Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT: Updated image/latex database (currently 50 images indexed)
(AUTOMATIC EDIT: Updated image/latex database (currently 50 images indexed)
Line 2: Line 2:
  
 
== List ==
 
== List ==
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001011.png" /> : $$ (confidence 0)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001011.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png" /> : $$ (confidence 0)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001019.png" /> : $$ (confidence 0)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png" /> : $$ (confidence 0)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001020.png" /> : $$ (confidence 0)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001019.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png" /> : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ (confidence 0.2558360957702055)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png" /> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ (confidence 0.7513806030787462)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png" /> : $$ (confidence 0.11977224303966238)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png" /> : $$ (confidence 0)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001020.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png" /> : $A , B , C \in C$ (confidence 0.9874941305418984)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115024.png" /> : $F \Phi = \Psi$ (confidence 0.4805759882593679)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png" /> : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115025.png" /> : $r$ (confidence 0.12389555304878641)
+
(confidence 0.2558360957702055)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115026.png" /> : $\Phi \rightarrow \Psi$ (confidence 0.7790935007842552)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png" /> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115027.png" /> : $F ^ { \prime }$ (confidence 0.11142785371739461)
+
(confidence 0.7513806030787462)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115029.png" /> : $t$ (confidence 0.5074253082275391)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115030.png" /> : $$ (confidence 0)
+
(confidence 0.11977224303966238)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115033.png" /> : $F ( f ^ { * } g ) = F f . F g$ (confidence 0.6819218234974772)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115034.png" /> : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$ (confidence 0.7705838634334625)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115035.png" /> : $L _ { p } ( R ^ { n } )$ (confidence 0.8757486845276239)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png" /> : $A , B , C \in C$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115036.png" /> : $\leq p \leq 2$ (confidence 0.27530124031725317)
+
(confidence 0.9874941305418984)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115037.png" /> : $r$ (confidence 0.12389555304878641)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115024.png" /> : $F \Phi = \Psi$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115038.png" /> : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$ (confidence 0.26241861040115294)
+
(confidence 0.4805759882593679)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115039.png" /> : $L _ { p } ( R ^ { n } )$ (confidence 0.8757486845276239)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115025.png" /> : $r$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115040.png" /> : $L _ { \varphi } ( R ^ { n } )$ (confidence 0.2310629780771597)
+
(confidence 0.12389555304878641)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115041.png" /> : $p ^ { - 1 } + q ^ { - 1 } = 1$ (confidence 0.9973485092235681)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115026.png" /> : $\Phi \rightarrow \Psi$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115043.png" /> : $r$ (confidence 0.12389555304878641)
+
(confidence 0.7790935007842552)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115045.png" /> : $1 < p \leq 2$ (confidence 0.9964472555859636)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115027.png" /> : $F ^ { \prime }$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115046.png" /> : $$ (confidence 0)
+
(confidence 0.11142785371739461)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115048.png" /> : $p \neq 2$ (confidence 0.9978736607221192)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115029.png" /> : $t$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115049.png" /> : $x$ (confidence 0.12837346605452638)
+
(confidence 0.5074253082275391)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115050.png" /> : $r$ (confidence 0.12389555304878641)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115030.png" /> : $ $  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115051.png" /> : $x$ (confidence 0.33397466109307317)
+
(confidence 0)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115052.png" /> : $F L _ { p } \subset l _ { q }$ (confidence 0.4314001351435635)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115033.png" /> : $F ( f ^ { * } g ) = F f . F g$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115053.png" /> : $\leq p < 2$ (confidence 0.3140245219383027)
+
(confidence 0.6819218234974772)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115055.png" /> : $F ^ { \prime }$ (confidence 0.11142785371739461)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115034.png" /> : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115056.png" /> : $F L y$ (confidence 0.9421360432265639)
+
(confidence 0.7705838634334625)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115057.png" /> : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$ (confidence 0.16566260709655076)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115035.png" /> : $L _ { p } ( R ^ { n } )$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115058.png" /> : $x = ( x _ { 1 } , \ldots , x _ { n } )$ (confidence 0.08374742170778082)
+
(confidence 0.8757486845276239)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115059.png" /> : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$ (confidence 0.529109226067534)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115036.png" /> : $\leq p \leq 2$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png" /> : $x$ (confidence 0.6640530313855136)
+
(confidence 0.27530124031725317)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115061.png" /> : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$ (confidence 0.11581139252073573)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115037.png" /> : $r$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115062.png" /> : $( 1 / 2 \pi ) ^ { n / 2 }$ (confidence 0.9994450835812325)
+
(confidence 0.12389555304878641)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115063.png" /> : $$ (confidence 0)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115038.png" /> : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115064.png" /> : $$ (confidence 0)
+
(confidence 0.26241861040115294)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115065.png" /> : $\beta = ( 1 / 2 \pi ) ^ { x }$ (confidence 0.9130163734938249)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115039.png" /> : $L _ { p } ( R ^ { n } )$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115066.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$ (confidence 0.3057988248146818)
+
(confidence 0.8757486845276239)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115067.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$ (confidence 0.5024619621936454)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115040.png" /> : $L _ { \varphi } ( R ^ { n } )$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115068.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$ (confidence 0.15634412476601953)
+
(confidence 0.2310629780771597)
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115069.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$ (confidence 0.08016216799456224)
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115041.png" /> : $p ^ { - 1 } + q ^ { - 1 } = 1$  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115070.png" /> : $L _ { 2 } ( R ^ { * } )$ (confidence 0.3347255664604998)
+
(confidence 0.9973485092235681)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115043.png" /> : $r$  
 +
(confidence 0.12389555304878641)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115045.png" /> : $1 < p \leq 2$  
 +
(confidence 0.9964472555859636)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115046.png" /> : $ $  
 +
(confidence 0)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115048.png" /> : $p \neq 2$  
 +
(confidence 0.9978736607221192)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115049.png" /> : $x$  
 +
(confidence 0.12837346605452638)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115050.png" /> : $r$  
 +
(confidence 0.12389555304878641)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115051.png" /> : $x$  
 +
(confidence 0.33397466109307317)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115052.png" /> : $F L _ { p } \subset l _ { q }$  
 +
(confidence 0.4314001351435635)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115053.png" /> : $\leq p < 2$  
 +
(confidence 0.3140245219383027)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115055.png" /> : $F ^ { \prime }$  
 +
(confidence 0.11142785371739461)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115056.png" /> : $F L y$  
 +
(confidence 0.9421360432265639)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115057.png" /> : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$  
 +
(confidence 0.16566260709655076)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115058.png" /> : $x = ( x _ { 1 } , \ldots , x _ { n } )$  
 +
(confidence 0.08374742170778082)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115059.png" /> : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$  
 +
(confidence 0.529109226067534)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png" /> : $x$  
 +
(confidence 0.6640530313855136)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115061.png" /> : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$  
 +
(confidence 0.11581139252073573)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115062.png" /> : $( 1 / 2 \pi ) ^ { n / 2 }$  
 +
(confidence 0.9994450835812325)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115063.png" /> : $ $  
 +
(confidence 0)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115064.png" /> : $ $  
 +
(confidence 0)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115065.png" /> : $\beta = ( 1 / 2 \pi ) ^ { x }$  
 +
(confidence 0.9130163734938249)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115066.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$  
 +
(confidence 0.3057988248146818)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115067.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$  
 +
(confidence 0.5024619621936454)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115068.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$  
 +
(confidence 0.15634412476601953)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115069.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$  
 +
(confidence 0.08016216799456224)
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115070.png" /> : $L _ { 2 } ( R ^ { * } )$  
 +
(confidence 0.3347255664604998)

