lambda } I - \Lambda ) ^ { - 1 } Q$ ; confidence 0.363
25. ; $b _ { 0 }$ ; confidence 0.363
26. ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
27. ; $c u _ { x t } = u _ { t t } - \frac { 1 } { 2 } c ^ { 2 } u _ { y y }$ ; confidence 0.363
28. ; $\| ( A + \delta A ) ^ { + } \| _ { 2 } \leq \frac { \| A ^ { + } \| _ { 2 } } { 1 - \| A ^ { + } \| _ { 2 } \| ^ { \delta A \| _ { 2 } } }$ ; confidence 0.362
29. ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
30. ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
31. ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
32. ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360
33. ; $\hat { V }$ ; confidence 0.359
34. ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
35. ; $g = d \cdot d ^ { \prime - 1 }$ ; confidence 0.357
36. ; $\alpha = \text { Coker } ( \text { Ker } \alpha ) \theta \text { ker } ( \text { Coker } \alpha )$ ; confidence 0.357
37. ; $v _ { n } \in G$ ; confidence 0.357
38. ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
39. ; $\mathfrak { p } \supset b$ ; confidence 0.356
40. ; $A = \operatorname { Pic } ^ { 0 } ( A )$ ; confidence 0.355
41. ; $0$ ; confidence 0.355
42. ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355
43. ; $t$ ; confidence 0.354
44. ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
45. ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
46. ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
47. ; $m _ { k } = \dot { k }$ ; confidence 0.352
48. ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351
49. ; $l _ { k } ( A )$ ; confidence 0.348
50. ; $| e ^ { A + \delta A } - e ^ { A } \| \leq k ( T ) \cdot \| W \|$ ; confidence 0.347
51. ; $M$ ; confidence 0.347
52. ; $w _ { 2 }$ ; confidence 0.347
53. ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
54. ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
55. ; $x _ { 1 } , \ldots , x _ { p }$ ; confidence 0.344
56. ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
57. ; $w$ ; confidence 0.343
58. ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
59. ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
60. ; $\sigma _ { 1 } \geq \ldots \geq \sigma _ { \zeta }$ ; confidence 0.342
61. ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339
62. ; $x _ { 1 } , \ldots , x _ { x } \in X$ ; confidence 0.338
63. ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
64. ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338
65. ; $F | X _ { t } | ^ { 2 } + \delta$ ; confidence 0.338
66. ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337
67. ; $T _ { i j }$ ; confidence 0.337
68. ; $T _ { \nu }$ ; confidence 0.336
69. ; $S _ { x } = X _ { 1 } + \ldots + X _ { x }$ ; confidence 0.335
70. ; $\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$ ; confidence 0.335
71. ; $c \rightarrow N$ ; confidence 0.335
72. ; $\mu$ ; confidence 0.335
73. ; $\frac { \| \delta x \| } { \| x \| } \leq \frac { \| A ^ { - 1 } \delta A \| + \frac { \| A ^ { - 1 } \delta b \| } { | x \| } } { 1 - \| A ^ { - 1 } \delta A \| }$ ; confidence 0.334
74. ; $\eta _ { i } - \eta _ { s }$ ; confidence 0.334
75. ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
76. ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
77. ; $F T op$ ; confidence 0.332
78. ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332
79. ; $n = 1,2 , \dots$ ; confidence 0.331
80. ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
81. ; $p ^ { 4 }$ ; confidence 0.330
82. ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
83. ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
84. ; $8$ ; confidence 0.330
85. ; $L$ ; confidence 0.330
86. ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
87. ; $o = e K$ ; confidence 0.327
88. ; $_ { \nabla } ( G / K )$ ; confidence 0.326
89. ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
90. ; $W _ { 0 }$ ; confidence 0.325
91. ; $p _ { i k } ^ { * } ( t ) = P \{ \xi ^ { * } ( t ) = h | \xi ^ { * } ( 0 ) = i \} =$ ; confidence 0.325
92. ; $N$ ; confidence 0.325
93. ; $c$ ; confidence 0.324
94. ; $C$ ; confidence 0.323
95. ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
96. ; $\{ x _ { k } , a \}$ ; confidence 0.323
97. ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
98. ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
99. ; $n ( O _ { x } ) = 0$ ; confidence 0.322
100. ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
101. ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
102. ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
103. ; $\alpha + b \in C ^ { p }$ ; confidence 0.317
104. ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
105. ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
106. ; $x \in X ^ { \prime }$ ; confidence 0.315
107. ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
108. ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
109. ; $\partial _ { r }$ ; confidence 0.315
110. ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
111. ; $e$ ; confidence 0.314
112. ; $\therefore M \rightarrow F$ ; confidence 0.313
113. ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
114. ; $M ^ { 0 }$ ; confidence 0.312
115. ; $m = 2 ^ { a } 3 ^ { b } u ^ { 2 }$ ; confidence 0.311
116. ; $0$ ; confidence 0.311
117. ; $A _ { 1 } , \ldots , A _ { 8 }$ ; confidence 0.310
118. ; $\Gamma 20$ ; confidence 0.310
119. ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
120. ; $A$ ; confidence 0.309
