Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/7"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 7 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 7 out of 13 with 300 lines: Updated image/latex database (currently 3630 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
+
1. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
  
2. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891
  
3. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076810/q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
+
4. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
+
5. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
  
6. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $x \square ^ { j }$ ; confidence 0.818
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100208.png ; $n = k - \lambda$ ; confidence 0.891
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
+
7. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
  
8. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
  
9. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $f$ ; confidence 0.816
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
  
11. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887
  
14. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020066.png ; $A \oplus B$ ; confidence 0.887
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
+
15. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
  
16. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
+
16. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
  
17. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050910/i05091079.png ; $Y _ { n k }$ ; confidence 0.813
+
17. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
  
18. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812
+
18. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
  
19. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812
+
19. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887
  
20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
+
20. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
  
21. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747034.png ; $( i i + 1 )$ ; confidence 0.886
  
22. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
  
23. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
+
23. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810
+
24. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $n \geq 12$ ; confidence 0.886
  
25. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
  
26. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
+
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885
  
27. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809
+
27. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885
  
28. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $G r$ ; confidence 0.809
+
28. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
  
29. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884
  
30. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930299.png ; $Z / p$ ; confidence 0.808
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087280/s087280193.png ; $m = E X ( s )$ ; confidence 0.808
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240239.png ; $MS _ { e }$ ; confidence 0.884
  
32. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110040/r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
  
33. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807
+
33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884
  
34. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806
+
34. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png ; $r$ ; confidence 0.805
+
35. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883
  
37. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
  
38. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680012.png ; $T ^ { S }$ ; confidence 0.805
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882
  
39. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805
+
39. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
  
40. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110150/r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805
+
40. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804
+
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
  
42. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
  
43. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png ; $- u _ { 3 }$ ; confidence 0.803
+
43. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
  
44. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802
+
44. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
  
45. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802
+
45. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
  
46. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539044.png ; $i , j = 1,2$ ; confidence 0.881
  
47. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076040/q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802
+
47. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
  
48. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240222.png ; $r$ ; confidence 0.879
  
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
+
49. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
  
50. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
+
50. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
  
51. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020160/c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800
+
51. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878
  
52. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800
+
52. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
  
53. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800
+
53. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800
+
54. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
+
55. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m06443090.png ; $B O$ ; confidence 0.877
  
56. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
+
56. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $d j \neq 0$ ; confidence 0.877
  
57. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002062.png ; $3$ ; confidence 0.876
  
58. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067310/n06731043.png ; $B O$ ; confidence 0.799
+
58. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043620/g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
  
59. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101806.png ; $z = z 0$ ; confidence 0.876
  
60. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302403.png ; $n \times 1$ ; confidence 0.875
  
61. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
  
62. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600189.png ; $( K / k )$ ; confidence 0.875
  
63. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
+
63. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; $z _ { k } \in L$ ; confidence 0.875
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797
+
64. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797
+
65. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
  
66. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; $G$ ; confidence 0.797
+
66. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875
  
67. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797
+
67. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
  
69. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010299.png ; $m$ ; confidence 0.874
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795
+
70. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064440/m06444056.png ; $c = 0$ ; confidence 0.874
  
71. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057450/l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085830/s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874
  
72. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065580/m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873
  
73. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872
  
74. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
+
74. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
  
76. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; $u \leq \theta u$ ; confidence 0.794
+
76. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871
  
77. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068190/o0681907.png ; $T ( t ) x$ ; confidence 0.794
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $P ^ { \prime }$ ; confidence 0.871
  
78. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794
+
78. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930181.png ; $Y = C$ ; confidence 0.871
  
79. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302405.png ; $( n \times m )$ ; confidence 0.870
  
80. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
+
81. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $M _ { A g }$ ; confidence 0.870
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793
+
82. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
  
83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
+
83. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
  
84. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793
+
84. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087350/s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
  
85. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792
+
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
  
86. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093890/t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057061.png ; $H _ { m }$ ; confidence 0.869
  
88. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
  
89. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326056.png ; $d \Phi$ ; confidence 0.791
+
89. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $Y \times X$ ; confidence 0.869
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868
  
91. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $S$ ; confidence 0.868
  
92. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
+
92. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
  
93. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025640/c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788
+
93. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png ; $A _ { \theta }$ ; confidence 0.786
+
94. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
  
95. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786
+
95. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867
  
96. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
+
96. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s0902702.png ; $\alpha < t < b$ ; confidence 0.786
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866
  
98. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
+
98. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785
+
99. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
+
100. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
  
101. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866
  
102. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010322.png ; $j$ ; confidence 0.784
+
102. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866
  
103. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
+
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $O ( r )$ ; confidence 0.866
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
+
104. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920116.png ; $\int \int K d S$ ; confidence 0.865
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\Omega$ ; confidence 0.783
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012160/a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038070.png ; $\Theta f$ ; confidence 0.864
  
108. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081250/r08125011.png ; $H ( t ) = E N$ ; confidence 0.783
+
108. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864
  
109. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
+
109. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063590/m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864
  
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
+
110. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png ; $I \mapsto I$ ; confidence 0.782
+
111. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864
  
112. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782
+
112. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864
  
113. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310161.png ; $A W ^ { * }$ ; confidence 0.863
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240544.png ; $20$ ; confidence 0.863
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178016.png ; $b a P$ ; confidence 0.779
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
  
117. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
  
118. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064550/m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778
+
118. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061011.png ; $K ^ { * }$ ; confidence 0.777
+
120. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
  
121. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042120/f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777
+
121. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072210/p07221037.png ; $F ^ { k }$ ; confidence 0.862
  
122. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634090.png ; $x \in V _ { n }$ ; confidence 0.777
+
122. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862
  
123. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777
+
123. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143081.png ; $e X$ ; confidence 0.861
  
124. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
+
125. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
  
126. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776
+
126. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040106.png ; $L ] = \lambda$ ; confidence 0.859
  
128. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859
  
129. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $n = p$ ; confidence 0.858
  
130. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r082050121.png ; $AH _ { p }$ ; confidence 0.775
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774
+
131. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\varphi$ ; confidence 0.858
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774
+
132. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
  
133. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774
+
133. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082570/r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858
  
134. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058170/l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858
  
135. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240384.png ; $q \geq 2$ ; confidence 0.857
  
136. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090720/s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\pi$ ; confidence 0.772
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857
  
138. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769
+
138. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
  
139. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m065140117.png ; $p _ { 1 } + \ldots + p _ { m } = p$ ; confidence 0.769
+
139. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
  
140. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047470/h04747031.png ; $F ^ { p }$ ; confidence 0.768
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $a$ ; confidence 0.856
  
141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055660/k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
  
142. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
  
143. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240513.png ; $T _ { 2 }$ ; confidence 0.856
  
144. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855
  
145. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
+
145. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041310/f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855
  
146. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ { i }$ ; confidence 0.854
  
147. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
+
147. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
  
148. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696076.png ; $V < 0$ ; confidence 0.854
  
149. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png ; $P ( S )$ ; confidence 0.765
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
  
150. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110290/c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001017.png ; $x = A ^ { - 1 } b$ ; confidence 0.852
  
151. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\gamma$ ; confidence 0.764
+
152. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
  
153. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f041890119.png ; $x \in R \cup \{ \infty \}$ ; confidence 0.764
+
153. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; $\Sigma - 1$ ; confidence 0.852
  
154. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
+
154. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t092600123.png ; $B = I _ { p }$ ; confidence 0.852
  
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851
  
156. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047610/h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763
+
156. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851
  
157. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
  
158. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
+
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001029.png ; $| b | \leq \| A |$ ; confidence 0.850
  
160. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850
  
161. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820173.png ; $F ( \overline { m } )$ ; confidence 0.760
+
161. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759
+
162. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $N \gg n$ ; confidence 0.849
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
  
164. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $2 d \geq n$ ; confidence 0.758
+
164. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; $x _ { n } = n$ ; confidence 0.849
  
165. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i050730155.png ; $\nu _ { S }$ ; confidence 0.758
+
165. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064580/m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820124.png ; $M \times N$ ; confidence 0.757
+
166. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044470/g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848
  
167. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831085.png ; $\alpha = a ( x )$ ; confidence 0.757
+
167. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848
  
168. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a01367016.png ; $J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$ ; confidence 0.755
+
169. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $H = C ^ { n }$ ; confidence 0.847
  
170. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846
  
171. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302077.png ; $L ( R ) \otimes _ { K } H _ { n } ( R ) = R$ ; confidence 0.755
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058047.png ; $= v : q$ ; confidence 0.846
  
172. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085790/s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755
+
172. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101207.png ; $\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$ ; confidence 0.754
+
173. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R . F . I$ ; confidence 0.845
  
175. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754
+
175. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
  
176. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420330.png ; $B = B _ { E }$ ; confidence 0.754
+
176. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
  
177. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754
+
177. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064720/m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
+
178. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022036.png ; $E$ ; confidence 0.845
  
179. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
+
179. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845
  
180. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753
+
180. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082230/r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031093.png ; $I _ { 1 }$ ; confidence 0.843
  
182. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
  
183. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752
+
183. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843
  
184. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535017.png ; $q IL$ ; confidence 0.843
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843
  
186. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240357.png ; $n - r \geq p$ ; confidence 0.843
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
  
188. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750
+
188. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842
  
189. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850279.png ; $V _ { 1 } ^ { * }$ ; confidence 0.750
+
189. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841
  
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
+
191. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
  
192. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073980/p07398067.png ; $F \otimes S ^ { m } E$ ; confidence 0.748
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747
+
193. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
+
194. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
  
195. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011059.png ; $2 i$ ; confidence 0.747
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
  
196. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
+
196. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $m \equiv 4$ ; confidence 0.840
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745
+
197. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077260/r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744
+
199. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330250.png ; $U ^ { N }$ ; confidence 0.743
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838
  
201. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $S \subset T$ ; confidence 0.743
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
  
202. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
+
202. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838
  
203. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743
+
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024069.png ; $y _ { i j k }$ ; confidence 0.838
  
204. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743
+
204. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837
  
205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $1$ ; confidence 0.742
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
  
206. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018097.png ; $\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$ ; confidence 0.742
+
206. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
  
207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
+
207. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
  
208. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837
  
209. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240168.png ; $\alpha , = 0$ ; confidence 0.837
  
210. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r0811301.png ; $c \approx 3.10 ^ { 10 } cm / se$ ; confidence 0.741
+
210. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740
+
211. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
  
212. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
  
213. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090180/s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740
+
213. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430100.png ; $I Y \subset O$ ; confidence 0.739
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta$ ; confidence 0.834
  
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $S h$ ; confidence 0.739
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $\forall x _ { k }$ ; confidence 0.834
  
217. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739
+
217. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738
+
218. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240485.png ; $B$ ; confidence 0.738
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240219.png ; $I$ ; confidence 0.738
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
  
221. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
+
221. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
  
222. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057640/l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
+
222. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259032.png ; $B = 0$ ; confidence 0.833
  
223. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
+
223. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
  
224. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
+
226. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831
  
227. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $1 < m \leq n$ ; confidence 0.737
+
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
  
228. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213015.png ; $\partial x ^ { i } / \partial v$ ; confidence 0.737
+
228. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736
+
229. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $x g$ ; confidence 0.734
+
230. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
  
231. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010264.png ; $1 / m$ ; confidence 0.829
  
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
  
233. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733
+
233. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
  
234. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820110.png ; $f _ { i } ( X ) = X _ { i } + \ldots$ ; confidence 0.733
+
234. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828
  
235. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732
+
235. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
+
236. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
  
237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827
  
238. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064950/m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827
  
239. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r08245049.png ; $( \alpha b ) \alpha = \alpha ( b \alpha )$ ; confidence 0.731
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827
  
240. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661012.png ; $N _ { A }$ ; confidence 0.730
+
240. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $2$ ; confidence 0.729
+
241. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $a \vee b$ ; confidence 0.827
  
242. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729
+
242. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
+
244. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826
  
245. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $d f ^ { j }$ ; confidence 0.726
+
245. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590585.png ; $\| x \| = \rho$ ; confidence 0.826
  
246. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
+
246. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h04793027.png ; $x = [ u ]$ ; confidence 0.825
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010252.png ; $\delta A = - r x ^ { * } / \| x \| _ { 2 } ^ { 2 }$ ; confidence 0.825
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012050.png ; $z | > 1$ ; confidence 0.823
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024510/c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724
+
249. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823
  
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724
+
250. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
  
251. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q07684029.png ; $P \{ X _ { n } \in \Delta \} \rightarrow 0$ ; confidence 0.724
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
  
252. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
+
252. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822
  
