Difference between revisions of "Natural function"
Line 3: | Line 3: | ||
A function $g: E \to X$ is natural if $V(g,E_a^b)=b-a$ for all $a,b \in E$, $a \leq b $, where $E\subset \mathbb{R}$ is a non-empty bounded set, $E_a^b=\{s \in E: a \leq s \leq b \}$ for $a,b \in E$ ($a \leq b$), $X$ is a metric space with a metric $d$, $V(g,E_a^b)$ variation of $g$ on $E_a^b$. | A function $g: E \to X$ is natural if $V(g,E_a^b)=b-a$ for all $a,b \in E$, $a \leq b $, where $E\subset \mathbb{R}$ is a non-empty bounded set, $E_a^b=\{s \in E: a \leq s \leq b \}$ for $a,b \in E$ ($a \leq b$), $X$ is a metric space with a metric $d$, $V(g,E_a^b)$ variation of $g$ on $E_a^b$. | ||
− | Let ${E_t}^-=\{s \in E: s \leq t\}$ and ${E_t}^+=\{s \in E: t \leq s\}$. The | + | Let ${E_t}^-=\{s \in E: s \leq t\}$ and ${E_t}^+=\{s \in E: t \leq s\}$. The following conditions are equivalent: |
(a) $f$ is a natural function; | (a) $f$ is a natural function; | ||
Line 9: | Line 9: | ||
(b) $V(f,E_x^-)=x+c$, $x \in E$, where $c=-inf(E)$; | (b) $V(f,E_x^-)=x+c$, $x \in E$, where $c=-inf(E)$; | ||
− | (c) $ | + | (c) $f$ is a Lipschitz function such that $Lip(f) \leq 1$ and $V(f,E)=sup(E)-inf(E)$. |
A natural function is a Lipschitz function and the smallest Lipschitz constant equals $1$. | A natural function is a Lipschitz function and the smallest Lipschitz constant equals $1$. |
Revision as of 16:23, 21 April 2016
A function $g: E \to X$ is natural if $V(g,E_a^b)=b-a$ for all $a,b \in E$, $a \leq b $, where $E\subset \mathbb{R}$ is a non-empty bounded set, $E_a^b=\{s \in E: a \leq s \leq b \}$ for $a,b \in E$ ($a \leq b$), $X$ is a metric space with a metric $d$, $V(g,E_a^b)$ variation of $g$ on $E_a^b$.
Let ${E_t}^-=\{s \in E: s \leq t\}$ and ${E_t}^+=\{s \in E: t \leq s\}$. The following conditions are equivalent:
(a) $f$ is a natural function;
(b) $V(f,E_x^-)=x+c$, $x \in E$, where $c=-inf(E)$;
(c) $f$ is a Lipschitz function such that $Lip(f) \leq 1$ and $V(f,E)=sup(E)-inf(E)$.
A natural function is a Lipschitz function and the smallest Lipschitz constant equals $1$.
A function $f: E \to X$ has bounded variation if and only if there exists a non-decreasing bounded function $\phi : E \to \mathbb{R}$ and a natural function $g: \phi (E) \to X$ such that $f=g\circ\phi$ on $E$.
References
[1] V.V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik: Mathematics 189:5 (1998), 797-819.
Natural function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_function&oldid=38596