121. ; $k ( T ) = \| T \| T ^ { - 1 } \|$ ; confidence 0.308
122. ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
123. ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
124. ; $h$ ; confidence 0.307
125. ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
126. ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
127. ; $\frac { \| \delta X \| } { \| X \| } \leq \frac { \epsilon \cdot k ( A , B ) } { 1 - \epsilon \cdot k ( A , B ) }$ ; confidence 0.305
128. ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
129. ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
130. ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
131. ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
132. ; $2 ^ { a + 2 }$ ; confidence 0.302
133. ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
134. ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
135. ; $x \in \operatorname { Dom } A$ ; confidence 0.300
136. ; $e \omega ^ { r } f$ ; confidence 0.300
137. ; $\Pi I _ { \lambda }$ ; confidence 0.300
138. ; $\overline { U }$ ; confidence 0.299
139. ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
140. ; $F \in Fi _ { D }$ ; confidence 0.298
141. ; $W _ { a }$ ; confidence 0.297
142. ; $C \in | L$ ; confidence 0.296
143. ; $\{ \partial f \rangle$ ; confidence 0.295
144. ; $\alpha = \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } , \quad \hat { \kappa } = \frac { k ( A ) } { 1 - \alpha k ( A ) }$ ; confidence 0.294
145. ; $\{ A \rangle$ ; confidence 0.294
146. ; $\phi _ { im }$ ; confidence 0.294
147. ; $n = 0,1 , \ldots$ ; confidence 0.294
148. ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
149. ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
150. ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
151. ; $t \circ \in E$ ; confidence 0.290
152. ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
153. ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
154. ; $x _ { y } + 1 = t$ ; confidence 0.287
155. ; $A \in \mathfrak { S }$ ; confidence 0.285
156. ; $d _ { 2 }$ ; confidence 0.284
157. ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
158. ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
159. ; $\pi _ { p } ( \text { Id } : C ( K ) \rightarrow L _ { p } ( K , \mu ) ) = \mu ( K ) ^ { 1 / p }$ ; confidence 0.283
160. ; $\sqrt { 3 }$ ; confidence 0.281
161. ; $1 / S i$ ; confidence 0.280
162. ; $\beta _ { X } ( s ) = \operatorname { sup } _ { t } \beta ( \sigma \{ X _ { z } : u \leq t \} , \sigma \{ X _ { z } : u \geq t + x \} )$ ; confidence 0.279
163. ; $X \in X$ ; confidence 0.278
164. ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
165. ; $n = 1,2 , . .$ ; confidence 0.277
166. ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
167. ; $( 4 m ^ { 2 n } \cdot \frac { m ^ { 2 n } - 1 } { m ^ { 2 } - 1 } , m ^ { 2 n - 1 } \cdot ( \frac { 2 ( m ^ { 2 n } - 1 ) } { m + 1 } + 1 )$ ; confidence 0.276
168. ; $a ^ { \prime } \Theta$ ; confidence 0.275
169. ; $f = \pi \gamma f _ { \alpha } \pi \overline { x } ^ { 1 }$ ; confidence 0.274
170. ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
171. ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
172. ; $| e | | < 1$ ; confidence 0.271
173. ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
174. ; $99$ ; confidence 0.271
175. ; $( H _ { 1 } , \ldots , H _ { k + m } ) : C ^ { N } \rightarrow C ^ { k + m }$ ; confidence 0.271
176. ; $Z y \rightarrow \infty$ ; confidence 0.270
177. ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
178. ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
179. ; $q _ { i k } = P \{ \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \} , \quad i \in S , \quad h \in H$ ; confidence 0.269
180. ; $\chi \pi _ { \alpha }$ ; confidence 0.268
181. ; $21$ ; confidence 0.266
182. ; $\alpha X$ ; confidence 0.266
183. ; $1$ ; confidence 0.266
184. ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
185. ; $h ( [ a ] )$ ; confidence 0.265
186. ; $u _ { t t } = c ^ { 2 } ( u _ { XX } + u _ { y y } )$ ; confidence 0.264
187. ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
188. ; $\| \alpha _ { j k }$ ; confidence 0.264
189. ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
190. ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
191. ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
192. ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
193. ; $x = T ( \Lambda - \hat { \lambda } I ) ^ { - 1 } T ^ { - 1 } r$ ; confidence 0.261
194. ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
195. ; $r _ { ess } ( T )$ ; confidence 0.259
196. ; $m$ ; confidence 0.259
197. ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
198. ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
199. ; $\frac { \| \delta x \| _ { 2 } } { \| x \| _ { 2 } } \leq k [ ( 2 + \eta \hat { k } ) \alpha + \beta \gamma ]$ ; confidence 0.259
200. ; $u _ { 1 } = \int _ { c _ { 1 } } ^ { x } d u _ { 1 } , \ldots , u _ { p } = \int _ { \varphi } ^ { x } d u _ { p }$ ; confidence 0.258
201. ; $r = H . | A | . | x$ ; confidence 0.258
202. ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
203. ; $\operatorname { Ker } \beta \in \mathfrak { A } _ { 1 }$ ; confidence 0.257
204. ; $L ^ { \prime }$ ; confidence 0.256
205. ; $x _ { C }$ ; confidence 0.256
206. ; $[ f _ { G } ]$ ; confidence 0.256
207. ; $D \Re \subset M$ ; confidence 0.255
208. ; $i , j = 1 , \dots , g$ ; confidence 0.255
209. ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
210. ; $7$ ; confidence 0.254
