Namespaces
Variants
Actions

Difference between revisions of "Bochner integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Made improvements to the clarity of the exposition.)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
An integral of a function with values in a Banach space with respect to a scalar measure. It belongs to the so-called strong integrals (cf. [[Strong integral|Strong integral]]).
+
An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called [[Strong integral|''strong integrals'']].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167101.png" /> be the vector space of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167103.png" />, with values in a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167104.png" />, given on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167105.png" /> with a countably-additive scalar measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167106.png" /> on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167107.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167108.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167109.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671010.png" /> is called simple if
+
Let $ \mathcal{F}(X;E,\mathfrak{B},\mu) $ denote the vector space (over $ \mathbb{R} $ or $ \mathbb{C} $) of functions $ f: E \to X $, where:
 +
* $ X $ is a Banach space (resp. real or complex).
 +
* $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ a $ \sigma $-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ on $ E $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671011.png" /></td> </tr></table>
+
A function $ s \in \mathcal{F} $ is called ''simple'' if and only if for some $ n \in \mathbb{N} $, there exist distinct vectors $ x_{1},\ldots,x_{n} \in X $ and pairwise-disjoint $ \mathfrak{B} $-measurable subsets $ B_{1},\ldots,B_{n} $ of $ E $, each with finite $ \mu $-measure, such that $ \displaystyle s(t) = \sum_{i = 1}^{n} {\chi_{B_{i}}}(t) \cdot x_{i} $ for every $ t \in E $, in which case we define the Bochner-integral of $ s $ by
 +
$$
 +
\int_{E} s ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}.
 +
$$
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671012.png" /> is called strongly measurable if there exists a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671013.png" /> of simple functions with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671014.png" /> almost-everywhere with respect to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671015.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671016.png" />. In such a case the scalar function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671017.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671018.png" />-measurable. For the simple function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671019.png" />
+
A function $ f \in \mathcal{F} $ is called ''strongly measurable'' if and only if there exists a sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| f(\bullet) - {s_{n}}(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ (we call this an ''approximating sequence'' for $ f $), in which case the scalar-valued function $ \| f(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671020.png" /></td> </tr></table>
+
A function $ f \in \mathcal{F} $ is called ''Bochner-integrable'' if and only if it is strongly measurable and for some sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions, we have
 +
$$
 +
\lim_{n \to \infty} \int_{E} \| f(t) - {s_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0,
 +
$$
 +
in which case we define the Bochner-integral of $ f $ over a $ \mathfrak{B} $-measurable subset $ B $ of $ E $ by
 +
$$
 +
\int_{B} f ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} \chi_{B} \cdot s_{n} ~ \mathrm{d}{\mu}.
 +
$$
 +
This limit is taken with respect to the norm-topology on $ X $. It exists and is independent of the choice of the sequence $ (s_{n})_{n \in \mathbb{N}} $.
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671021.png" /> is said to be Bochner integrable if it is strongly measurable and if for some approximating sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671022.png" /> of simple functions
+
'''Criterion for Bochner-integrability:''' For a (strongly measurable) function $ f \in \mathcal{F} $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e.,
 +
$$
 +
\int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671023.png" /></td> </tr></table>
+
The set of Bochner-integrable functions is a vector subspace $ \mathcal{L} $ of $ \mathcal{F} $, and the Bochner-integral is a linear operator from $ \mathcal{L} $ to $ X $.
  
