Difference between revisions of "User:Maximilian Janisch/latexlist/latex/6"
(AUTOMATIC EDIT of page 6 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 6 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $20$ ; confidence 0.906 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/f/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127050.png ; $x \in D ( A )$ ; confidence 0.906 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043330/g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075650/p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240177.png ; $\alpha$ ; confidence 0.905 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060970/l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309030.png ; $V \cap L$ ; confidence 0.905 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076059.png ; $p ( \alpha )$ ; confidence 0.904 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110330/s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $N > 5$ ; confidence 0.901 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020027.png ; $3$ ; confidence 0.899 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $x$ ; confidence 0.899 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $S \square T$ ; confidence 0.898 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055049.png ; $1$ ; confidence 0.897 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/f/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051130/i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085810/s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $X \in \Phi$ ; confidence 0.895 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431027.png ; $\exists x A$ ; confidence 0.894 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048046.png ; $D ^ { \perp }$ ; confidence 0.893 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $\Omega$ ; confidence 0.892 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $q = p ^ { r }$ ; confidence 0.892 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/f/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747034.png ; $( i i + 1 )$ ; confidence 0.886 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $n \geq 12$ ; confidence 0.886 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240239.png ; $MS _ { e }$ ; confidence 0.884 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539044.png ; $i , j = 1,2$ ; confidence 0.881 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m06443090.png ; $B O$ ; confidence 0.877 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $d j \neq 0$ ; confidence 0.877 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/g/g043/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043620/g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600189.png ; $( K / k )$ ; confidence 0.875 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; $z _ { k } \in L$ ; confidence 0.875 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064440/m06444056.png ; $c = 0$ ; confidence 0.874 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085830/s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $P ^ { \prime }$ ; confidence 0.871 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930181.png ; $Y = C$ ; confidence 0.871 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $M _ { A g }$ ; confidence 0.870 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087350/s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057061.png ; $H _ { m }$ ; confidence 0.869 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $Y \times X$ ; confidence 0.869 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $S$ ; confidence 0.868 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $O ( r )$ ; confidence 0.866 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920116.png ; $\int \int K d S$ ; confidence 0.865 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038070.png ; $\Theta f$ ; confidence 0.864 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063590/m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072210/p07221037.png ; $F ^ { k }$ ; confidence 0.862 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143081.png ; $e X$ ; confidence 0.861 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040106.png ; $L ] = \lambda$ ; confidence 0.859 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $n = p$ ; confidence 0.858 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\varphi$ ; confidence 0.858 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082570/r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $a$ ; confidence 0.856 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041310/f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ { i }$ ; confidence 0.854 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696076.png ; $V < 0$ ; confidence 0.854 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; $\Sigma - 1$ ; confidence 0.852 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t092600123.png ; $B = I _ { p }$ ; confidence 0.852 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/h/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $N \gg n$ ; confidence 0.849 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; $x _ { n } = n$ ; confidence 0.849 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064580/m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044470/g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $H = C ^ { n }$ ; confidence 0.847 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058047.png ; $= v : q$ ; confidence 0.846 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R . F . I$ ; confidence 0.845 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064720/m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022036.png ; $E$ ; confidence 0.845 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082230/r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535017.png ; $q IL$ ; confidence 0.843 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $m \equiv 4$ ; confidence 0.840 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077260/r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $\forall x _ { k }$ ; confidence 0.834 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta$ ; confidence 0.834 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259032.png ; $B = 0$ ; confidence 0.833 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/i/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $a \vee b$ ; confidence 0.827 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590585.png ; $\| x \| = \rho$ ; confidence 0.826 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h04793027.png ; $x = [ u ]$ ; confidence 0.825 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012050.png ; $z | > 1$ ; confidence 0.823 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043580/g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820 |
Revision as of 11:45, 1 September 2019
List
1. ; $x , y \in A$ ; confidence 0.906
2. ; $20$ ; confidence 0.906
3. ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
4. ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
5. ; $x \in D ( A )$ ; confidence 0.906
6. ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
7. ; $\mathfrak { A } ^ { - }$ ; confidence 0.906
8. ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
9. ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906
10. ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
11. ; $SO ( 4 n + 3 )$ ; confidence 0.906
12. ; $\alpha$ ; confidence 0.905
13. ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
14. ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
15. ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905
16. ; $V \cap L$ ; confidence 0.905
17. ; $\oplus R ( S _ { n } )$ ; confidence 0.905
18. ; $w = \operatorname { sin }$ ; confidence 0.905
19. ; $0 \notin f ( \partial D )$ ; confidence 0.904
20. ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
21. ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
22. ; $p ( \alpha )$ ; confidence 0.904
23. ; $\alpha \geq A _ { 0 }$ ; confidence 0.904
24. ; $h ^ { * } ( pt )$ ; confidence 0.903
25. ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
26. ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
27. ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903
28. ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
29. ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902
30. ; $\hat { \eta } \Omega$ ; confidence 0.902
31. ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
32. ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
33. ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901
34. ; $N > 5$ ; confidence 0.901
35. ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900
36. ; $\delta _ { i k } = 0$ ; confidence 0.900
37. ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
38. ; $T p ( A _ { y } ) = A$ ; confidence 0.900
39. ; $3$ ; confidence 0.899
40. ; $\pi _ { k } ( x )$ ; confidence 0.899
41. ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
42. ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
43. ; $x$ ; confidence 0.899
44. ; $q$ ; confidence 0.899
45. ; $f \in H _ { c } ( D )$ ; confidence 0.898
46. ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
47. ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
48. ; $S \square T$ ; confidence 0.898
49. ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
50. ; $1$ ; confidence 0.897
51. ; $\Lambda _ { G } = 1$ ; confidence 0.897
52. ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
53. ; $\overline { \rho } _ { L }$ ; confidence 0.896
54. ; $\operatorname { det } S \neq 0$ ; confidence 0.896
55. ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
56. ; $B$ ; confidence 0.895
57. ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
58. ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895
59. ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895
60. ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
61. ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895
62. ; $X \in \Phi$ ; confidence 0.895
63. ; $t$ ; confidence 0.895
64. ; $Y$ ; confidence 0.894
65. ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894
66. ; $\exists x A$ ; confidence 0.894
67. ; $D ^ { \perp }$ ; confidence 0.893
68. ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
69. ; $\Omega$ ; confidence 0.892
70. ; $q = p ^ { r }$ ; confidence 0.892
71. ; $L \mapsto E ( L )$ ; confidence 0.892
72. ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
73. ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
74. ; $\tau \cup A C \cup B C$ ; confidence 0.892
75. ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
76. ; $3$ ; confidence 0.891
77. ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
78. ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
79. ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
80. ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
81. ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
82. ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
83. ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
84. ; $i$ ; confidence 0.889
85. ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
86. ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
87. ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
88. ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
89. ; $\tau _ { j } < 0$ ; confidence 0.887
90. ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
91. ; $( i i + 1 )$ ; confidence 0.886
92. ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
93. ; $P _ { n } ( R )$ ; confidence 0.886
94. ; $n \geq 12$ ; confidence 0.886
95. ; $5$ ; confidence 0.885
96. ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
97. ; $t \subset v$ ; confidence 0.885
98. ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
99. ; $MS _ { e }$ ; confidence 0.884
100. ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
101. ; $T ( M )$ ; confidence 0.884
102. ; $\Gamma = B X$ ; confidence 0.884
103. ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
104. ; $H _ { n - 2 }$ ; confidence 0.883
105. ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
106. ; $\Gamma ( C ) = V$ ; confidence 0.882
107. ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
108. ; $\epsilon$ ; confidence 0.882
109. ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
110. ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
111. ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
112. ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
113. ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
114. ; $i , j = 1,2$ ; confidence 0.881
115. ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
116. ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
117. ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
118. ; $H \phi$ ; confidence 0.878
119. ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
120. ; $| w | < 1 / 16$ ; confidence 0.877
121. ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
122. ; $B O$ ; confidence 0.877
123. ; $d j \neq 0$ ; confidence 0.877
124. ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
125. ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
126. ; $( K / k )$ ; confidence 0.875
127. ; $z _ { k } \in L$ ; confidence 0.875
128. ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
129. ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
130. ; $\operatorname { inv } ( x )$ ; confidence 0.875
131. ; $g _ { n } ( \Omega )$ ; confidence 0.875
132. ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
133. ; $c = 0$ ; confidence 0.874
134. ; $| w | = \rho < 1$ ; confidence 0.874
135. ; $y _ { i j k }$ ; confidence 0.873
136. ; $L _ { p } ( E )$ ; confidence 0.872
137. ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
138. ; $m = 2 i + 1$ ; confidence 0.871
139. ; $P ^ { \prime }$ ; confidence 0.871
140. ; $Y = C$ ; confidence 0.871
141. ; $M _ { A g }$ ; confidence 0.870
142. ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
143. ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
144. ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
145. ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
146. ; $H _ { m }$ ; confidence 0.869
147. ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
148. ; $Y \times X$ ; confidence 0.869
149. ; $P ^ { ( l ) }$ ; confidence 0.869
150. ; $S$ ; confidence 0.868
151. ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
152. ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
153. ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
154. ; $M N$ ; confidence 0.867
155. ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
156. ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
157. ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
158. ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
159. ; $y _ { j } \delta \theta$ ; confidence 0.866
160. ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866
161. ; $O ( r )$ ; confidence 0.866
162. ; $C ^ { * }$ ; confidence 0.866
163. ; $\int \int K d S$ ; confidence 0.865
164. ; $\Theta f$ ; confidence 0.864
165. ; $\infty \rightarrow \alpha / c$ ; confidence 0.864
166. ; $F \mapsto F ( P )$ ; confidence 0.864
167. ; $L \subset Z ^ { 0 }$ ; confidence 0.864
168. ; $\Pi ^ { * } \in C$ ; confidence 0.864
169. ; $g = R ^ { \alpha } f$ ; confidence 0.864
170. ; $\sigma ^ { 2 }$ ; confidence 0.864
171. ; $T : X \rightarrow Y$ ; confidence 0.863
172. ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
173. ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
174. ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
175. ; $\operatorname { arg } f$ ; confidence 0.862
176. ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
177. ; $F ^ { k }$ ; confidence 0.862
178. ; $r _ { 2 } \in R$ ; confidence 0.862
179. ; $e X$ ; confidence 0.861
180. ; $E _ { 8 }$ ; confidence 0.860
181. ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
182. ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
183. ; $L ] = \lambda$ ; confidence 0.859
184. ; $n = p$ ; confidence 0.858
185. ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
186. ; $\varphi$ ; confidence 0.858
187. ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
188. ; $j 2 ^ { - k - l }$ ; confidence 0.858
189. ; $E ( Z _ { 2 } )$ ; confidence 0.857
190. ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
191. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
192. ; $8$ ; confidence 0.857
193. ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
194. ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
195. ; $a$ ; confidence 0.856
196. ; $F _ { n } ( z )$ ; confidence 0.855
197. ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855
198. ; $b _ { i }$ ; confidence 0.854
199. ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
200. ; $V < 0$ ; confidence 0.854
201. ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
202. ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
203. ; $\Sigma - 1$ ; confidence 0.852
204. ; $B = I _ { p }$ ; confidence 0.852
205. ; $\hat { \eta } \omega$ ; confidence 0.852
206. ; $\beta _ { 0 }$ ; confidence 0.851
207. ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851
208. ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
209. ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
210. ; $Y _ { j } = i$ ; confidence 0.850
211. ; $S = \frac { K } { 3 }$ ; confidence 0.850
212. ; $N \gg n$ ; confidence 0.849
213. ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
214. ; $x _ { n } = n$ ; confidence 0.849
215. ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849
216. ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848
217. ; $v = 1.1 m / sec$ ; confidence 0.848
218. ; $\phi _ { x y } a \leq b$ ; confidence 0.847
219. ; $H = C ^ { n }$ ; confidence 0.847
220. ; $K P$ ; confidence 0.846
221. ; $= v : q$ ; confidence 0.846
222. ; $\Gamma _ { q }$ ; confidence 0.846
223. ; $L _ { q } ( X )$ ; confidence 0.846
224. ; $W E = R . F . I$ ; confidence 0.845
225. ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
226. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
227. ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845
228. ; $E$ ; confidence 0.845
229. ; $\pi G ( x ) = b$ ; confidence 0.845
230. ; $| x _ { i } | \leq 1$ ; confidence 0.845
231. ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
232. ; $\operatorname { log } F \leq 100$ ; confidence 0.843
233. ; $q IL$ ; confidence 0.843
234. ; $- \infty < r < \infty$ ; confidence 0.842
235. ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
236. ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
237. ; $x | < e$ ; confidence 0.841
238. ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
239. ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
240. ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
241. ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
242. ; $m \equiv 4$ ; confidence 0.840
243. ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
244. ; $e \in E$ ; confidence 0.839
245. ; $\Lambda \in N ^ { t }$ ; confidence 0.838
246. ; $0 \leq S \leq T$ ; confidence 0.838
247. ; $C$ ; confidence 0.838
248. ; $u | _ { \Sigma } = 0$ ; confidence 0.837
249. ; $v \in ( 1 - t ) V$ ; confidence 0.837
250. ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
251. ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
252. ; $y = y _ { 0 } - a n$ ; confidence 0.836
253. ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
254. ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
255. ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
256. ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
257. ; $\forall x _ { k }$ ; confidence 0.834
258. ; $C x ^ { - 1 }$ ; confidence 0.834
259. ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
260. ; $\Theta$ ; confidence 0.834
261. ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
262. ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
263. ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
264. ; $B = 0$ ; confidence 0.833
265. ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
266. ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
267. ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
268. ; $\partial M$ ; confidence 0.831
269. ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
270. ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
271. ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
272. ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
273. ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
274. ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
275. ; $\rho ^ { ( j ) }$ ; confidence 0.828
276. ; $D _ { n } X _ { 1 }$ ; confidence 0.828
277. ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
278. ; $CW ( 9.63 )$ ; confidence 0.827
279. ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
280. ; $a \vee b$ ; confidence 0.827
281. ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
282. ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
283. ; $y = K _ { n } ( x )$ ; confidence 0.826
284. ; $\| x \| = \rho$ ; confidence 0.826
285. ; $x = [ u ]$ ; confidence 0.825
286. ; $z | > 1$ ; confidence 0.823
287. ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823
288. ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
289. ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
290. ; $n _ { 1 } = 9$ ; confidence 0.822
291. ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
292. ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822
293. ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
294. ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821
295. ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
296. ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
297. ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820
298. ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820
299. ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820
300. ; $Z \in X$ ; confidence 0.820
Maximilian Janisch/latexlist/latex/6. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/6&oldid=43824