Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/9"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 9 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 9 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $L$ ; confidence 0.550
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550
  
 
2. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550
 
2. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550
Line 18: Line 18:
 
9. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545
 
9. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $j \leq n$ ; confidence 0.544
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544
  
11. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095630/u09563071.png ; $U : B \rightarrow A$ ; confidence 0.544
+
11. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $j \leq n$ ; confidence 0.544
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544
+
12. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095630/u09563071.png ; $U : B \rightarrow A$ ; confidence 0.544
  
 
13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543
 
13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543
Line 32: Line 32:
 
16. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542
 
16. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542
  
17. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700139.png ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541
+
17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
  
18. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700139.png ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541
  
19. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763050.png ; $\delta _ { \phi }$ ; confidence 0.541
+
19. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
  
20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
+
20. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763050.png ; $\delta _ { \phi }$ ; confidence 0.541
  
21. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540
+
22. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540
  
 
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $B i$ ; confidence 0.539
 
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $B i$ ; confidence 0.539
Line 48: Line 48:
 
24. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539
 
24. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450195.png ; $C / \Omega$ ; confidence 0.538
+
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c02760032.png ; $( u = const )$ ; confidence 0.538
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450195.png ; $C / \Omega$ ; confidence 0.538
  
27. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711026.png ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c02760032.png ; $( u = const )$ ; confidence 0.538
  
28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538
+
28. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711026.png ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538
  
 
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537
 
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537
Line 82: Line 82:
 
41. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532
 
41. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532
  
42. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $\{ fd ( M )$ ; confidence 0.531
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531
+
43. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $\{ fd ( M )$ ; confidence 0.531
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531
  
 
45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529
 
45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529
Line 140: Line 140:
 
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
 
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515
+
73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
  
 
74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514
 
74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514
Line 216: Line 216:
 
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
 
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
  
109. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500
  
110. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
+
110. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500
  
111. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
+
111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500
+
112. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
  
 
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
 
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
Line 258: Line 258:
 
129. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
 
129. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
  
130. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
  
131. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490
+
131. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
+
132. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490
  
 
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
 
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
Line 286: Line 286:
 
143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
 
143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
  
144. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
  
145. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485
+
145. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
+
146. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485
  
 
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
 
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
Line 304: Line 304:
 
152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482
 
152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482
  
153. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
  
154. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481
+
154. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
+
155. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481
  
 
156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480
 
156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480
Line 340: Line 340:
 
170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
 
170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
  
172. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
  
173. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474
  
175. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473
  
176. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
+
176. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
  
177. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
+
177. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473
+
178. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
  
 
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
 
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
Line 388: Line 388:
 
194. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463
 
194. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462
  
197. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
+
198. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
  
 
199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461
 
199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461
Line 406: Line 406:
 
203. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
 
203. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
  
204. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
+
206. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
  
 
207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456
 
207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456
Line 426: Line 426:
 
213. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
 
213. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450
  
215. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450
+
216. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
  
 
217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
 
217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
Line 494: Line 494:
 
247. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
 
247. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
  
248. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
+
249. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
  
 
250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433
 
250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433
Line 554: Line 554:
 
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
 
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
  
278. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
  
279. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416
+
279. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
+
280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416
  
 
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415
 
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415
Line 564: Line 564:
 
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415
 
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414
  
284. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
  
285. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
+
285. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414
+
286. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
  