The Bochner integral of such a function over a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671024.png" /> is
+
'''Properties of Bochner-integrals:'''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671025.png" /></td> </tr></table>
+
(1) $ \displaystyle \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} \leq \int_{B} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ f \in \mathcal{L} $ and $ B \in \mathfrak{B} $.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671026.png" /> is the characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671027.png" />, and the limit is understood in the sense of strong convergence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671028.png" />. This limit exists, and is independent of the choice of the approximation sequence of simple functions.
+
(2) The Bochner integral for a fixed $ f \in \mathcal{L} $ is a $ \sigma $-additive and $ \mu $-absolutely continuous set-function on $ \mathfrak{B} $, i.e.,
 +
$$
 +
\int_{\bigcup_{i = 1}^{\infty} B_{i}} f ~ \mathrm{d}{\mu} = \sum_{i = 1}^{\infty} \int_{B_{i}} f ~ \mathrm{d}{\mu}
 +
$$
 +
for every sequence $ (B_{i})_{i \in \mathbb{N}} $ of pairwise-disjoint $ \mathfrak{B} $-measurable subsets of $ E $, each with finite $ \mu $-measure, and
 +
$$
 +
\forall \epsilon > 0, ~ \exists \delta > 0, ~ \forall B \in \mathfrak{B}: \quad
 +
\mu(B) < \delta \quad \Longrightarrow \quad \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} < \epsilon.
 +
$$
  
Criterion for Bochner integrability: For a strongly-measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671029.png" /> to be Bochner integrable it is necessary and sufficient for the norm of this function to be integrable, i.e.
+
(3) If
 +
* $ (f_{n})_{n \in \mathbb{N}} $ is a sequence in $ \mathcal{L} $ that converges pointwise almost-everywhere on $ B \in \mathfrak{B} $ to some $ f \in \mathcal{F} $,
 +
* $ \| {f_{n}}(\bullet) \|_{X} \leq g $ pointwise almost-everywhere on $ B $ for some $ \mathfrak{B} $-measurable function $ g: E \to [0,\infty) $, and
 +
* $ \displaystyle \int_{B} g ~ \mathrm{d}{\mu} < \infty $,
 +
then $ f \in \mathcal{L} $ and $ \displaystyle \lim_{n \to \infty} \int_{B} f_{n} ~ \mathrm{d}{\mu} = \int_{B} f ~ \mathrm{d}{\mu} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671030.png" /></td> </tr></table>
+
(4) The vector space $ \mathcal{L} $ is [[Convergence in norm|complete]] with respect to the norm $ \| \bullet \|_{\mathcal{L}} $ defined by
 +
$$
 +
\forall f \in \mathcal{L}: \quad
 +
\| f \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)}.
 +
$$
  
The set of Bochner-integrable functions forms a vector subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671032.png" />, and the Bochner integral is a linear operator on this subspace.
+
(5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if $ f \in \mathcal{L}(X;E,\mathfrak{B},\mu) $ and $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $, then
 +
$$
 +
\forall B \in \mathfrak{B}: \quad
 +
\int_{B} T \circ f ~ \mathrm{d}{\mu} = T \! \left( \int_{B} f ~ \mathrm{d}{\mu} \right).
 +
$$
 +
If $ T $ is bounded, then the condition $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $ is automatically fulfilled ([[#References|[3]]]–[[#References|[5]]]).
  
Properties of Bochner integrals:
+
The Bochner-integral was introduced by S. Bochner in [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt in [[#References|[2]]] and by N. Dunford (the $ D_{0} $-integral).
  
1)
+
====References====
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671033.png" /></td> </tr></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind”, ''Fund. Math.'', '''20''' (1933), pp. 262–276.</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> T.H. Hildebrandt, “Integration in abstract spaces”, ''Bull. Amer. Math. Soc.'', '''59''' (1953), pp. 111–139.</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hille and R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957).</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford and J.T. Schwartz, “Linear operators. General theory”, '''1''', Interscience (1958).</TD></TR>
 +
</table>
  
2) A Bochner integral is a countably-additive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671034.png" />-absolutely continuous set-function on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671035.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671036.png" />, i.e.
+
====Comments====
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671037.png" /></td> </tr></table>
 
 
 
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671039.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671040.png" />, uniformly for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671041.png" />.
 
