Difference between revisions of "Tangent vector"
(TeX (partially done)) |
|||
Line 1: | Line 1: | ||
− | Let | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922001.png" /> be a [[Differentiable manifold|differentiable manifold]], and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922002.png" /> be the algebra of smooth real-valued functions on it. A tangent vector to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922003.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922004.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922005.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922006.png" /> such that |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922007.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table> | |
− | |||
− | |||
− | For this definition one can equally well (in fact, better) use the ring of germs of smooth functions | + | For this definition one can equally well (in fact, better) use the ring of germs of smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922008.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t0922009.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220010.png" />. |
− | The tangent vectors to | + | The tangent vectors to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220011.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220012.png" /> form a vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220013.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220014.png" />. It is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220015.png" />. |
− | Let | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220018.png" /> is a system of coordinates on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220019.png" /> near <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220020.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220021.png" />-th partial derivative at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220022.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220023.png" /> is the tangent vector |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220024.png" /></td> </tr></table> | |
− | |||
− | |||
− | where the right hand-side is the usual partial derivative of the function | + | where the right hand-side is the usual partial derivative of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220025.png" /> in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220026.png" />, at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220027.png" />. One has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220028.png" /> (the Kronecker delta) and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220029.png" /> form a basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220030.png" />. |
− | This basis for | + | This basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220031.png" /> determined by the coordinate system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220032.png" /> is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220033.png" />. |
− | A cotangent vector at | + | A cotangent vector at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220034.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220035.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220036.png" /> such that the cotangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220037.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220038.png" /> is the dual vector space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220039.png" />. The dual basis to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220040.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220041.png" />. One has |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220042.png" /></td> </tr></table> | |
− | |||
− | |||
− | The disjoint union | + | The disjoint union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220043.png" /> of the tangent spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220045.png" />, together with the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220047.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220048.png" />, can be given the structure of a differentiable [[Vector bundle|vector bundle]], the [[Tangent bundle|tangent bundle]]. |
− | Similarly, the cotangent spaces | + | Similarly, the cotangent spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220049.png" /> form a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220050.png" /> dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220051.png" />, called the cotangent bundle. The sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220052.png" /> are the vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220053.png" />, the sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220054.png" /> are differentiable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220056.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220057.png" />. |
− | Let | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220058.png" /> be a mapping of differentiable manifolds and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220059.png" /> be the induced mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220060.png" />. For a tangent vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220061.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220062.png" />, composition with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220063.png" /> gives an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220064.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220065.png" /> which is a tangent vector to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220066.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220067.png" />. This defines a homomorphism of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220068.png" /> and a vector bundle morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220069.png" />. |
− | In case | + | In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220071.png" /> with global coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220073.png" />, respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220074.png" /> is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220075.png" /> differentiable functions and at each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220076.png" />, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"> | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220077.png" /></td> </tr></table> |
− | so that the matrix of | + | so that the matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220078.png" /> with respect to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220080.png" /> and the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220081.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220082.png" /> is given by the [[Jacobi matrix|Jacobi matrix]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220083.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220084.png" />. |
− | Now, let | + | Now, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220085.png" /> be an imbedded manifold. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220087.png" /> be a smooth curve in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220089.png" />. Then |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"> | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220090.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table> |
− | All tangent vectors in | + | All tangent vectors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220091.png" /> arise in this way. Identifying the vector (a2) with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220092.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220093.png" />, viewed as a directed line segment starting in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220094.png" />, one recovers the intuitive picture of the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220095.png" /> as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220096.png" />-plane in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220097.png" /> tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220098.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t09220099.png" />. |
