Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/5"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 5 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 5 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
+
1. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
  
2. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647004.png ; $\alpha = \gamma ( 0 )$ ; confidence 0.961
+
2. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961
+
3. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647004.png ; $\alpha = \gamma ( 0 )$ ; confidence 0.961
  
 
4. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026830/c02683020.png ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960
 
4. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026830/c02683020.png ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960
Line 128: Line 128:
 
64. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953
 
64. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010282.png ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
  
66. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010282.png ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952
  
67. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472103.png ; $C$ ; confidence 0.952
+
67. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952
  
68. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051090/i05109035.png ; $\Theta$ ; confidence 0.952
+
68. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472103.png ; $C$ ; confidence 0.952
  
69. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
+
69. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051090/i05109035.png ; $\Theta$ ; confidence 0.952
  
70. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
  
71. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064870/m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952
+
71. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
+
72. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064870/m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952
  
73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951
+
74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
  
 
75. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951
 
75. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951
Line 174: Line 174:
 
87. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950
 
87. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079027.png ; $M \subset G$ ; confidence 0.949
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079027.png ; $M \subset G$ ; confidence 0.949
+
89. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949
  
 
90. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949
 
90. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949
Line 186: Line 186:
 
93. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094540/t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949
 
93. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094540/t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949
  
94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
+
94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
  
95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
+
95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
  
 
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
 
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
Line 202: Line 202:
 
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
 
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a0120907.png ; $\alpha \neq 0$ ; confidence 0.947
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a0120907.png ; $\alpha \neq 0$ ; confidence 0.947
  
105. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947
+
105. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
+
106. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947
  
107. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
+
107. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
  
108. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041160/f04116031.png ; $\alpha = - b$ ; confidence 0.947
+
108. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
  
109. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
+
109. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041160/f04116031.png ; $\alpha = - b$ ; confidence 0.947
  
110. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068500/o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947
+
110. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
  
111. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080180/r0801808.png ; $t _ { k } \in R$ ; confidence 0.947
+
111. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068500/o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947
  
112. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
+
112. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080180/r0801808.png ; $t _ { k } \in R$ ; confidence 0.947
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
+
113. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
  
 
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946
 
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946
Line 278: Line 278:
 
139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943
 
139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943
  
140. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942
+
140. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942
  
141. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942
+
141. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942
  
142. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
+
142. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942
  
143. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942
+
143. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
  
 
144. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941
 
144. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941
Line 316: Line 316:
 
158. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153903.png ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937
 
158. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153903.png ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937
  
159. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497028.png ; $E ^ { n } \times R$ ; confidence 0.937
+
159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937
  
160. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070290/o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937
+
160. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497028.png ; $E ^ { n } \times R$ ; confidence 0.937
  
161. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072950/p07295010.png ; $w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$ ; confidence 0.937
+
161. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070290/o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937
  
162. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075800/p07580013.png ; $\square ^ { n - 1 } R _ { n }$ ; confidence 0.937
+
162. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072950/p07295010.png ; $w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$ ; confidence 0.937
  
163. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082040/r08204012.png ; $a _ { 0 } ( z ) \neq 0$ ; confidence 0.937
+
163. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075800/p07580013.png ; $\square ^ { n - 1 } R _ { n }$ ; confidence 0.937
  
164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937
+
164. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082040/r08204012.png ; $a _ { 0 } ( z ) \neq 0$ ; confidence 0.937
  
 
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024025.png ; $y , \beta , e$ ; confidence 0.936
 
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024025.png ; $y , \beta , e$ ; confidence 0.936
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040196.png ; $\varphi _ { L } : A \rightarrow P ^ { 4 }$ ; confidence 0.936
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png ; $K _ { 0 }$ ; confidence 0.936
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020650/c0206506.png ; $1 / \mu = d S / d \sigma$ ; confidence 0.936
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040196.png ; $\varphi _ { L } : A \rightarrow P ^ { 4 }$ ; confidence 0.936
  
168. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
+
168. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020650/c0206506.png ; $1 / \mu = d S / d \sigma$ ; confidence 0.936
  
169. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064990/m06499012.png ; $f : M \rightarrow R$ ; confidence 0.936
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
  
170. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001044.png ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936
+
170. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064990/m06499012.png ; $f : M \rightarrow R$ ; confidence 0.936
  
171. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001011.png ; $G / G _ { X }$ ; confidence 0.936
+
171. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001044.png ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936
  
172. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008015.png ; $O _ { S } ^ { * }$ ; confidence 0.936
+
172. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001011.png ; $G / G _ { X }$ ; confidence 0.936
  
173. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096670/v09667018.png ; $P ^ { 2 r - k }$ ; confidence 0.936
+
173. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008015.png ; $O _ { S } ^ { * }$ ; confidence 0.936
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png ; $K _ { 0 }$ ; confidence 0.936
+
174. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096670/v09667018.png ; $P ^ { 2 r - k }$ ; confidence 0.936
  
 
175. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935
 
175. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935
Line 380: Line 380:
 
190. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
 
190. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209509.png ; $u ( x _ { 0 } ) = u _ { 0 }$ ; confidence 0.932
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
  
192. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004063.png ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932
+
192. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209509.png ; $u ( x _ { 0 } ) = u _ { 0 }$ ; confidence 0.932
  
193. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932
+
193. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004063.png ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091390/s0913909.png ; $\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$ ; confidence 0.932
+
194. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932
  
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
+
195. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091390/s0913909.png ; $\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$ ; confidence 0.932
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
+
196. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
  
 
197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016019.png ; $f ( x ) = a x + b$ ; confidence 0.931
 
197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016019.png ; $f ( x ) = a x + b$ ; confidence 0.931
Line 442: Line 442:
 
221. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820199.png ; $f ( \xi _ { T } ( t ) )$ ; confidence 0.925
 
221. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820199.png ; $f ( \xi _ { T } ( t ) )$ ; confidence 0.925
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022330/c0223301.png ; $a ( r )$ ; confidence 0.924
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420150.png ; $K _ { 0 } ( \varphi )$ ; confidence 0.924
  
223. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g04328069.png ; $H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$ ; confidence 0.924
+
223. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022330/c0223301.png ; $a ( r )$ ; confidence 0.924
  
224. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256075.png ; $K _ { y } ^ { \alpha }$ ; confidence 0.924
+
224. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g04328069.png ; $H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$ ; confidence 0.924
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420150.png ; $K _ { 0 } ( \varphi )$ ; confidence 0.924
+
225. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256075.png ; $K _ { y } ^ { \alpha }$ ; confidence 0.924
  
226. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420134.png ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923
  
227. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481908.png ; $\nu = 0$ ; confidence 0.923
+
227. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923
  
228. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
+
228. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048190/h0481908.png ; $\nu = 0$ ; confidence 0.923
  
229. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017067.png ; $I$ ; confidence 0.923
+
229. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
  
230. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855608.png ; $| \sigma ^ { n } |$ ; confidence 0.923
+
230. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017067.png ; $I$ ; confidence 0.923
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017045.png ; $E$ ; confidence 0.923
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085560/s0855608.png ; $| \sigma ^ { n } |$ ; confidence 0.923
  
232. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150395.png ; $A \wedge B$ ; confidence 0.923
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017045.png ; $E$ ; confidence 0.923
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420134.png ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923
+
233. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150395.png ; $A \wedge B$ ; confidence 0.923
  
 
234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922
 
234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922
Line 480: Line 480:
 
240. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
 
240. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920
+
241. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
  
242. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920
  
243. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
+
243. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920
  
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
+
244. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
  
 
245. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919
 
245. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919
Line 512: Line 512:
 
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
 
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
  
259. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917
+
260. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
  
 
261. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916
 
261. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916
Line 536: Line 536:
 
268. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $31$ ; confidence 0.915
 
268. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $31$ ; confidence 0.915
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
  
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
  
271. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914
  
272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
  
273. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
+
273. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914
  
274. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914
+
274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
  
275. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082110/r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914
+
275. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
+
276. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082110/r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914
  
 
277. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
 
277. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
Line 568: Line 568:
 
284. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911
 
284. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
  
286. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png ; $P \rightarrow e$ ; confidence 0.910
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
+
287. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png ; $P \rightarrow e$ ; confidence 0.910
  