 
287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
 
287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413

Revision as of 22:15, 1 September 2019

List

1. b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550

2. n067520303.png ; $A \simeq K$ ; confidence 0.550

3. g044340228.png ; $\xi \in ( \nu F ^ { m } ) _ { p }$ ; confidence 0.549

4. l059110158.png ; $f _ { h } \in F _ { k }$ ; confidence 0.549

5. a130240371.png ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548

6. r08061050.png ; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.547

7. i05294012.png ; $Y \times t$ ; confidence 0.546

8. b1105203.png ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545

9. m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545

10. a13001014.png ; $R el$ ; confidence 0.544

11. c02250014.png ; $j \leq n$ ; confidence 0.544

12. u09563071.png ; $U : B \rightarrow A$ ; confidence 0.544

13. r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543

14. c0225705.png ; $x \in D _ { A }$ ; confidence 0.542

15. r08061012.png ; $E ( Y | x ) = m ( x )$ ; confidence 0.542

16. s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542

17. t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541

18. d030700139.png ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541

19. p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541

20. r07763050.png ; $\delta _ { \phi }$ ; confidence 0.541

21. a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540

22. n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540

23. a01024062.png ; $B i$ ; confidence 0.539

24. h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539

25. t120010117.png ; $D$ ; confidence 0.538

26. a011450195.png ; $C / \Omega$ ; confidence 0.538

27. c02760032.png ; $( u = const )$ ; confidence 0.538

28. n06711026.png ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538

29. c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537

30. k055580126.png ; $\hat { M } _ { 0 }$ ; confidence 0.537

31. m06207013.png ; $H _ { 2 } \times H _ { 1 }$ ; confidence 0.537

32. q07683079.png ; $\rho = E m \alpha \tau _ { j } ^ { e }$ ; confidence 0.537

33. b130300113.png ; $A$ ; confidence 0.535

34. d13006089.png ; $m B$ ; confidence 0.535

35. p07243078.png ; $| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$ ; confidence 0.535

36. a130240285.png ; $\psi \in L$ ; confidence 0.533

37. b01531023.png ; $X _ { s } = X \times s s$ ; confidence 0.533

38. p072930169.png ; $t _ { \gamma }$ ; confidence 0.533

39. a13018015.png ; $\tau \in V o c$ ; confidence 0.532

40. m12011020.png ; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532

41. m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532

42. a1300105.png ; $4$ ; confidence 0.531

43. d032450371.png ; $\{ fd ( M )$ ; confidence 0.531

44. s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531

45. c026010468.png ; $P s$ ; confidence 0.529

46. c02545035.png ; $T ^ { * }$ ; confidence 0.527

47. c1100106.png ; $T : A _ { j } \rightarrow A$ ; confidence 0.526

48. m12009011.png ; $- i \partial / \partial x _ { j }$ ; confidence 0.526

49. c02757085.png ; $z$ ; confidence 0.525

50. t12008049.png ; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525

51. i050650148.png ; $\therefore M \rightarrow E$ ; confidence 0.524

52. l12015025.png ; $w \in T V$ ; confidence 0.524

53. d031830290.png ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523

54. m06550014.png ; $P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$ ; confidence 0.523

55. b01701014.png ; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522

56. r13016036.png ; $R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$ ; confidence 0.522

57. v09635084.png ; $a \perp b$ ; confidence 0.521

58. w0973508.png ; $A = N \oplus s$ ; confidence 0.521

59. f1202409.png ; $t \mapsto t + T$ ; confidence 0.520

60. m06249054.png ; $F _ { \infty } ^ { s }$ ; confidence 0.520

61. m13022071.png ; $T$ ; confidence 0.520

62. p074970164.png ; $E X _ { k } = a$ ; confidence 0.520

63. e03516059.png ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519

64. g04465025.png ; $a _ { y }$ ; confidence 0.519

65. k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519

66. a110420119.png ; $x \in H ^ { + }$ ; confidence 0.518

67. r082290200.png ; $p _ { \alpha } = e$ ; confidence 0.518

68. b0154406.png ; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517

69. a01204016.png ; $\partial M ^ { n + 1 } = K ^ { n }$ ; confidence 0.516

70. b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516

71. a13013026.png ; $( 1 )$ ; confidence 0.515

72. c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515

73. w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515

74. b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514

75. c12004012.png ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513

76. a11038040.png ; $\sim 2$ ; confidence 0.512

77. d13009046.png ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512

78. p074970165.png ; $DX _ { k } = \sigma ^ { 2 }$ ; confidence 0.511

79. r082150142.png ; $\operatorname { exp } _ { q } X = r$ ; confidence 0.511

80. p07303077.png ; $\mathfrak { g } = C$ ; confidence 0.510

81. t09260032.png ; $\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$ ; confidence 0.510