 
 
3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671042.png" /> almost-everywhere with respect to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671043.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671044.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671045.png" /> almost-everywhere with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671046.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671047.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671048.png" />, then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671049.png" /></td> </tr></table>
 
 
 
and
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671050.png" /></td> </tr></table>
 
 
 
4) The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671051.png" /> is complete with respect to the norm (cf. [[Convergence in norm|Convergence in norm]])
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671052.png" /></td> </tr></table>
 
 
 
5) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671053.png" /> is a closed linear operator from a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671054.png" /> into a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671055.png" /> and if
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671056.png" /></td> </tr></table>
 
 
 
then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671057.png" /></td> </tr></table>
 
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671058.png" /> is bounded, the condition
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671059.png" /></td> </tr></table>
+
A simple function is also called a ''step-function''. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner-integral.
 
 
is automatically fulfilled, [[#References|[3]]][[#References|[5]]].
 
 
 
The Bochner integral was introduced by S. Bochner [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt [[#References|[2]]] and N. Dunford (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671060.png" />-integral).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Bochner,  "Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind"  ''Fund. Math.'' , '''20'''  (1933)  pp. 262–276</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T.H. Hildebrandt,  "Integration in abstract spaces"  ''Bull. Amer. Math. Soc.'' , '''59'''  (1953)  pp. 111–139</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  K. Yosida,  "Functional analysis" , Springer  (1980)  pp. Chapt. 8, §1</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Hille,  R.S. Phillips,  "Functional analysis and semi-groups" , Amer. Math. Soc.  (1957)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators. General theory" , '''1''' , Interscience  (1958)</TD></TR></table>
 
  
 
+
<table>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel and J.J. Uhl, Jr., “Vector measures”, ''Math. Surveys'', '''15''', Amer. Math. Soc. (1977).</TD></TR>
====Comments====
+
<TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, “Integration”, North-Holland (1967).</TD></TR>
A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner integral.
+
<TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).</TD></TR>
 
+
<TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński, “The Bochner integral”, Acad. Press (1978).</TD></TR>
====References====
+
</table>
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. DiestelJ.J. Uhl jr.,   "Vector measures" , ''Math. Surveys'' , '''15''' , Amer. Math. Soc. (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen,   "Integration" , North-Holland (1967)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki,   "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński,   "The Bochner integral" , Acad. Press (1978)</TD></TR></table>
 

Latest revision as of 21:30, 26 April 2016

An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called strong integrals.

Let $ \mathcal{F}(X;E,\mathfrak{B},\mu) $ denote the vector space (over $ \mathbb{R} $ or $ \mathbb{C} $) of functions $ f: E \to X $, where:

  • $ X $ is a Banach space (resp. real or complex).
  • $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ a $ \sigma $-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ on $ E $.

A function $ s \in \mathcal{F} $ is called simple if and only if for some $ n \in \mathbb{N} $, there exist distinct vectors $ x_{1},\ldots,x_{n} \in X $ and pairwise-disjoint $ \mathfrak{B} $-measurable subsets $ B_{1},\ldots,B_{n} $ of $ E $, each with finite $ \mu $-measure, such that $ \displaystyle s(t) = \sum_{i = 1}^{n} {\chi_{B_{i}}}(t) \cdot x_{i} $ for every $ t \in E $, in which case we define the Bochner-integral of $ s $ by $$ \int_{E} s ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}. $$

A function $ f \in \mathcal{F} $ is called strongly measurable if and only if there exists a sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| f(\bullet) - {s_{n}}(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ (we call this an approximating sequence for $ f $), in which case the scalar-valued function $ \| f(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable.

A function $ f \in \mathcal{F} $ is called Bochner-integrable if and only if it is strongly measurable and for some sequence $ (s_{n})_{n \in \mathbb{N}} $ of simple functions, we have $$ \lim_{n \to \infty} \int_{E} \| f(t) - {s_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0, $$ in which case we define the Bochner-integral of $ f $ over a $ \mathfrak{B} $-measurable subset $ B $ of $ E $ by $$ \int_{B} f ~ \mathrm{d}{\mu} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} \chi_{B} \cdot s_{n} ~ \mathrm{d}{\mu}. $$ This limit is taken with respect to the norm-topology on $ X $. It exists and is independent of the choice of the sequence $ (s_{n})_{n \in \mathbb{N}} $.