 
288. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909
 
288. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909
Line 588: Line 588:
 
294. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
 
294. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
  
295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907
  
296. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907
+
296. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907
  
297. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $E = E$ ; confidence 0.907
+
297. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
+
298. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $E = E$ ; confidence 0.907
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
  
 
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
 
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906

Revision as of 22:15, 1 September 2019

List

1. k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961

2. l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961

3. m0647004.png ; $\alpha = \gamma ( 0 )$ ; confidence 0.961

4. c02683020.png ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960

5. e120230111.png ; $E ( L )$ ; confidence 0.960

6. h13009043.png ; $g _ { i } \in A$ ; confidence 0.960

7. x12002033.png ; $D ( R )$ ; confidence 0.960

8. b12040052.png ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959

9. b1302706.png ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959

10. i05073063.png ; $K \subset H$ ; confidence 0.959

11. i05100028.png ; $- \infty < a < + \infty$ ; confidence 0.959

12. t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958

13. a130240330.png ; $( p \times p _ { 1 } )$ ; confidence 0.958

14. a01178066.png ; $p \in C$ ; confidence 0.958

15. d031850109.png ; $( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$ ; confidence 0.958

16. e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958

17. m06255050.png ; $0 \leq w \leq v$ ; confidence 0.958

18. o11003037.png ; $K _ { \omega }$ ; confidence 0.958

19. p07327037.png ; $q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$ ; confidence 0.958

20. p07416055.png ; $\rho = | y |$ ; confidence 0.958

21. s086810108.png ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.958

22. x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958

23. a01165079.png ; $H$ ; confidence 0.957

24. c02096032.png ; $y _ { n + 1 } = y _ { n } + \frac { h } { 2 } ( f _ { n + 1 } + f _ { n } )$ ; confidence 0.957

25. c023110101.png ; $Z G$ ; confidence 0.957

26. c0262508.png ; $( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$ ; confidence 0.957

27. d033530372.png ; $d _ { n } \ll p _ { n } ^ { \theta }$ ; confidence 0.957

28. f1202105.png ; $| z | < r$ ; confidence 0.957

29. m11022016.png ; $\lambda ^ { * } \in R ^ { m }$ ; confidence 0.957

30. p0724307.png ; $\epsilon \ll 1$ ; confidence 0.957

31. s09076026.png ; $L _ { 0 } ^ { * } = L _ { 1 }$ ; confidence 0.957

32. v130050114.png ; $1 _ { n } ( w ) = 0$ ; confidence 0.957

33. b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956

34. b01780036.png ; $d \geq n$ ; confidence 0.956

35. d03185095.png ; $x \neq \pm 1$ ; confidence 0.956

36. f12013083.png ; $| \Phi ( G )$ ; confidence 0.956

37. g13003048.png ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956

38. h04839015.png ; $U ^ { ( 2 ) }$ ; confidence 0.956

39. l11002085.png ; $x \preceq y$ ; confidence 0.956

40. r13010034.png ; $D _ { n }$ ; confidence 0.956

41. s08711028.png ; $\delta < \alpha$ ; confidence 0.956

42. w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956

43. d0307909.png ; $\lambda ^ { m }$ ; confidence 0.955

44. f03847048.png ; $\tau _ { 0 } = 0$ ; confidence 0.955

45. g04477022.png ; $[ \Psi / \Phi ] \Phi$ ; confidence 0.955

46. h046420157.png ; $d g = d h d k$ ; confidence 0.955

47. i11002068.png ; $( \lambda \odot \mu ) \odot v = \lambda \odot ( \mu \odot v )$ ; confidence 0.955