82. d12023076.png ; $Z ^ { * }$ ; confidence 0.508

83. l059110155.png ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508

84. i05003048.png ; $I _ { X }$ ; confidence 0.507

85. i130030142.png ; $\pi$ ; confidence 0.507

86. m06544031.png ; $\Phi _ { t } = id$ ; confidence 0.507

87. n06796016.png ; $q 2 = 6$ ; confidence 0.507

88. s08540076.png ; $x _ { i } \in \pi$ ; confidence 0.507

89. h04800018.png ; $\Omega \in \Delta ^ { n } S$ ; confidence 0.506

90. l05916065.png ; $A ^ { ( 0 ) }$ ; confidence 0.506

91. s087450221.png ; $a T \rightarrow \infty$ ; confidence 0.506

92. a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505

93. a01020025.png ; $D : \mathfrak { D } \rightarrow A$ ; confidence 0.505

94. a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505

95. f04008051.png ; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505

96. s09026014.png ; $d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$ ; confidence 0.505

97. t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505

98. t0933407.png ; $S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$ ; confidence 0.505

99. a13013049.png ; $k$ ; confidence 0.504

100. b01697056.png ; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504

101. c120180209.png ; $\varepsilon$ ; confidence 0.504

102. n06796020.png ; $q 2 = 4$ ; confidence 0.504

103. a110420122.png ; $y \in H$ ; confidence 0.503

104. m064590192.png ; $\alpha p$ ; confidence 0.503

105. a014060256.png ; $A = S ^ { \prime }$ ; confidence 0.502

106. s09173026.png ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502

107. h046280124.png ; $X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$ ; confidence 0.501

108. a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501

109. a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500

110. i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500

111. i130060185.png ; $< 2 a$ ; confidence 0.500

112. s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500

113. t1200104.png ; $m$ ; confidence 0.499

114. a110010250.png ; $A x - \hat { \lambda } x = - \delta A x$ ; confidence 0.499

115. w09729017.png ; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499

116. c02229022.png ; $+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$ ; confidence 0.498

