Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/Sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Undo revision 43847 by Maximilian Janisch (talk))
(AUTOMATIC EDIT (latexlist): Replaced 61 formulas out of 64 by TEX code with an average confidence of 0.7943966191377944 and a minimal confidence of 0.19217438496037242.)
Line 1: Line 1:
<div class="Vorlage_Achtung" style="border: 0.18em solid #FF6666; border-left:1em solid #FF6666; margin:0.5em 0em; overflow:hidden; padding:0.5em; text-align: left;">
+
{{TEX|partial}}<div class="Vorlage_Achtung" style="border: 0.18em solid #FF6666; border-left:1em solid #FF6666; margin:0.5em 0em; overflow:hidden; padding:0.5em; text-align: left;">
 
This page is a copy of the article [[Bayesian approach]] in order to test [[User:Maximilian_Janisch/latexlist|automatic LaTeXification]]. This article is not my work.
 
This page is a copy of the article [[Bayesian approach]] in order to test [[User:Maximilian_Janisch/latexlist|automatic LaTeXification]]. This article is not my work.
 
</div>
 
</div>
Line 5: Line 5:
 
''to statistical problems''
 
''to statistical problems''
  
An approach based on the assumption that to any parameter in a statistical problem there can be assigned a definite probability distribution. Any general statistical decision problem is determined by the following elements: by a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153901.png" /> of (potential) samples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153902.png" />, by a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153903.png" /> of values of the unknown parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153904.png" />, by a family of probability distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153905.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153906.png" />, by a space of decisions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153907.png" /> and by a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153908.png" />, which characterizes the losses caused by accepting the decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b0153909.png" /> when the true value of the parameter is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539010.png" />. The objective of decision making is to find in a certain sense an optimal rule (decision function) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539011.png" />, assigning to each result of an observation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539012.png" /> the decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539013.png" />. In the Bayesian approach, when it is assumed that the unknown parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539014.png" /> is a random variable with a given (a priori) distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539015.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539016.png" /> the best decision function ([[Bayesian decision function|Bayesian decision function]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539017.png" /> is defined as the function for which the minimum expected loss <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539018.png" />, where
+
An approach based on the assumption that to any parameter in a statistical problem there can be assigned a definite probability distribution. Any general statistical decision problem is determined by the following elements: by a space $( X , B X )$ of (potential) samples $\pi$, by a space $( \Theta , B _ { \Theta } )$ of values of the unknown parameter $6$, by a family of probability distributions $\{ P _ { \theta } : \theta \in \Theta \}$ on $( X , B X )$, by a space of decisions $( D , B _ { D } )$ and by a function $L ( \theta , d )$, which characterizes the losses caused by accepting the decision $a$ when the true value of the parameter is $6$. The objective of decision making is to find in a certain sense an optimal rule (decision function) $\delta = \delta ( x )$, assigning to each result of an observation $X \in X$ the decision $\delta ( x ) \in D$. In the Bayesian approach, when it is assumed that the unknown parameter $6$ is a random variable with a given (a priori) distribution $\pi = \pi ( d \theta )$ on $( \Theta , B _ { \Theta } )$ the best decision function ([[Bayesian decision function|Bayesian decision function]]) $\delta ^ { * } = \delta ^ { * } ( x )$ is defined as the function for which the minimum expected loss $\delta \rho ( \pi , \delta )$, where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539019.png" /></td> </tr></table>
+
\begin{equation} \rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta ) \end{equation}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png" /></td> </tr></table>
+
\begin{equation} \rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \end{equation}
  
 
is attained. Thus,
 
is attained. Thus,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539021.png" /></td> </tr></table>
+
\begin{equation} \rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) \end{equation}
  
In searching for the Bayesian decision function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539022.png" />, the following remark is useful. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539026.png" /> are certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539027.png" />-finite measures. One then finds, assuming that the order of integration may be changed,
+
In searching for the Bayesian decision function $\delta ^ { * } = \delta ^ { * } ( x )$, the following remark is useful. Let $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$, $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$, where $\mu$ and $2$ are certain $\Omega$-finite measures. One then finds, assuming that the order of integration may be changed,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539028.png" /></td> </tr></table>
+
\begin{equation} \int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) = \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539029.png" /></td> </tr></table>
+
\begin{equation} = \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) = \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539030.png" /></td> </tr></table>
+
\begin{equation} = \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ] \end{equation}
  