Criterion for Bochner-integrability: For a (strongly measurable) function $ f \in \mathcal{F} $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e., $$ \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty. $$

The set of Bochner-integrable functions is a vector subspace $ \mathcal{L} $ of $ \mathcal{F} $, and the Bochner-integral is a linear operator from $ \mathcal{L} $ to $ X $.

Properties of Bochner-integrals:

(1) $ \displaystyle \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} \leq \int_{B} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ f \in \mathcal{L} $ and $ B \in \mathfrak{B} $.

(2) The Bochner integral for a fixed $ f \in \mathcal{L} $ is a $ \sigma $-additive and $ \mu $-absolutely continuous set-function on $ \mathfrak{B} $, i.e., $$ \int_{\bigcup_{i = 1}^{\infty} B_{i}} f ~ \mathrm{d}{\mu} = \sum_{i = 1}^{\infty} \int_{B_{i}} f ~ \mathrm{d}{\mu} $$ for every sequence $ (B_{i})_{i \in \mathbb{N}} $ of pairwise-disjoint $ \mathfrak{B} $-measurable subsets of $ E $, each with finite $ \mu $-measure, and $$ \forall \epsilon > 0, ~ \exists \delta > 0, ~ \forall B \in \mathfrak{B}: \quad \mu(B) < \delta \quad \Longrightarrow \quad \left\| \int_{B} f ~ \mathrm{d}{\mu} \right\|_{X} < \epsilon. $$

(3) If

  • $ (f_{n})_{n \in \mathbb{N}} $ is a sequence in $ \mathcal{L} $ that converges pointwise almost-everywhere on $ B \in \mathfrak{B} $ to some $ f \in \mathcal{F} $,
  • $ \| {f_{n}}(\bullet) \|_{X} \leq g $ pointwise almost-everywhere on $ B $ for some $ \mathfrak{B} $-measurable function $ g: E \to [0,\infty) $, and
  • $ \displaystyle \int_{B} g ~ \mathrm{d}{\mu} < \infty $,

then $ f \in \mathcal{L} $ and $ \displaystyle \lim_{n \to \infty} \int_{B} f_{n} ~ \mathrm{d}{\mu} = \int_{B} f ~ \mathrm{d}{\mu} $.

(4) The vector space $ \mathcal{L} $ is complete with respect to the norm $ \| \bullet \|_{\mathcal{L}} $ defined by $$ \forall f \in \mathcal{L}: \quad \| f \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| f(t) \|_{X} ~ \mathrm{d}{\mu(t)}. $$

(5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if $ f \in \mathcal{L}(X;E,\mathfrak{B},\mu) $ and $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $, then $$ \forall B \in \mathfrak{B}: \quad \int_{B} T \circ f ~ \mathrm{d}{\mu} = T \! \left( \int_{B} f ~ \mathrm{d}{\mu} \right). $$ If $ T $ is bounded, then the condition $ T \circ f \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $ is automatically fulfilled ([3][5]).

The Bochner-integral was introduced by S. Bochner in [1]. Equivalent definitions were given by T. Hildebrandt in [2] and by N. Dunford (the $ D_{0} $-integral).

References

[1] S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind”, Fund. Math., 20 (1933), pp. 262–276.
[2] T.H. Hildebrandt, “Integration in abstract spaces”, Bull. Amer. Math. Soc., 59 (1953), pp. 111–139.
[3] K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.
[4] E. Hille and R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957).
[5] N. Dunford and J.T. Schwartz, “Linear operators. General theory”, 1, Interscience (1958).

Comments

A simple function is also called a step-function. A good recent textbook on integrals with values in a Banach space is [a1]; [a4] is specifically about the Bochner-integral.

References

[a1] J. Diestel and J.J. Uhl, Jr., “Vector measures”, Math. Surveys, 15, Amer. Math. Soc. (1977).
[a2] A.C. Zaanen, “Integration”, North-Holland (1967).
[a3] N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).
[a4] J. Mikusiński, “The Bochner integral”, Acad. Press (1978).
How to Cite This Entry:
Bochner integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner_integral&oldid=11334
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article