Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(33 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
 +
 +
====Notes====
 +
<references />
 +
 +
-------------------------------------------
 +
 +
 +
{|
 +
| A || B || C
 +
|-
 +
| X || Y || Z
 +
|}
 +
 +
 +
 +
-----------------------------------------
 +
-----------------------------------------
 +
 +
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
 +
 
<asy>
 
<asy>
size(80,40,keepAspect=false);
+
size(100,100);
pen p2=red+1.2;
+
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
draw(((-4,0){right}..(-3,0.004)..(-2,0.054)..(-1,0.242)..(0,0.399)..(1,0.242)..(2,0.054)..(3,0.004)..{right}(4,0)),p=p2);
 
defaultpen(linewidth(0.8));
 
draw((-4,0)--(4,0));
 
 
</asy>
 
</asy>
  
--------------------------------------
+
<asy>
 +
size(220,220);
 +
 
 +
import math;
  
if for every $\varepsilon$ there is a $\delta > 0$ such that,
+
int kmax=40;
for any $a_1<b_1<a_2<b_2<\ldots < a_n<b_n \in I$ with $\sum_i |a_i -b_i| <\delta$, we have
 
\[
 
\sum_i d (f (b_i), f(a_i)) <\varepsilon\, .
 
\]
 
The  absolute continuity guarantees the uniform continuity. As for real  valued functions, there is a characterization through an appropriate  notion of derivative.
 
  
'''Theorem 1'''
+
guide g;
A continuous function $f$ is absolutely continuous if and only if there is a function $g\in L^1_{loc} (I, \mathbb R)$ such that
+
for (int k=-kmax; k<=kmax; ++k) {
\begin{equation}\label{e:metric}
+
  real phi = 0.2*k*pi;
d (f(b), f(a))\leq \int_a^b g(t)\, dt \qquad \forall a<b\in I\,
+
  real rho = 1;
\end{equation}
+
  if (k!=0) {
(cp. with ). This theorem motivates the following
+
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
  
'''Definition 2'''
+
defaultpen(0.75);
If  $f:I\to X$ is a absolutely continuous and $I$ is compact, the metric  derivative of $f$ is the function $g\in L^1$ with the smalles $L^1$ norm  such that \ref{e:metric} holds (cp. with )
+
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
  
--------------------------------------------
+
</asy>

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=27474