It is seen from the above that for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539031.png" /> is that value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png" /> for which
+
It is seen from the above that for a given $x \in X , \delta ^ { * } ( x )$ is that value of $d ^ { x }$ for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539033.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539033.png"/></td> </tr></table>
  
 
is attained, or, what is equivalent, for which
 
is attained, or, what is equivalent, for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539034.png" /></td> </tr></table>
+
\begin{equation} \operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) \end{equation}
  
 
is attained, where
 
is attained, where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539035.png" /></td> </tr></table>
+
\begin{equation} p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) \end{equation}
  
 
But, according to the [[Bayes formula|Bayes formula]]
 
But, according to the [[Bayes formula|Bayes formula]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png" /></td> </tr></table>
+
\begin{equation} \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ] \end{equation}
  
Thus, for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539038.png" /> is that value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539039.png" /> for which the conditional average loss <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539040.png" /> attains a minimum.
+
Thus, for a given $\pi$, $\delta ^ { * } ( x )$ is that value of $d ^ { x }$ for which the conditional average loss $E [ L ( \theta , d ) | x ]$ attains a minimum.
  
Example. (The Bayesian approach applied to the case of distinguishing between two simple hypotheses.) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539044.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539047.png" />. If the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539048.png" /> is identified with the acceptance of the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539049.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539050.png" />, it is natural to assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539052.png" />. Then
+
Example. (The Bayesian approach applied to the case of distinguishing between two simple hypotheses.) Let $= \{ \theta _ { 1 } , \theta _ { 2 } \}$, $D = \{ d _ { 1 } , d _ { 2 } \}$, $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$, $i , j = 1,2$; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$, $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$, $\pi _ { 1 } + \pi _ { 2 } = 1$. If the solution $a$ is identified with the acceptance of the hypothesis $H _ { \hat { j } }$: $\theta = \theta _ { i }$, it is natural to assume that $L _ { 11 } &lt; L _ { 12 }$, $L _ { 22 } &lt; L _ { 21 }$. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="widtutomatic LaTeXificationh:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539053.png" /></td> </tr></table>
+
\begin{equation} \rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) + \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539054.png" /></td> </tr></table>
+
\begin{equation} + \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x ) \end{equation}
  
implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539055.png" /> is attained for the function
+
implies that $\delta \rho ( \pi , \delta )$ is attained for the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539056.png" /></td> </tr></table>
+
\begin{equation} \delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } &amp; { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } &amp; { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right. \end{equation}
  
The advantage of the Bayesian approach consists in the fact that, unlike the losses <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539057.png" />, the expected losses <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539058.png" /> are numbers which are dependent on the unknown parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539059.png" />, and, consequently, it is known that solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539060.png" /> for which
+
The advantage of the Bayesian approach consists in the fact that, unlike the losses $\rho ( \theta , \delta )$, the expected losses $\rho ( \pi , \delta )$ are numbers which are dependent on the unknown parameter $6$, and, consequently, it is known that solutions $\delta _ { \epsilon } ^ { * }$ for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539061.png" /></td> </tr></table>
+
\begin{equation} \rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon \end{equation}
  
and which are, if not optimal, at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539062.png" />-optimal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539063.png" />, are certain to exist. The disadvantage of the Bayesian approach is the necessity of postulating both the existence of an a priori distribution of the unknown parameter and its precise form (the latter disadvantage may be overcome to a certain extent by adopting an empirical Bayesian approach, cf. [[Bayesian approach, empirical|Bayesian approach, empirical]]).
+
and which are, if not optimal, at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539062.png"/>-optimal $( \epsilon &gt; 0 )$, are certain to exist. The disadvantage of the Bayesian approach is the necessity of postulating both the existence of an a priori distribution of the unknown parameter and its precise form (the latter disadvantage may be overcome to a certain extent by adopting an empirical Bayesian approach, cf. [[Bayesian approach, empirical|Bayesian approach, empirical]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Wald,  "Statistical decision functions" , Wiley  (1950)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.H. de Groot,  "Optimal statistical decisions" , McGraw-Hill  (1970)</TD></TR></table>
+
<table><tr><td valign="top">[1]</td> <td valign="top">  A. Wald,  "Statistical decision functions" , Wiley  (1950)</td></tr><tr><td valign="top">[2]</td> <td valign="top">  M.H. de Groot,  "Optimal statistical decisions" , McGraw-Hill  (1970)</td></tr></table>