253. https://www.encyclopediaofmath.org/legacyimages/z/z110/z110010/z11001018.png ; $( f g f h )$ ; confidence 0.723
+
253. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
+
254. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130060.png ; $\gamma m$ ; confidence 0.719
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018017.png ; $20,21,22$ ; confidence 0.822
  
257. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210116.png ; $d [ ( \omega ) ] = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.821
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
+
258. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043580/g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821
  
259. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054250/j05425028.png ; $K ^ { * }$ ; confidence 0.718
+
259. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
+
260. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
  
261. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465066.png ; $\in M$ ; confidence 0.717
+
261. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820
  
263. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
+
263. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820
  
264. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716
+
264. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820
  
265. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
+
265. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
  
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
+
267. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076810/q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819
  
268. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s08652091.png ; $| T | _ { p }$ ; confidence 0.714
+
268. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
+
269. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
  
270. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
+
270. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $x \square ^ { j }$ ; confidence 0.818
  
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
+
271. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
+
272. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711
+
273. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
  
274. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817
  
275. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $f$ ; confidence 0.816
  
276. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711
+
276. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710
+
277. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $22$ ; confidence 0.710
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
  
279. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021089.png ; $A _ { k } = \int _ { a _ { k } } \omega _ { 1 } , \quad B _ { k } = \int _ { b _ { k } } \omega _ { 1 }$ ; confidence 0.814
  
280. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
+
280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
  
281. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
  
282. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
+
282. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640155.png ; $p _ { g } \neq 1$ ; confidence 0.708
+
283. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050910/i05091079.png ; $Y _ { n k }$ ; confidence 0.813
  
284. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
+
284. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812
  
285. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706
+
285. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812
  
286. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066410/n06641020.png ; $x \in b M$ ; confidence 0.705
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001028.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.811
  
287. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
+
287. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
  
288. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703
+
288. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
  
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
+
289. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811
  
290. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
+
290. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
  
291. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $A / \eta$ ; confidence 0.702
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010195.png ; $\| ( \hat { \lambda } I - A ) ^ { - 1 } \delta A \| > 1$ ; confidence 0.810
  
292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001024.png ; $\delta x = A ^ { - 1 } ( - \delta A x - \delta A \delta x + \delta b )$ ; confidence 0.810
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png ; $x > 0$ ; confidence 0.700
+
294. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234035.png ; $a \in V$ ; confidence 0.699
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809
  
296. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058080/l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
  
297. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
+
297. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809
  
298. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067400/n06740041.png ; $U$ ; confidence 0.698
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $G r$ ; confidence 0.809
  
299. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697
+
299. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
  
300. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001069.png ; $b$ ; confidence 0.809