48. q07631081.png ; $H _ { i } \in \mathfrak { g }$ ; confidence 0.955

49. a1104901.png ; $D = d / d t$ ; confidence 0.954

50. c11020072.png ; $\lambda \in \Lambda$ ; confidence 0.954

51. d03224071.png ; $d \omega = d \square ^ { * } \omega = 0$ ; confidence 0.954

52. e036960205.png ; $\nu - 1 / 2 \in Z$ ; confidence 0.954

53. g04509046.png ; $y ( \alpha ) = 0$ ; confidence 0.954

54. i051620138.png ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954

55. t09273032.png ; $M = M _ { 1 } \# M _ { 2 }$ ; confidence 0.954

56. u09523081.png ; $\{ d f _ { n } / d x \}$ ; confidence 0.954

57. b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953

58. d03128063.png ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953

59. e03708021.png ; $r > n$ ; confidence 0.953

60. h047390181.png ; $V = V ^ { + } \oplus V ^ { - }$ ; confidence 0.953

61. i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953

62. l0602207.png ; $\in \Theta$ ; confidence 0.953

63. l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953

64. t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953

65. a130240135.png ; $A$ ; confidence 0.952

66. a110010282.png ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952

67. d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952

68. h0472103.png ; $C$ ; confidence 0.952

69. i05109035.png ; $\Theta$ ; confidence 0.952

70. i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952

71. j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952

72. m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952

73. a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951

74. t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951

75. b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951

76. b01587024.png ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951

77. c02270026.png ; $g : Y \rightarrow Z$ ; confidence 0.951

78. m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951

79. p07401072.png ; $F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$ ; confidence 0.951

80. a13006083.png ; $\overline { H }$ ; confidence 0.950

81. b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950

82. d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950

83. h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950

84. k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950

85. n06708018.png ; $y ^ { * } = \alpha ( g ^ { * } )$ ; confidence 0.950

86. s0919603.png ; $R = \{ \pi ( i ) : \square i \in I \}$ ; confidence 0.950

87. v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950

88. a11079027.png ; $M \subset G$ ; confidence 0.949

89. b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949

90. c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949

91. c1101705.png ; $D _ { p }$ ; confidence 0.949

92. e035550128.png ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949

93. t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949

94. t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948

95. t12001064.png ; $s ^ { 3 }$ ; confidence 0.948

96. b12014039.png ; $a ( z )$ ; confidence 0.948

97. b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948

98. d032130311.png ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948

99. i050230228.png ; $D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$ ; confidence 0.948

100. m06442050.png ; $k = m / 2$ ; confidence 0.948

101. a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947

102. a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947

103. a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947

104. a0120907.png ; $\alpha \neq 0$ ; confidence 0.947

105. c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947

106. c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947

107. c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947

108. f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947

109. f04116031.png ; $\alpha = - b$ ; confidence 0.947

110. k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947

111. o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947

112. r0801808.png ; $t _ { k } \in R$ ; confidence 0.947

113. s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947

114. t12001029.png ; $C ( S )$ ; confidence 0.946

115. a130240218.png ; $z = \Gamma y$ ; confidence 0.946

116. b0153803.png ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946

117. i050030120.png ; $A \backslash I$ ; confidence 0.946

118. i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946

119. t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946

120. v0963509.png ; $( a + b ) + c = a + ( b + c )$ ; confidence 0.946

121. a130240213.png ; $7$ ; confidence 0.945

122. b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945

123. b130300112.png ; $F _ { m }$ ; confidence 0.945

124. c11050032.png ; $H C ^ { 0 } ( A )$ ; confidence 0.945

125. d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945

126. m064430225.png ; $\operatorname { lm } A ( \tau )$ ; confidence 0.945

127. n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945

128. p07309060.png ; $R \times D$ ; confidence 0.945

129. b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944

130. c02485065.png ; $A . B$ ; confidence 0.944

131. h048420118.png ; $F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$ ; confidence 0.944

132. k11007019.png ; $- w _ { 0 } ( \chi )$ ; confidence 0.944

133. l05715026.png ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944

134. w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944

135. a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943

136. e03581038.png ; $\Phi \Psi$ ; confidence 0.943

137. f04061036.png ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943

138. q07643044.png ; $f \in W _ { 2 } ^ { 1 }$ ; confidence 0.943

139. a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943

140. t12001075.png ; $s ^ { 2 }$ ; confidence 0.942

141. f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942

142. s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942

143. w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942

144. d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941

145. h1102204.png ; $h : E ^ { m } \rightarrow R$ ; confidence 0.941

146. m120120128.png ; $C = Z ( Q )$ ; confidence 0.941

147. r08250029.png ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941

148. s11004082.png ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941

149. t12001034.png ; $SO ( 3 )$ ; confidence 0.940

150. f04008010.png ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940

151. n067860258.png ; $V \subset \rho U$ ; confidence 0.940

152. c02411026.png ; $d = ( d _ { n } )$ ; confidence 0.939

153. i05077064.png ; $A = \operatorname { lim } _ { \rightarrow } F ( D )$ ; confidence 0.939