Revision as of 22:11, 6 April 2019

This is a list of automatically classified LaTeX files. You can manually edit this list.

List

 : $ $ (confidence 0)  : $ $ (confidence 0)  : $ $ (confidence 0)  : $ $ (confidence 0)  : $ $ (confidence 0)  : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ (confidence 0.2558360957702055)  : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ (confidence 0.7513806030787462)  : $ $ (confidence 0.11977224303966238)  : $ $ (confidence 0)  : $A , B , C \in C$ (confidence 0.9874941305418984)  : $F \Phi = \Psi$ (confidence 0.4805759882593679)  : $r$ (confidence 0.12389555304878641)  : $\Phi \rightarrow \Psi$ (confidence 0.7790935007842552)  : $F ^ { \prime }$ (confidence 0.11142785371739461)  : $t$ (confidence 0.5074253082275391)  : $ $ (confidence 0)  : $F ( f ^ { * } g ) = F f . F g$ (confidence 0.6819218234974772)  : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$ (confidence 0.7705838634334625)  : $L _ { p } ( R ^ { n } )$ (confidence 0.8757486845276239)  : $\leq p \leq 2$ (confidence 0.27530124031725317)  : $r$ (confidence 0.12389555304878641)  : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$ (confidence 0.26241861040115294)  : $L _ { p } ( R ^ { n } )$ (confidence 0.8757486845276239)  : $L _ { \varphi } ( R ^ { n } )$ (confidence 0.2310629780771597)  : $p ^ { - 1 } + q ^ { - 1 } = 1$ (confidence 0.9973485092235681)  : $r$ (confidence 0.12389555304878641)  : $1 < p \leq 2$ (confidence 0.9964472555859636)  : $ $ (confidence 0)  : $p \neq 2$ (confidence 0.9978736607221192)  : $x$ (confidence 0.12837346605452638)  : $r$ (confidence 0.12389555304878641)  : $x$ (confidence 0.33397466109307317)  : $F L _ { p } \subset l _ { q }$ (confidence 0.4314001351435635)  : $\leq p < 2$ (confidence 0.3140245219383027)  : $F ^ { \prime }$ (confidence 0.11142785371739461)  : $F L y$ (confidence 0.9421360432265639)  : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$ (confidence 0.16566260709655076)  : $x = ( x _ { 1 } , \ldots , x _ { n } )$ (confidence 0.08374742170778082)  : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$ (confidence 0.529109226067534)  : $x$ (confidence 0.6640530313855136)  : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$ (confidence 0.11581139252073573)  : $( 1 / 2 \pi ) ^ { n / 2 }$ (confidence 0.9994450835812325)  : $ $ (confidence 0)  : $ $ (confidence 0)  : $\beta = ( 1 / 2 \pi ) ^ { x }$ (confidence 0.9130163734938249)  : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$ (confidence 0.3057988248146818)  : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$ (confidence 0.5024619621936454)  : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$ (confidence 0.15634412476601953)  : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$ (confidence 0.08016216799456224)  : $L _ { 2 } ( R ^ { * } )$ (confidence 0.3347255664604998)

How to Cite This Entry:
Maximilian Janisch/latexlist. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist&oldid=43666