117. c023380172.png ; $C ( S ^ { n } )$ ; confidence 0.498

118. i05104010.png ; $3 a$ ; confidence 0.497

119. k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497

120. s08300037.png ; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497

121. c02292049.png ; $\operatorname { lm } c _ { 3 } = 0$ ; confidence 0.496

122. e12002023.png ; $74$ ; confidence 0.496

123. l059490127.png ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495

124. f04221073.png ; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494

125. l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493

126. a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492

127. i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491

128. o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491

129. o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491

130. a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490

131. n0679601.png ; $12$ ; confidence 0.490

132. p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490

133. b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489

134. b13023050.png ; $G ( u )$ ; confidence 0.489

135. e120020102.png ; $V \not \equiv W$ ; confidence 0.489

136. m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489

137. s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489

138. t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489

139. d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488

140. d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488

141. m063240749.png ; $\prod x$ ; confidence 0.487

142. s08338085.png ; $d \in C$ ; confidence 0.487

143. w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487

144. a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485

145. d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485

146. g0432802.png ; $x$ ; confidence 0.485

147. d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484

148. t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484

149. r08111018.png ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483

150. t0922406.png ; $k = R / m$ ; confidence 0.483

151. c02237023.png ; $N = L . L$ ; confidence 0.482

152. i05241032.png ; $y = Arc$ ; confidence 0.482

153. a130240519.png ; $Z _ { 13 }$ ; confidence 0.481

154. p075560136.png ; $P Q = P \times Q$ ; confidence 0.481

155. s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481

156. g04301029.png ; $X \times F$ ; confidence 0.480

157. k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480

158. a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480

159. k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479

160. p110230174.png ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479

161. s08533026.png ; $18$ ; confidence 0.479

162. a13024019.png ; $y$ ; confidence 0.478

163. b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478

164. u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478

165. a13013032.png ; $\phi$ ; confidence 0.476

166. c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476

167. g043020155.png ; $V \oplus \mathfrak { g }$ ; confidence 0.476

168. s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476

169. a0100803.png ; $x$ ; confidence 0.475

170. k12003033.png ; $E \neq \emptyset$ ; confidence 0.475

171. a13013048.png ; $i$ ; confidence 0.474

172. b01738068.png ; $t \in S$ ; confidence 0.474

173. c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474

174. l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474

175. a130240343.png ; $2$ ; confidence 0.473

176. k1100801.png ; $W _ { C }$ ; confidence 0.473

177. l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473

178. m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473

179. a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472

180. l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472

181. s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470

182. t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470

183. h11025012.png ; $T ^ { \aleph } x \in A$ ; confidence 0.469

184. a110010249.png ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467

185. a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467

186. b13020073.png ; $9 -$ ; confidence 0.467

187. c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467

188. o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467

189. b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466

190. u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466

191. g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465

192. a13001015.png ; $S ^ { * } = S$ ; confidence 0.463

193. r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463

194. w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463

195. a13013017.png ; $P$ ; confidence 0.462

196. b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462

197. c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462

198. i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462

199. d03207031.png ; $2 \pi \alpha$ ; confidence 0.461

200. l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461

201. l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461

202. p07101037.png ; $p _ { i }$ ; confidence 0.459

203. y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459

204. a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458

205. a13024029.png ; $1$ ; confidence 0.458

206. p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458

207. a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456

208. p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456

209. a120050110.png ; $M$ ; confidence 0.455

210. i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455

211. l12003069.png ; $T _ { F }$ ; confidence 0.455

212. e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452

213. b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451

214. a110420133.png ; $i$ ; confidence 0.450

215. a01294080.png ; $F _ { b }$ ; confidence 0.450

216. s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450

217. c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449

218. o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449

219. c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447

220. h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447

221. s0908209.png ; $X ^ { * }$ ; confidence 0.447

222. t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447

223. a130240539.png ; $T _ { 1 }$ ; confidence 0.446

224. b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445

225. c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445

226. f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445

227. s086490118.png ; $d ^ { \prime }$ ; confidence 0.445

228. c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444

229. b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443

230. c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443

231. c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443

232. c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443

233. q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443

234. a13029066.png ; $Y$ ; confidence 0.441

235. a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440

236. r08256041.png ; $300$ ; confidence 0.440

237. s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440

238. t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440

239. a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439

240. a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438

241. f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438

242. w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438

243. a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437

244. c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437

245. f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437

246. d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435

247. h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435

248. a13013098.png ; $\pi$ ; confidence 0.434

249. i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434

250. b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433

251. q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433

252. p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432

253. p0738407.png ; $A \supset B$ ; confidence 0.432

254. r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432

255. a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431

256. a1202206.png ; $\varepsilon \in X$ ; confidence 0.430

257. e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430

258. r08256016.png ; $1$ ; confidence 0.430

259. a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430

260. d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429

261. b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427

262. w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426

263. a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425

264. a12023068.png ; $c _ { q }$ ; confidence 0.425

265. s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425

266. a01233050.png ; $x <$ ; confidence 0.424

267. c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424

268. a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424

269. c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422

270. o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422

271. b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421

272. m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421

273. b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420

274. b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419

275. p075700100.png ; $q ^ { 1 }$ ; confidence 0.419

276. t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418

277. f130290181.png ; $LOC$ ; confidence 0.417

278. a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416

279. g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416

280. n06728058.png ; $\pi / \rho$ ; confidence 0.416

281. a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415

282. b11052027.png ; $x \in G _ { n }$ ; confidence 0.415

283. a130240152.png ; $X \beta$ ; confidence 0.414

284. a11006029.png ; $B _ { j } \in B$ ; confidence 0.414

285. c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414

286. p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414

287. c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413

288. m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413

289. o13005095.png ; $v \in G$ ; confidence 0.413

290. w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413

291. f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412

292. h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412

293. g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411

294. f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410

295. o13008026.png ; $C _ { \psi }$ ; confidence 0.409

296. b12031064.png ; $\tau ^ { n }$ ; confidence 0.408

297. a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407

298. c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406

299. p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406

300. g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/9&oldid=43839