Revision as of 22:01, 1 September 2019

This page is a copy of the article Bayesian approach in order to test automatic LaTeXification. This article is not my work.

to statistical problems

An approach based on the assumption that to any parameter in a statistical problem there can be assigned a definite probability distribution. Any general statistical decision problem is determined by the following elements: by a space $( X , B X )$ of (potential) samples $\pi$, by a space $( \Theta , B _ { \Theta } )$ of values of the unknown parameter $6$, by a family of probability distributions $\{ P _ { \theta } : \theta \in \Theta \}$ on $( X , B X )$, by a space of decisions $( D , B _ { D } )$ and by a function $L ( \theta , d )$, which characterizes the losses caused by accepting the decision $a$ when the true value of the parameter is $6$. The objective of decision making is to find in a certain sense an optimal rule (decision function) $\delta = \delta ( x )$, assigning to each result of an observation $X \in X$ the decision $\delta ( x ) \in D$. In the Bayesian approach, when it is assumed that the unknown parameter $6$ is a random variable with a given (a priori) distribution $\pi = \pi ( d \theta )$ on $( \Theta , B _ { \Theta } )$ the best decision function (Bayesian decision function) $\delta ^ { * } = \delta ^ { * } ( x )$ is defined as the function for which the minimum expected loss $\delta \rho ( \pi , \delta )$, where

\begin{equation} \rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta ) \end{equation}

and

\begin{equation} \rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \end{equation}

is attained. Thus,

\begin{equation} \rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) \end{equation}

In searching for the Bayesian decision function $\delta ^ { * } = \delta ^ { * } ( x )$, the following remark is useful. Let $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$, $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$, where $\mu$ and $2$ are certain $\Omega$-finite measures. One then finds, assuming that the order of integration may be changed,

\begin{equation} \int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) = \end{equation}

\begin{equation} = \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) = \end{equation}

\begin{equation} = \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ] \end{equation}

It is seen from the above that for a given $x \in X , \delta ^ { * } ( x )$ is that value of $d ^ { x }$ for which

is attained, or, what is equivalent, for which

\begin{equation} \operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) \end{equation}

is attained, where

\begin{equation} p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) \end{equation}

But, according to the Bayes formula

\begin{equation} \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ] \end{equation}

Thus, for a given $\pi$, $\delta ^ { * } ( x )$ is that value of $d ^ { x }$ for which the conditional average loss $E [ L ( \theta , d ) | x ]$ attains a minimum.

Example. (The Bayesian approach applied to the case of distinguishing between two simple hypotheses.) Let $= \{ \theta _ { 1 } , \theta _ { 2 } \}$, $D = \{ d _ { 1 } , d _ { 2 } \}$, $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$, $i , j = 1,2$; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$, $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$, $\pi _ { 1 } + \pi _ { 2 } = 1$. If the solution $a$ is identified with the acceptance of the hypothesis $H _ { \hat { j } }$: $\theta = \theta _ { i }$, it is natural to assume that $L _ { 11 } < L _ { 12 }$, $L _ { 22 } < L _ { 21 }$. Then

\begin{equation} \rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) + \end{equation}

\begin{equation} + \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x ) \end{equation}

implies that $\delta \rho ( \pi , \delta )$ is attained for the function

\begin{equation} \delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right. \end{equation}

The advantage of the Bayesian approach consists in the fact that, unlike the losses $\rho ( \theta , \delta )$, the expected losses $\rho ( \pi , \delta )$ are numbers which are dependent on the unknown parameter $6$, and, consequently, it is known that solutions $\delta _ { \epsilon } ^ { * }$ for which

\begin{equation} \rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon \end{equation}

and which are, if not optimal, at least -optimal $( \epsilon > 0 )$, are certain to exist. The disadvantage of the Bayesian approach is the necessity of postulating both the existence of an a priori distribution of the unknown parameter and its precise form (the latter disadvantage may be overcome to a certain extent by adopting an empirical Bayesian approach, cf. Bayesian approach, empirical).

References

[1] A. Wald, "Statistical decision functions" , Wiley (1950)
[2] M.H. de Groot, "Optimal statistical decisions" , McGraw-Hill (1970)
How to Cite This Entry:
Maximilian Janisch/Sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/Sandbox&oldid=43848