Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(292 intermediate revisions by the same user not shown)
Line 1: Line 1:
$\newcommand{\Om}{\Omega}
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
\newcommand{\A}{\mathcal A}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\M}{\mathcal M} $
 
The term "universally measurable" may be applied to
 
* a [[measurable space]];
 
* a subset of a measurable space;
 
* a [[metric space]].
 
  
Let $(X,\A)$ be a measurable space. A subset $A\subset X$ is called universally measurable, if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is,
+
====Notes====
: $ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad
+
<references />
\mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$
+
 
 +
-------------------------------------------
  
====References====
 
  
 
{|
 
{|
|valign="top"|{{Ref|T}}|| Terence Tao, "An introduction to measure theory", AMS (2011).  &nbsp; {{MR|2827917}} &nbsp; {{ZBL|05952932}}
+
| A || B || C
 
|-
 
|-
|valign="top"|{{Ref|P}}|| David Pollard, "A user's guide to measure theoretic probability",  Cambridge (2002). &nbsp;  {{MR|1873379}} &nbsp;  {{ZBL|0992.60001}}
+
| X || Y || Z
|-
 
|valign="top"|{{Ref|K}}|| Alexander  S.  Kechris, "Classical  descriptive set theory", Springer-Verlag  (1995). &nbsp;  {{MR|1321597}} &nbsp; {{ZBL|0819.04002}}
 
|-
 
|valign="top"|{{Ref|BK}}||  Howard Becker and Alexander S. Kechris, "The descriptive set theory of  Polish group actions", Cambridge (1996). &nbsp; {{MR|1425877}}  &nbsp;  {{ZBL|0949.54052}}
 
|-
 
|valign="top"|{{Ref|D}}||  Richard M. Dudley, "Real analysis and probability",  Wadsworth&Brooks/Cole (1989). &nbsp; {{MR|0982264}} &nbsp;  {{ZBL|0686.60001}}
 
|-
 
|valign="top"|{{Ref|M}}||  George  W.  Mackey,  "Borel structure in groups and their duals",  ''Trans.  Amer.  Math. Soc.''  '''85''' (1957), 134–165. &nbsp; {{MR|0089999}}  &nbsp; {{ZBL|0082.11201}}
 
|-
 
|valign="top"|{{Ref|H}}||  Paul R. Halmos, "Measure theory", v. Nostrand (1950). &nbsp;  {{MR|0033869}} &nbsp; {{ZBL|0040.16802}}
 
|-
 
|valign="top"|{{Ref|R}}||  Walter Rudin, "Principles of mathematical analysis", McGraw-Hill  (1953). &nbsp; {{MR|0055409}} &nbsp; {{ZBL|0052.05301}}
 
 
|}
 
|}
 +
 +
 +
 +
-----------------------------------------
 +
-----------------------------------------
 +
 +
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
 +
 +
<asy>
 +
size(100,100);
 +
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
 +
</asy>
 +
 +
<asy>
 +
size(220,220);
 +
 +
import math;
 +
 +
int kmax=40;
 +
 +
guide g;
 +
for (int k=-kmax; k<=kmax; ++k) {
 +
  real phi = 0.2*k*pi;
 +
  real rho = 1;
 +
  if (k!=0) {
 +
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
 +
 +
defaultpen(0.75);
 +
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
 +
 +
</asy>

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21103