− | A vector field on a manifold | + | A vector field on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200100.png" /> can be defined as a derivation (cf. [[Derivation in a ring|Derivation in a ring]]) in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200101.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200103.png" />. Composition with the evaluation mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200105.png" />, yields a family of tangent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200106.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200107.png" /> "becomes" a section of the [[Tangent bundle|tangent bundle]]. Given local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200109.png" /> can locally be written as |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"> | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200110.png" /></td> </tr></table> |
− | and if a function | + | and if a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200111.png" /> in local coordinates is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200112.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200113.png" /> is the function given in local coordinates by the expression |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"> | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200114.png" /></td> </tr></table> |
− | showing once more the convenience of the " / x" notation for tangent vectors. (Of course, in practice one uses a bit more abuse of notation and writes | + | showing once more the convenience of the " / x" notation for tangent vectors. (Of course, in practice one uses a bit more abuse of notation and writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200115.png" /> instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200116.png" />.) |
− | Let | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200117.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200118.png" />-algebra of germs of smooth functions at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200119.png" /> (cf. [[Germ|Germ]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200120.png" /> be the ideal of germs that vanish at zero, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200121.png" /> the ideal generated by all products <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200122.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200123.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200124.png" /> are local coordinates at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200125.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200126.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200127.png" /> is generated as an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200128.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200129.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200130.png" /> by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200132.png" />. In fact, the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200133.png" /> is the power series ring in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200134.png" /> variables over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200135.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200136.png" /> is the ideal of flat function germs. (A smooth function is flat at a point if it vanishes there with all its derivatives (an example is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200137.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200138.png" />); the "Taylor expansion mapping" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200139.png" /> is surjective, a very special consequence of the [[Whitney extension theorem|Whitney extension theorem]].) |
− | Now, let | + | Now, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200140.png" /> be a tangent vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200141.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200142.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200143.png" /> by (a1) for all constant functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200144.png" />. Also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200145.png" />, again by (a1). Thus, each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200146.png" /> defines an element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200147.png" />, which is of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200148.png" /> because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200149.png" /> has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200150.png" /> (and that element uniquely determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200151.png" />). Moreover, the tangent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200152.png" /> clearly define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200153.png" /> linearly independent elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200154.png" /> (because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200155.png" />). Thus, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"> | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200156.png" /></td> </tr></table> |
− | the dual space of | + | the dual space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092200/t092200157.png" />. This point of view is more generally applicable and serves as the definition of tangent space in analytic and algebraic geometry, cf. [[Analytic space|Analytic space]]; [[Zariski tangent space|Zariski tangent space]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hermann, "Geometry, physics, and systems" , M. Dekker (1973) {{MR|0494183}} {{ZBL|0285.58001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.L. Bishop, R.J. Crittenden, "Geometry of manifolds" , Acad. Press (1964) {{MR|0169148}} {{ZBL|0132.16003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78 {{MR|0448362}} {{ZBL|0356.57001}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S.P. Novikov, A.T. Fomenko, "Basic elements of differential geometry and topology" , Kluwer (1991) (Translated from Russian) {{MR|1135798}} {{ZBL|0711.53001}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu. Borisovich, N. Bliznyakov, Ya. Izrailevich, T. Fomenko, "Introduction to topology" , Kluwer (1993) (Translated from Russian) {{MR|1450091}} {{MR|0824983}} {{MR|0591670}} {{ZBL|0836.57001}} {{ZBL|0834.57001}} {{ZBL|0478.57001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hermann, "Geometry, physics, and systems" , M. Dekker (1973) {{MR|0494183}} {{ZBL|0285.58001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.L. Bishop, R.J. Crittenden, "Geometry of manifolds" , Acad. Press (1964) {{MR|0169148}} {{ZBL|0132.16003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78 {{MR|0448362}} {{ZBL|0356.57001}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S.P. Novikov, A.T. Fomenko, "Basic elements of differential geometry and topology" , Kluwer (1991) (Translated from Russian) {{MR|1135798}} {{ZBL|0711.53001}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu. Borisovich, N. Bliznyakov, Ya. Izrailevich, T. Fomenko, "Introduction to topology" , Kluwer (1993) (Translated from Russian) {{MR|1450091}} {{MR|0824983}} {{MR|0591670}} {{ZBL|0836.57001}} {{ZBL|0834.57001}} {{ZBL|0478.57001}} </TD></TR></table> |
Revision as of 15:31, 21 May 2017
Let be a differentiable manifold, and let be the algebra of smooth real-valued functions on it. A tangent vector to at is an -linear mapping such that
(a1) |
For this definition one can equally well (in fact, better) use the ring of germs of smooth functions on at .