Revision as of 10:05, 2 September 2019

List

1. s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892

2. a13024051.png ; $3$ ; confidence 0.891

3. b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891

4. c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891

5. f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891

6. a1100208.png ; $n = k - \lambda$ ; confidence 0.891

7. k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890

8. a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889

9. a13013047.png ; $i$ ; confidence 0.889

10. a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889

11. s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889

12. a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888

13. a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887

14. a01020066.png ; $A \oplus B$ ; confidence 0.887

15. c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887

16. m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887

17. p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887

18. q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887

19. v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887

20. w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887

21. b01747034.png ; $( i i + 1 )$ ; confidence 0.886

22. m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886

23. p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886

24. v0966506.png ; $n \geq 12$ ; confidence 0.886

25. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

26. t12001030.png ; $5$ ; confidence 0.885

27. f11015067.png ; $t \subset v$ ; confidence 0.885

28. w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885

29. a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884

30. a130240334.png ; $\Gamma = B X$ ; confidence 0.884

31. a130240239.png ; $MS _ { e }$ ; confidence 0.884

32. c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884

33. c12019044.png ; $T ( M )$ ; confidence 0.884

34. l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883

35. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

36. a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883

37. c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882

38. c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882

39. i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882

40. l11014038.png ; $\epsilon$ ; confidence 0.882

41. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

42. a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881

43. h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881

44. r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881

45. y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881

46. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

47. d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879

48. a130240222.png ; $r$ ; confidence 0.879

49. c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878

50. c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878

51. l12006098.png ; $H \phi$ ; confidence 0.878

52. t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878

53. c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877

54. f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877

55. m06443090.png ; $B O$ ; confidence 0.877

56. n067520250.png ; $d j \neq 0$ ; confidence 0.877

57. a11002062.png ; $3$ ; confidence 0.876

58. g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876

59. a0101806.png ; $z = z 0$ ; confidence 0.876

60. a1302403.png ; $n \times 1$ ; confidence 0.875

61. a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875

62. a011600189.png ; $( K / k )$ ; confidence 0.875

63. e03525091.png ; $z _ { k } \in L$ ; confidence 0.875

64. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

65. l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875

66. l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875

67. t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875

68. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

69. a110010299.png ; $m$ ; confidence 0.874

70. m06444056.png ; $c = 0$ ; confidence 0.874

71. s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874

72. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

73. a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872

74. l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872

75. a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871

76. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

77. b11033038.png ; $P ^ { \prime }$ ; confidence 0.871

78. i051930181.png ; $Y = C$ ; confidence 0.871

79. a1302405.png ; $( n \times m )$ ; confidence 0.870

80. a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870

81. b11069080.png ; $M _ { A g }$ ; confidence 0.870

82. d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870

83. m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870

84. s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870

85. t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869

86. a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869

87. b11057061.png ; $H _ { m }$ ; confidence 0.869

88. c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869

89. w09816057.png ; $Y \times X$ ; confidence 0.869

90. a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868

91. a130240209.png ; $S$ ; confidence 0.868

92. m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868

93. p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868

94. i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867

95. l05700011.png ; $M N$ ; confidence 0.867

96. l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867

97. a11042095.png ; $C ^ { * }$ ; confidence 0.866

98. d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866

99. d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866

100. e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866

101. e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866

102. p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866

103. s1202309.png ; $O ( r )$ ; confidence 0.866

104. m063920116.png ; $\int \int K d S$ ; confidence 0.865

105. a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865

106. a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864

107. b11038070.png ; $\Theta f$ ; confidence 0.864

108. f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864

109. m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864

110. s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864

111. s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864

112. t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864

113. a120310161.png ; $A W ^ { * }$ ; confidence 0.863

114. a130240544.png ; $20$ ; confidence 0.863

115. a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863

116. a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863

117. c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863

118. s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863

119. a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862

120. k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862

121. p07221037.png ; $F ^ { k }$ ; confidence 0.862

122. t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862

123. r08143081.png ; $e X$ ; confidence 0.861

124. c02698053.png ; $E _ { 8 }$ ; confidence 0.860

125. n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860

126. w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860

127. a110040106.png ; $L ] = \lambda$ ; confidence 0.859

128. a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859

129. b01780053.png ; $n = p$ ; confidence 0.858

130. c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858

131. e13002010.png ; $\varphi$ ; confidence 0.858

132. m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858

133. r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858

134. a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858

135. a130240384.png ; $q \geq 2$ ; confidence 0.857

136. a1301304.png ; $8$ ; confidence 0.857

137. a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857

138. e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857

139. l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857

140. a11004020.png ; $a$ ; confidence 0.856

141. c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856

142. e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856

143. a130240513.png ; $T _ { 2 }$ ; confidence 0.856

144. b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855

145. f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855

146. b13006060.png ; $b _ { i }$ ; confidence 0.854

147. d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854

148. s08696076.png ; $V < 0$ ; confidence 0.854

149. b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853

150. a11001017.png ; $x = A ^ { - 1 } b$ ; confidence 0.852

151. a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852

152. d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852

153. e03511022.png ; $\Sigma - 1$ ; confidence 0.852

154. t092600123.png ; $B = I _ { p }$ ; confidence 0.852

155. c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851