154. s12026061.png ; $\partial _ { s }$ ; confidence 0.939

155. a01024073.png ; $\omega P _ { i } P _ { j }$ ; confidence 0.938

156. b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938

157. r08177046.png ; $x ^ { T } ( t _ { 1 } ) \Phi x ( t _ { 1 } ) + \int _ { t _ { 0 } } ^ { t _ { 1 } } [ x ^ { T } ( t ) M ( t ) x ( t ) + u ^ { T } ( t ) N ( t ) u ( t ) ] d t$ ; confidence 0.938

158. b0153903.png ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937

159. t120010141.png ; $7$ ; confidence 0.937

160. g04497028.png ; $E ^ { n } \times R$ ; confidence 0.937

161. o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937

162. p07295010.png ; $w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$ ; confidence 0.937

163. p07580013.png ; $\square ^ { n - 1 } R _ { n }$ ; confidence 0.937

164. r08204012.png ; $a _ { 0 } ( z ) \neq 0$ ; confidence 0.937

165. a13024025.png ; $y , \beta , e$ ; confidence 0.936

166. a110420154.png ; $K _ { 0 }$ ; confidence 0.936

167. a110040196.png ; $\varphi _ { L } : A \rightarrow P ^ { 4 }$ ; confidence 0.936

168. c0206506.png ; $1 / \mu = d S / d \sigma$ ; confidence 0.936

169. c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936

170. m06499012.png ; $f : M \rightarrow R$ ; confidence 0.936

171. o13001044.png ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936

172. o07001011.png ; $G / G _ { X }$ ; confidence 0.936

173. t12008015.png ; $O _ { S } ^ { * }$ ; confidence 0.936

174. v09667018.png ; $P ^ { 2 r - k }$ ; confidence 0.936

175. c1301504.png ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935

176. p07333012.png ; $d S _ { n }$ ; confidence 0.935

177. a13024059.png ; $( i , j )$ ; confidence 0.935

178. c02023043.png ; $X \backslash K _ { X }$ ; confidence 0.934

179. d1203009.png ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934

180. f040850122.png ; $A \rightarrow w$ ; confidence 0.934

181. g04435074.png ; $d ( \Lambda ) = \Delta ( \mathfrak { M } )$ ; confidence 0.934

182. h11020058.png ; $\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$ ; confidence 0.934

183. l06083045.png ; $b \in Q$ ; confidence 0.934

184. a13013054.png ; $t _ { n }$ ; confidence 0.933

185. c026870129.png ; $( \nabla _ { X } U ) _ { p }$ ; confidence 0.933

186. d03206019.png ; $\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$ ; confidence 0.933

187. k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933

188. o1200204.png ; $\alpha = 1 / 2$ ; confidence 0.933

189. s08778069.png ; $x [ M ^ { n } ] = \alpha ( x )$ ; confidence 0.933

190. t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932

191. a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932

192. c0209509.png ; $u ( x _ { 0 } ) = u _ { 0 }$ ; confidence 0.932

193. r13004063.png ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932

194. r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932

195. s0913909.png ; $\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$ ; confidence 0.932

196. t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932

197. b11016019.png ; $f ( x ) = a x + b$ ; confidence 0.931

198. c1103309.png ; $p _ { i } \in S$ ; confidence 0.931

199. s0911009.png ; $\lambda _ { n } = 1 / ( n + 1 ) ^ { s }$ ; confidence 0.931

200. t093150306.png ; $= C$ ; confidence 0.931

201. a01064020.png ; $d ( m )$ ; confidence 0.930

202. c02172031.png ; $b _ { k } ^ { \prime } = ( - 1 ) ^ { k + 1 } b _ { k }$ ; confidence 0.930

203. c02389043.png ; $\{ d F _ { i } \} _ { 1 } ^ { m }$ ; confidence 0.930

204. h04774059.png ; $0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$ ; confidence 0.930