211. ; $( A _ { x } \lambda ^ { x } + A _ { x - 1 } \lambda ^ { x - 1 } + \ldots + A _ { 0 } ) x = 0$ ; confidence 0.253
212. ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
213. ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
214. ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
215. ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
216. ; $X \in Ob \odot$ ; confidence 0.251
217. ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
218. ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
219. ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
220. ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
221. ; $97$ ; confidence 0.250
222. ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
223. ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
224. ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
225. ; $\| \delta x \| f \| x \| \approx \epsilon . k ( A )$ ; confidence 0.247
226. ; $s l _ { 2 }$ ; confidence 0.247
227. ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
228. ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
229. ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
230. ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
231. ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
232. ; $q R$ ; confidence 0.245
233. ; $V _ { Q }$ ; confidence 0.244
234. ; $\| v \| = \| A x - \hat { \lambda } x \| _ { 2 } \leq \epsilon \| A \| _ { 2 } \| x \| _ { 2 }$ ; confidence 0.243
235. ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \rho ( | T ^ { - 1 } | | \delta A | | T | )$ ; confidence 0.242
236. ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
237. ; $A N = \operatorname { max } _ { 1 } \leq i _ { j } \leq n | \alpha _ { \xi } j |$ ; confidence 0.241
238. ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
239. ; $( n$ ; confidence 0.239
240. ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
241. ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
242. ; $0.00$ ; confidence 0.237
243. ; $X _ { 1 }$ ; confidence 0.237
244. ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
245. ; $2$ ; confidence 0.235
246. ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
247. ; $\langle A , F \rangle$ ; confidence 0.234
248. ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
249. ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
250. ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
251. ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
252. ; $\frac { \| x ^ { 2 } - x ^ { i } \| } { \| x ^ { i } \| } \leq \frac { \psi } { \operatorname { min } _ { j \neq i } | \lambda _ { i } - \lambda _ { j } | - 2 \psi }$ ; confidence 0.233
253. ; $C A$ ; confidence 0.232
254. ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
255. ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
256. ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
257. ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
258. ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
259. ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
260. ; $( \omega ) = P _ { 1 } ^ { \alpha _ { 1 } } 1 ^ { \square } \ldots P _ { n } ^ { \alpha _ { R } }$ ; confidence 0.228
261. ; $Z _ { 23 }$ ; confidence 0.228
262. ; $n + = n - = n$ ; confidence 0.228
263. ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
264. ; $C X Y$ ; confidence 0.226
265. ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
266. ; $P _ { X } ( z ) = \frac { 1 } { n ! } ( z - \alpha ) ( z - \alpha - n h ) ^ { \gamma - 1 }$ ; confidence 0.226
267. ; $20$ ; confidence 0.225
268. ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
269. ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
270. ; $x - a | < b - a$ ; confidence 0.223
271. ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
272. ; $\{ \lambda _ { n } \} \in \Lambda _ { \alpha }$ ; confidence 0.221
273. ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
274. ; $X \equiv 0$ ; confidence 0.220
275. ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
276. ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } ( n ! ) ^ { - \alpha } a _ { n } z ^ { n } , \quad \underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } \leq r$ ; confidence 0.220
277. ; $H ^ { \prime }$ ; confidence 0.219
278. ; $P ( s S ) = P ( S )$ ; confidence 0.219
279. ; $3$ ; confidence 0.218
280. ; $Z _ { h }$ ; confidence 0.217
281. ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
282. ; $S _ { a }$ ; confidence 0.216
283. ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
284. ; $^ { * } L D S$ ; confidence 0.214
285. ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
286. ; $21 / 21$ ; confidence 0.212
287. ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
288. ; $= \{ M e _ { S _ { i } }$ ; confidence 0.212
289. ; $\{ 21 , n \}$ ; confidence 0.211
290. ; $x _ { k } \in X$ ; confidence 0.211
291. ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
292. ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
293. ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
294. ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
295. ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
296. ; $B \in Ob \mathfrak { A } _ { 1 }$ ; confidence 0.209
297. ; $Z _ { i j }$ ; confidence 0.208
298. ; $k$ ; confidence 0.208
299. ; $A , C \in Ob A _ { 1 }$ ; confidence 0.207
300. ; $| x$ ; confidence 0.207
Maximilian Janisch/latexlist/latex/13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/13&oldid=43874