156. h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851

157. l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851

158. l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851

159. a11001029.png ; $| b | \leq \| A |$ ; confidence 0.850

160. c13025017.png ; $Y _ { j } = i$ ; confidence 0.850

161. i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850

162. c02278052.png ; $N \gg n$ ; confidence 0.849

163. c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849

164. f040230100.png ; $x _ { n } = n$ ; confidence 0.849

165. m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849

166. g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848

167. n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848

168. a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847

169. d13008069.png ; $H = C ^ { n }$ ; confidence 0.847

170. a130130103.png ; $K P$ ; confidence 0.846

171. a11058047.png ; $= v : q$ ; confidence 0.846

172. e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846

173. f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846

174. a120160130.png ; $W E = R . F . I$ ; confidence 0.845

175. e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845

176. l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845

177. m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845

178. o07022036.png ; $E$ ; confidence 0.845

179. p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845

180. r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845

181. a12031093.png ; $I _ { 1 }$ ; confidence 0.843

182. c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843

183. j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843

184. p07535017.png ; $q IL$ ; confidence 0.843

185. a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843

186. a130240357.png ; $n - r \geq p$ ; confidence 0.843

187. a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842

188. i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842

189. i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842

190. a1202209.png ; $x | < e$ ; confidence 0.841

191. r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841

192. a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841

193. d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840

194. e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840

195. f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840

196. g12007022.png ; $m \equiv 4$ ; confidence 0.840

197. r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840

198. a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839

199. c020740328.png ; $e \in E$ ; confidence 0.839

200. a1300102.png ; $C$ ; confidence 0.838

201. a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838

202. m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838

203. a13024069.png ; $y _ { i j k }$ ; confidence 0.838

204. k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837

205. l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837

206. s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837

207. s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837

208. a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837

209. a130240168.png ; $\alpha , = 0$ ; confidence 0.837

210. d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836

211. j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836

212. b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835

213. c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835

214. c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835

215. a130240429.png ; $\Theta$ ; confidence 0.834

216. a011650252.png ; $\forall x _ { k }$ ; confidence 0.834

217. e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834

218. f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834

219. a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833

220. b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833

221. d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833

222. m06259032.png ; $B = 0$ ; confidence 0.833

223. b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832

224. w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832

225. a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831

226. d03225022.png ; $\partial M$ ; confidence 0.831

227. i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831

228. s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831

229. c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830

230. s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830

231. a110010264.png ; $1 / m$ ; confidence 0.829

232. b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828

233. d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828

234. l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828

235. s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828

236. y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828

237. a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827

238. a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827

239. c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827

240. p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827

241. p0758301.png ; $a \vee b$ ; confidence 0.827

242. s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827

243. c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826

244. o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826

245. s085590585.png ; $\| x \| = \rho$ ; confidence 0.826

246. h04793027.png ; $x = [ u ]$ ; confidence 0.825

247. a110010252.png ; $\delta A = - r x ^ { * } / \| x \| _ { 2 } ^ { 2 }$ ; confidence 0.825

248. a01012050.png ; $z | > 1$ ; confidence 0.823

249. e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823

250. p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823

251. a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822

252. b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822

253. m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822

254. m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822

255. s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822

256. a01018017.png ; $20,21,22$ ; confidence 0.822

257. a010210116.png ; $d [ ( \omega ) ] = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.821

258. g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821

259. l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821

260. r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821

261. b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820

262. b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820

263. c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820

264. d130060103.png ; $Z \in X$ ; confidence 0.820

265. e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820

266. c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819

267. q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819

268. c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818

269. c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818

270. d0338502.png ; $x \square ^ { j }$ ; confidence 0.818

271. i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817

272. l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817

273. r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817

274. a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817

275. a01243088.png ; $f$ ; confidence 0.816

276. b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816

277. s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815

278. a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814

279. a01021089.png ; $A _ { k } = \int _ { a _ { k } } \omega _ { 1 } , \quad B _ { k } = \int _ { b _ { k } } \omega _ { 1 }$ ; confidence 0.814

280. n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814

281. s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814

282. f12009069.png ; $F \mu$ ; confidence 0.813

283. i05091079.png ; $Y _ { n k }$ ; confidence 0.813

284. p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812

285. r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812

286. a11001028.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.811

287. t12001035.png ; $SU ( 2 )$ ; confidence 0.811

288. m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811

289. q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811

290. r08116074.png ; $t + \tau$ ; confidence 0.811

291. a110010195.png ; $\| ( \hat { \lambda } I - A ) ^ { - 1 } \delta A \| > 1$ ; confidence 0.810

292. a11001024.png ; $\delta x = A ^ { - 1 } ( - \delta A x - \delta A \delta x + \delta b )$ ; confidence 0.810

293. a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810

294. i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810

295. a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809

296. b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809

297. d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809

298. d03154015.png ; $G r$ ; confidence 0.809

299. q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809

300. a11001069.png ; $b$ ; confidence 0.809

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/7&oldid=43857