The tangent vectors to at form a vector space over of dimension . It is denoted by .
Let , , where is a system of coordinates on near . The -th partial derivative at with respect to is the tangent vector
where the right hand-side is the usual partial derivative of the function in the variables , at the point . One has (the Kronecker delta) and the form a basis for .
This basis for determined by the coordinate system is often denoted by .
A cotangent vector at is an -linear mapping such that the cotangent space at is the dual vector space to . The dual basis to is denoted by . One has
The disjoint union of the tangent spaces , , together with the projection , if , can be given the structure of a differentiable vector bundle, the tangent bundle.
Similarly, the cotangent spaces form a vector bundle dual to , called the cotangent bundle. The sections of are the vector fields on , the sections of are differentiable -forms on .
Let be a mapping of differentiable manifolds and let be the induced mapping . For a tangent vector at , composition with gives an -linear mapping which is a tangent vector to at . This defines a homomorphism of vector spaces and a vector bundle morphism .
In case and with global coordinates and , respectively, is given by differentiable functions and at each ,
so that the matrix of with respect to the basis of and the basis of is given by the Jacobi matrix of at .
Now, let be an imbedded manifold. Let , be a smooth curve in , . Then
(a2) |
All tangent vectors in arise in this way. Identifying the vector (a2) with the -vector , viewed as a directed line segment starting in , one recovers the intuitive picture of the tangent space as the -plane in tangent to in .
A vector field on a manifold can be defined as a derivation (cf. Derivation in a ring) in the -algebra , . Composition with the evaluation mappings , , yields a family of tangent vectors , so that "becomes" a section of the tangent bundle. Given local coordinates , can locally be written as
and if a function in local coordinates is given by , then is the function given in local coordinates by the expression
showing once more the convenience of the " / x" notation for tangent vectors. (Of course, in practice one uses a bit more abuse of notation and writes instead of .)
Let be the -algebra of germs of smooth functions at (cf. Germ). Let be the ideal of germs that vanish at zero, and the ideal generated by all products for . If are local coordinates at so that , is generated as an ideal in by , and by the , . In fact, the quotient ring is the power series ring in variables over . Here is the ideal of flat function germs. (A smooth function is flat at a point if it vanishes there with all its derivatives (an example is at ); the "Taylor expansion mapping" is surjective, a very special consequence of the Whitney extension theorem.)
Now, let be a tangent vector of at . Then by (a1) for all constant functions in . Also , again by (a1). Thus, each defines an element in , which is of dimension because has dimension (and that element uniquely determines ). Moreover, the tangent vectors clearly define linearly independent elements in (because ). Thus,
the dual space of . This point of view is more generally applicable and serves as the definition of tangent space in analytic and algebraic geometry, cf. Analytic space; Zariski tangent space.
References
[a1] | R. Hermann, "Geometry, physics, and systems" , M. Dekker (1973) MR0494183 Zbl 0285.58001 |
[a2] | R.L. Bishop, R.J. Crittenden, "Geometry of manifolds" , Acad. Press (1964) MR0169148 Zbl 0132.16003 |
[a3] | M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78 MR0448362 Zbl 0356.57001 |
[a4] | S.P. Novikov, A.T. Fomenko, "Basic elements of differential geometry and topology" , Kluwer (1991) (Translated from Russian) MR1135798 Zbl 0711.53001 |
[a5] | Yu. Borisovich, N. Bliznyakov, Ya. Izrailevich, T. Fomenko, "Introduction to topology" , Kluwer (1993) (Translated from Russian) MR1450091 MR0824983 MR0591670 Zbl 0836.57001 Zbl 0834.57001 Zbl 0478.57001 |
Tangent vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tangent_vector&oldid=41536