205. m11011038.png ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930

206. m11013015.png ; $E S$ ; confidence 0.930

207. m064190102.png ; $u | _ { \Gamma } = \psi$ ; confidence 0.930

208. t094530109.png ; $\sum ( k _ { i } - 1 )$ ; confidence 0.930

209. z13010033.png ; $\forall y ( \neg y \in x )$ ; confidence 0.930

210. a1202208.png ; $| x | | \leq 1$ ; confidence 0.929

211. a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929

212. r081460129.png ; $V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$ ; confidence 0.929

213. w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929

214. b1104909.png ; $P _ { 1 }$ ; confidence 0.928

215. r080060177.png ; $\{ r _ { n } + r _ { n } ^ { \prime } \}$ ; confidence 0.928

216. t09323071.png ; $X \rightarrow P L / O$ ; confidence 0.928

217. m06530022.png ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.927

218. k055520124.png ; $\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$ ; confidence 0.926

219. s13062062.png ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$ ; confidence 0.926

220. n06743015.png ; $\sum _ { k = 1 } ^ { \infty } \| u _ { k } \| = \sum _ { k = 1 } ^ { \infty } 1 / k$ ; confidence 0.925

221. q076820199.png ; $f ( \xi _ { T } ( t ) )$ ; confidence 0.925

222. a110420150.png ; $K _ { 0 } ( \varphi )$ ; confidence 0.924

223. c0223301.png ; $a ( r )$ ; confidence 0.924

224. g04328069.png ; $H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$ ; confidence 0.924

225. m06256075.png ; $K _ { y } ^ { \alpha }$ ; confidence 0.924

226. a110420134.png ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923

227. h046010125.png ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923

228. h0481908.png ; $\nu = 0$ ; confidence 0.923

229. j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923

230. p12017067.png ; $I$ ; confidence 0.923

231. s0855608.png ; $| \sigma ^ { n } |$ ; confidence 0.923

232. s09017045.png ; $E$ ; confidence 0.923

233. t093150395.png ; $A \wedge B$ ; confidence 0.923

234. b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922

235. c022780128.png ; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922

236. f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922

237. a110610104.png ; $Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$ ; confidence 0.921

238. d03428088.png ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921

239. i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921

240. l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921

241. t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920

242. b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920

243. e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920

244. p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920

245. d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919

246. e03684025.png ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919

247. l05715028.png ; $3 N + k + m$ ; confidence 0.919

248. p110120428.png ; $P _ { n } ( f )$ ; confidence 0.919

249. t12006058.png ; $N \geq Z$ ; confidence 0.919

250. a013180158.png ; $\| T _ { M } \|$ ; confidence 0.918

251. c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918

252. c0264808.png ; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918

253. d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918

254. f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918

255. r080020171.png ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918

256. a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917

257. a130240518.png ; $Z _ { 12 }$ ; confidence 0.917

258. b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917

259. b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917

260. d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917

261. t120010109.png ; $m > 3$ ; confidence 0.916

262. t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916

263. c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916

264. j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916

265. b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915

266. c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915

267. h0466006.png ; $\{ x : | x - y | < r \}$ ; confidence 0.915

268. l057780212.png ; $31$ ; confidence 0.915

269. a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914

270. a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914

271. b12037030.png ; $h \in \Omega$ ; confidence 0.914

272. b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914

273. e12002045.png ; $T$ ; confidence 0.914

274. e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914

275. g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914

276. r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914

277. c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913

278. g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913

279. l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912

280. a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911

281. d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911

282. f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911

283. r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911

284. w13007023.png ; $\beta$ ; confidence 0.911

285. a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910

286. a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910

287. p074710106.png ; $P \rightarrow e$ ; confidence 0.910

288. b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909

289. h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909

290. v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909

291. w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909

292. b13002056.png ; $x \in J$ ; confidence 0.908

293. c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908

294. e1300704.png ; $S = o ( \# A )$ ; confidence 0.908

295. a01020080.png ; $6$ ; confidence 0.907

296. e12024025.png ; $K ( L )$ ; confidence 0.907

297. h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907

298. p12014048.png ; $E = E$ ; confidence 0.907

299. a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907

300. a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/5&oldid=43835